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Abstract: Three phase inverters are commonly used to transfer energy from a source to the
power grid. The quality of the power delivered to the grid, can be ensured via the use of an
output LC filter. However inserting an output filter to an inverter circuitry would introduce
new challenges to the controller design due to the additional parametric uncertainties imposed.
In this study we present a new model based robust controller for a three phase inverter with
output LC filter under the constraint that the output filter parameters are not exactly known.
Specifically, d-q reference frame model of an inverter with output LC filter is used to develop
a nonlinear robust controller that ensures the 3-phase output voltage with desired amplitude
and frequency and with lowest harmonic distortion. Stability of the proposed method and the
boundedness of the closed–loop system, is established via Lyapunov based tools in conjunction
with a robust backstepping procedure. Simulation results are given in order to demonstrate
performance and effectiveness of the proposed robust controller.
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1. INTRODUCTION

In recent years, renewable energy sources are getting
more attention Lawrence and Middlekauff [2005]. As a
consequence, solar cells and wind tribunes are becoming
widely applied in distributed generation systems Eltawil
and Zhao [2010]. Generally, electrical power produced
by these type of energy sources are stored in chemical
(i.e. batteries) or electrical (super capacitors) storage
devices and connected to the power grid via a dc-to-ac
inverter system. To connect the inverter output efficiently
to the grid, the amplitude and the frequency of the
inverter output need to be matched with the grid side
Blaabjerg et al. [2006]. An LC low–pass filter is usually
connected to the output of the inverter to achieve the
lowest Total Harmonic Distortion (THD) Ahmed et al.
[2007]. The inverter–filter couple needs to be actively
controlled to ensure the lowest THD of output voltage with
the desired amplitude and frequency under the different
load conditions Kim and Sul [2011].

Power quality is one of the major performance requirement
for inverters. Performance of the controller algorithm has
direct influence on the power quality (see Prodanovic and
Green [2002] and Kovari et al. [2004]). Model–based con-
trollers have been implemented in the literature, to name
a few, Kukrer [1996] implement the discrete–time dead–
beat control algorithm by using space vector based model
of an inverter with output LC filter. In Mattavelli [2005]
an improved dead–beat controller with an disturbance ob-
server is proposed and a state-space model of the inverter

is used. In Escobar et al. [2007], authors used an adap-
tive controller based on neural-network identification and
deadbeat current regulation. Cortes et al. [2009] proposed
a model predictive controller with an observer for the load
current estimation. In Kim and Lee [2010], a nonlinear
model of an inverter including output LC filter is derived
and input-output feedback linearization is applied to the
model. In Mu et al. [2011], a nonlinear controller requiring
the exact values of the model parameters was proposed.
A flatness based control method was proposed in Houari
et al. [2012]. Wai et al. [2013] applied a backstepping
control design procedure.

In this work, we propose a model based nonlinear robust
controller based on the d-q reference frame model of
an inverter with output LC filter. Despite the lack of
exact knowledge of the parameters of the output filter,
the proposed robust controller ensures practical 3-phase
output voltage tracking to any desired amplitude and
frequency. The stability of the overall system is proven via
Lyapunov based tools and effectiveness of the proposed
method is illustrated through simulation studies.

The rest of the work is organized in the following manner:
d-q reference frame model of the investigated system is
given Section 2. Section 3 presents the objective and
details of the design procedure while Section 4 contains
the stability analysis. Results of our simulation studies
are presented in Section 5 and Section 6 contains some
concluding results.
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2. INVERTER MODEL

An illustration of the system investigated in this work is
presented in Figure 1. The system consists of a three legged
full bridged intelligent power module (IPM), a three phase
output LC filter and a three phase load. For the sake of
robustness, the parameters of the load are assumed to
be unknown. In Figure 1, Vdc and Cdc are the DC link
voltage and capacitance, respectively, Sa, Sb, Sc are the
switching functions of the gates of IGBTs in the IPM.
The gates of the IGBTs are switched by PWM signals
according to the control input signal. Va, Vb, Vc are the
output voltages, ia, ib, ic are the output currents of the
switching elements. The output voltages and currents of
the LC filter are labelled as Vaf , Vbf , Vcf and iLa, iLb, iLc.
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Fig. 1. Inverter with an output LC Filter

