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Abstract: This paper presents synthesis results for distributed controllers for interconnected
linear time-invariant systems. The setting of the paper is in discrete time. A parameterization
of the closed-loop system is used for interconnected systems and distributed static state
feedback controllers with an interconnection structure that can be chosen arbitrary in the
design phase. Based on conditions for closed-loop stability using centralized static state feedback,
computationally tractable synthesis procedures are derived that yield a distributed controller.
The synthesis procedures involve convex optimization problems in the form of linear matrix
inequalities (LMIs) which are solved in a centralized way. Suggestions are made to reduce the
number of independent variables in the problems. An algorithm is presented that uses these
synthesis procedures to find a controller with a distributed structure or eliminates candidate
controller structures using heuristics. A complexity analysis for the synthesis procedures is
incorporated. The synthesis algorithm is illustrated on examples of electric power systems,
proving feasibility of the synthesis procedures for real-life applications.
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1. INTRODUCTION

Interconnected systems become increasingly important as
a central theme of study in control theory. This focus is
understandable since the construction and control of net-
works of dynamical systems brings a broad range of techni-
cal and scientific challenges in control, communication and
computation. Examples of such networks are electric power
systems (Saadat, 1999), where generators and loads are
distributed over the power grid, water networks, such as
irrigation channels (Li and De Schutter, 2011), where wa-
ter flows are connected, IT systems (Napoli and Bamieh,
2001), where data is exchanged between servers, commu-
nication networks, where nodes communicate over inter-
connecting channels and transportation networks (Raza
and Ioannou, 1996; Zecevic and Siljak, 2005), where com-
munication between vehicles can provide faster and safer
transportation.

The need for distributed control of networked systems is
usually motivated by the practical consideration that cen-
tralized communication among the network components
is not desirable or is practically infeasible. Indeed, the
logistic configuration of the network may prevent from a
full and centralized communication between a controller
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and all systems in the network. Also, a model based syn-
thesis of a centralized controller may imply a modeling
effort that leads to complex or computationally infeasible
models. The decentralized control paradigm amounts to
finding controllers for individual systems in the network,
but typically ignores the dynamical interactions over com-
munication channels. As such, decentralized control algo-
rithms fall short in proving global stability and robustness
properties of the network. Instead, a distributed control
architecture allows multiple controllers to exchange infor-
mation in a well defined manner so as to accomplish a
desirable behaviour of the network.

The focus of this paper is on networks of interconnected
linear discrete time systems. We aim to derive a computa-
tionally tractable procedure for the synthesis of distributed
controllers with a predefined structure for the controller
network, such that closed-loop stability is guaranteed.
Application of the synthesis procedure either results in the
construction of a controller or proves the non-existence of a
controller with that structure, corresponding to necessary
and sufficient conditions for controller existence. The focus
is on a simple, but practical, problem set-up. In particular,
the focus is on the synthesis of stabilizing static state
feedback controllers. The main results include procedures
for the synthesis of such controllers based on linear matrix
inequalities (LMIs). Application of the theory to power
systems is studied. The focus on discrete time systems

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11917



allows to also consider delays in the interconnections in
a natural way.

Distributed systems have been studied extensively in the
past. An overview of various decentralized control schemes,
initialized by (Siljak, 1991), has been described in (Bakule,
2008). A low-rank centralized correction was added to all
systems in a decentralized scheme by (Zecevic and Siljak,
2005), such that global stabilization was possible when
decentralized control was insufficient. The interaction be-
tween subsystems has been explicitly taken into account in
distributed control research, where the interaction between
subcontrollers is an important part of the control strategy.
Various studies have been made to apply dissipativity and
small gain approaches to these systems. These approaches
have not succeeded in solving the problem in a decentral-
ized way and even solve a problem that is more complex
than the centralized problem. Based on (D’Andrea and
Dullerud, 2003; Langbort et al., 2004) and (Dullerud and
D’Andrea, 2004), an LMI-based tool for the synthesis of
distributed dynamic output feedback controllers achieving
a bounded H∞ performance has been developed for a
distributed system over an arbitrary graph by (Jokic et al.,
2012) and adapted for discrete time by (Van Horssen and
Weiland, 2013). Recent work by (Bobiti et al., 2013) shows
that these approaches, even when only considering stabil-
ity analysis, quickly increase the problem complexity when
the distributed system grows larger, potentially rendering
the problem computationally infeasible.