As the output of the inverter is periodic, the d–q syn-
chronous reference frame representation of the voltage and
the current dynamics of the LC Filter shown in Figure 1
can be written as Houari et al. [2012]

Cf
d

dt
VCd =CfωVCq + id − iLd (1)

Cf
d

dt
VCq =−CfωVCd + iq − iLq (2)

Lf
d

dt
id =−rf id + Lfωiq + Vd − VCd (3)

Lf
d

dt
iq =−rf iq − Lfωid + Vq − VCq (4)

where Cf ∈ R is the filter capacitance, Lf ∈ R is the
filter inductance, rf ∈ R is the resistance of the filter
inductance, and ω (t) ∈ R is the angular frequency. Note
that, Cf , Lf , rf are considered to be uncertain parameters.

After some mathematical manipulations, the d–q frame
dynamics in (1)–(4) is rewritten in the following compact
form

Cf V̇C =CfWssVC + I − IL (5)

Lf İ =−rfI + LfWssI + U − VC . (6)

In (5) and (6), VC (t), IL (t), I (t), U (t) ∈ R2 represent the
system output, the load current, the filter input current,
and the control input, respectively, defined as

VC ,

[
VCd

VCq

]
, IL ,

[
iLd

iLq

]
, I ,

[
id
iq

]
, U ,

[
Vd
Vq

]
(7)

and Wss (ω) ∈ R2×2 is an auxiliary skew–symmetric
matrix defined as

Wss ,

[
0 ω
−ω 0

]
. (8)

3. PROBLEM STATEMENT AND CONTROLLER
FORMULATION

Our aim is to design a controller that ensures the reference
input tracking of the output voltage of the inverter with
minimum harmonics provided that input current, load
current and output voltage of the inverter are measurable,
under the restriction that filter parameters are not avail-
able. In order to quantify the performance of the controller,
we define the output voltage tracking error, e (t) ∈ R2,
as the difference between the reference output voltage,
denoted by VCref (t) ∈ R2, with the actual output voltage,
as follows

e , VCref − VC . (9)

The reference output voltage along with its first and sec-
ond time derivatives are assumed to be bounded functions
of time. Taking the time derivative of (9), multiplying by
Cf , inserting the voltage dynamics presented in (5), and
finally adding and subtracting CfWssVCref , the following
open–loop error dynamics is obtained

Cf ė = Cf V̇Cref + CfWsse− CfWssVCref − I + IL. (10)

To insert the dynamics of filter input current I (t), we will
apply a backstepping procedure by defining an auxiliary
control input like term, denoted by Id(t) ∈ R2. Adding
and subtracting this term to (10) yields

Cf ė = Cf V̇Cref +CfWsse−CfWssVCref +IL+z−Id (11)

where z(t) ∈ R2 is an auxiliary error designed to quantify
the mismatch between the filter input current I (t) and the
auxiliary term Id(t) in the sense that

z , Id − I. (12)

Based on the subsequent analysis, the auxiliary control
input like term Id(t) is designed as

Id = Kee+ Ĉf

(
V̇Cref −WssVCref

)
+ IL + VR1 (13)

where Ke ∈ R2×2 is a diagonal, positive definite, constant
gain matrix, Ĉf ∈ R represents the constant best–guess
estimate of Cf , and VR1 (e) ∈ R2 is a robustifying term
designed in the following manner

VR1 =
ρ21
ε1
e (14)

where ε1 ∈ R is a positive constant and ρ1 ∈ R is a positive
bounding constant that satisfies

ρ1 > ‖C̃f

(
V̇Cref −WssVCref

)
‖ (15)

with C̃f , Cf − Ĉf ∈ R being the constant parameter
estimation error. Inserting (13) into the (11), the closed–
loop dynamics of the voltage subsystem is obtained as

Cf ė = CfWsse−Kee+C̃f

(
V̇Cref −WssVCref

)
+z− ρ

2
1

ε1
e.

(16)

The backstepping design procedure applied requires the
dynamics of the auxiliary error signal z(t) to be inves-
tigated. To obtain the dynamics of z (t), we take the
time derivative of (12), multiply it by Lf , insert the time
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derivative of (13) and the current dynamics given by (6),
and then add and subtract LfWssId term, to obtain

Lf ż = Y ϕ+ LfWssz + VC − U (17)

where Y (t) is a regressor matrix and ϕ is an unknown
constant parameter vector with their multiplication being
defined as

Y ϕ= rfI −
Lf

Cf
(I − IL)

+Lf

{(
Ke +

ρ21
ε1

)(
V̇Cref −WssVC

)
+Ĉf

(
V̈Cref − ẆssVCref −WssV̇Cref

)
+İL −WssId

}
. (18)

Notice that, to calculate the regressor matrix Y (t) the
time derivative of IL (t) is required. While this may be
considered as a drawback of the proposed work, it is re-
marked that since we design a robust controller numerical
derivative of IL (t) can be utilized in the regressor matrix
and the subsequently robustifying term [i.e., (20)] will
compensate for this mismatch as well.

Based on the subsequent stability analysis, the control
input U (t) is designed to have the following form

U = e+Kzz + VC + Y ϕ̂+ VR2 (19)

where Kz ∈ R2×2 is a constant, diagonal, positive definite
gain matrix, ϕ̂ is the constant best–guess estimate of
the unknown parameter vector ϕ, and VR2 (·) ∈ R2 is a
robustifying term designed in the following form

VR2 =
ρ22
ε2
z (20)

where ε2 ∈ R is a positive constant and ρ2 (‖e‖, ‖z‖) ∈ R
is a positive bounding function which satisfies

ρ2 > ‖Y ϕ̃‖ (21)

with the constant parameter estimation error defined as
ϕ̃ , ϕ− ϕ̂. After substituting (19) and (20) into the open–
loop error dynamics in (17), the closed–loop dynamics of
z(t) is obtained as follows

Lf ż = LfWssz + Y ϕ̃− e−Kzz −
ρ22
ε2
z. (22)

4. STABILITY ANALYSIS

At this stage we are ready to state the following Theorem:

Theorem 1. The robust controller of (19) and the auxil-
iary control input (13) with the robustifying terms (14)
and (20) guarantee uniform ultimate boundedness of the
inverter output voltage tracking error e(t) in the sense that

‖e (t)‖ ≤
√
a

b
‖x (0)‖2 exp (−βt) +

2ε

bβ
(1− exp (−βt))

(23)

where x (t) ,
[
eT zT

]T ∈ R4 is the combined error signal,
a, b, β, ε ∈ R are positive scalars defined explicitly as

a, max {Cf , Lf} (24)

b, min {Cf , Lf} (25)

β ,
2 min {λmin (Ke) , λmin (Kz)}

max {Cf , Lf}
(26)

ε,
ε1
4

+
ε2
4

(27)

where ε1, ε2, Ke and Kz were previously defined, and the
notation λmax (·) and λmin (·) are used to denote maximum
and minimum eigenvalue of a matrix, respectively.

Proof. To prove the theorem, we define a non–negative
Lyapunov function, denoted by V (e, z) ∈ R, in the
following manner

V ,
Cf

2
eT e+

Lf

2
zT z (28)

which can be bounded from below and above as
1

2
min {Cf , Lf} ‖x‖2 ≤ V ≤

1

2
max {Cf , Lf} ‖x‖2 . (29)

The time derivative of the above Lyapunov function is
obtained as

V̇ = Cfe
T ė+ Lfz

T ż (30)
and after substituting the closed–loop dynamics in (16)
and (22), simplifying the resulting equation by canceling
the common terms, we reach

V̇ =−eTKee− zTKzz + Cfe
TWsse+ Lfz

TWssz

+eT C̃f

(
V̇Cref −WssVCref

)
− ρ21
ε1
‖e‖2

+zTY ϕ̃− ρ22
ε2
‖z‖2. (31)

Following expressions can easily be reached as a direct
consequence of the skew–symmetric structure of Wss (ω)

eTWsse = 0 and zTWssz = 0. (32)

Applying the upper bounds given in (15) and (21) into
the second and third lines of (31), respectively, and then
competing to squares result in

ρ1‖e‖−
ρ21
ε1
‖e‖2 = −

(√
ε1
2
− 1
√
ε1
ρ1‖e‖

)2

+
ε1
4
≤ ε1

4
(33)

ρ2‖z‖ −
ρ22
ε2
‖z‖2 = −

(√
ε2
2
− 1
√
ε2
ρ2‖z‖

)2

+
ε2
4
≤ ε2

4
.

(34)
Combining the above derivations allow us to upper bound
the right–hand side of (31) as

V̇ ≤ −min {λmin (Ke) , λmin (Kz)} ‖x‖2 + ε (35)

where ε was previously defined in (27). Using the definition
of x (t) and the upper bound of V (t) given in (29), the

upper bound of V̇ (t) given (35) can be reformulated as

V̇ ≤ −βV + ε (36)

where β was previously defined in (26). The solution of
the above differential inequality yields

V (t) ≤ V (0) exp (−βt) +
ε

β
(1− exp (−βt)) (37)

and from direct application of (29), we can obtain the
following upper bound for x (t)

‖x (t)‖ ≤
√
a

b
‖x (0)‖2 exp (−βt) +

2ε

bβ
(1− exp (−βt))

(38)
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where a and b were previously defined in (24) and (25),
respectively. Based on (38) and the definition of x (t), it
can be shown that the voltage error term e (t) is bounded
as stated in (23). Moreover, applying standard signal
chasing argument, we can show that all signals in the
closed–loop error system are bounded.

5. SIMULATION RESULTS

In order to illustrate the performance of the purposed
controller scheme we have performed simulations using
MATLAB Simulink simulation tool. DC link voltage is
taken as 620 V and DC link capacitor is assumed to
be large enough to keep the DC link voltage constant.
Parameters of the low–pass LC filters are taken from Mu
et al. [2011] as

Lf = 15mH, Cf = 22µF , rf = 0.2Ω, RL = 20Ω (39)

where RL is a resistive load connected to the output of
the filter. The amplitude of the reference phase to phase
voltage is set to 380 V and the frequency is 50 Hz. In
order to avoid high jumps in the control signal at the
beginning, reference signal is designed to be have a soft
start. Controller gain matrices are selected as

Ke = diag {2.5, 1.93} Kz = diag {26, 3.14}
ρ1 = diag {0.5, 0.2} ρ2 = diag {2, 2}

ε1 = 0.1 ε2 = 1.
(40)

Simulation results are shown in Figures 2-5. Fig. 2 shows
the error signals in d-q synchronous reference frame while
three phase output voltage errors are represented in Fig. 3.
Fig. 4 presents the input voltage of the output LC filter.
Finally, output voltage wave forms of the inverter with
output LC filter is presented in Fig. 5.
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Fig. 2. Error signals in d-q reference frame

6. CONCLUSION

In this study, we present a new full state feedback nonlin-
ear robust controller for inverters with output LC filter
with uncertain system parameters. Despite the lack of
exact knowledge of the filter parameters, proposed con-
troller ensures the desired output wave form with the
desired amplitude and frequency for the stand alone and
grid connected applications. Stability of the closed–loop

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−20

−15

−10

−5

0

5

10

15

20

Time [sec]

3
 P

h
a

s
e

 V
o

lt
a

g
e

 E
rr

o
r 

[V
]

Fig. 3. Error signals in 3 Phase
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Fig. 4. Control signals in d-q reference frame
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Fig. 5. The output voltage waveform of the inverter

system and boundedness of the signals in the closed–
loop system is proven via Lyapunov based tools with the
help of backstepping procedure. In order to illustrate the
performance of the proposed controller, simulation studies
have been performed and results of the simulations have
been presented.
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