The goal of this paper is to present a computationally
feasible solution to the synthesis problem of stabilizing
distributed static state feedback controllers for intercon-
nected discrete time systems. Currently, this problem is
not completely solved. A set of necessary conditions for the
existence of a distributed controller is employed to search
for distributed controllers that satisfy a set of sufficient,
but not necessary conditions. In this way the gap between
the necessary conditions on one hand and the sufficient but
not necessary ones on the other hand, can be reduced. The
synthesis procedures have been brought together in a syn-
thesis algorithm. All procedures are convex optimization
problems which have to be solved in a centralized way. An
assessment of the complexity of each of these procedures
has been made. The application of the theory to power
systems is studied to ascertain feasibility for systems with
increasing complexity, proving feasibility of the synthesis
procedures for relevant real-life applicationsfor which other
methods are not tractable.

This paper is organized as follows. In Section 2, the
parameterization of a closed-loop distributed system is
explained in detail. A formal problem formulation is given
in Section 3. LMI-based synthesis methods are presented
in Section 4. An analysis of the complexity of the methods
and an algorithm to use the methods is given. Simulations
are presented and discussed in Section 5. Conclusions and
comments on future work are given in Section 6.

1.1 Notation

Let R and Z denote the set and field of real numbers
and the set of integers, respectively. Let Rn denote the
real vectors of dimension n and let Rm×n denote real
matrices of dimension m × n. Let RnS ⊂ Rn×n denote the

set of symmetric matrices in Rn×n. For every Π ⊆ R and
a, b, c ∈ Π define Π(a,b] := {k ∈ Π | a < k ≤ b}, and
let Π\{c} denote the set Π excluding the element {c}.
For matrices A,B ∈ RnS , the matrix inequality A ≺ B
(respectively, A � B) means that B − A is positive def-
inite (positive semi-definite, respectively). The transpose
of a vector or matrix is denoted by the superscript >.
For matrices A1, A2, let diag(A1, A2), col(A1, A2), and
row(A1, A2) denote block-diagonal, block-column, and
block-row matrices, respectively, with matrices A1, A2 on
its block-diagonal, stacked as a column, and filed in a
row, respectively. Similarly, diagi∈Z[k,`]

Ai, coli∈Z[k,`]
Ai,

and rowi∈Z[k,`]
Ai denote block-diagonal, block-column,

and block-row matrices for matrices Ak, . . . , A`, respec-
tively. In this paper, when discussing matrices, the ’block’
property is assumed to be implied and therefore often not
mentioned explicitly.

2. CLOSED-LOOP PARAMETERIZATION

In this section we present a parameterization of a closed-
loop (CL) system resulting from the interconnection of a
distributed system and a distributed controller.

2.1 Distributed systems

A LTI distributed system with L subsystems (with control
inputs u and outputs y and interconnection inputs v and
outputs w), can be described by

∀i ∈ N[1,L] (i = 1, . . . , L)

∀j ∈ N[1,L]\{i} (j = 1, . . . , i− 1, i+ 1, . . . , L)

xi(k + 1) := Aixi(k) +
∑
j

F ijvij(k) +Biui(k) (1)

vij(k) := W ijwji(k) = W ijxj(k) (2)

yi(k) = xi(k) (3)

where state xi(k) ∈ Rni
x and input ui(k) ∈ Rni

u . Matrices
W ij are pass-through matrices determining if the states of
subsystem j affect the states of subsystem i. Matrices W ij

are zero or identity depending on whether subsystem i and
j are connected, i.e. W ij = I if and only if subsystem i
and j are connected, otherwise W ij = 0. The elements

of F ij ∈ Rni
x×n

j
x are multiplications of the output gain

of the transmitting subsystem (j) and the input gain of
the receiving subsystem (i). If state p from a connected
subsystem j does not affect state q of subsystem i, this will
be reflected in F ij as a zero in the (q, p)-th entry. In this
system definition, each system outputs its full state to all
other systems. Each receiving system has the information
on whether to accept the states or not through W ij . How
the accepted states affect the subsystem is specified in F ij .

In the remainder of this paper, when considering system
(1)–(3), we drop the time indicator (k) for notational
brevity and use x+ := x(k + 1) for the notation of the
next time instance.

For completeness, we assume there also exist matrices W ii

and F ii which only contain zero elements such that there
are no self-connections, i.e. W ii = 0 and F ii = 0. Note
that any such connection can be incorporated in Ai.
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The full open loop distributed system can now be de-
scribed by

x+ := AOx+Bu = [A+ FW ]x+Bu (4)

where state x ∈ Rnx with nx =
∑
i n

i
x and input u ∈ Rnu

with nu =
∑
i n

i
u. The system matrices are created from

the subsystem matrices, for i, j ∈ Z[1,L], according to the
parameterization

A := diag
i

Ai (5)

F := diag
i

F i where F i := row
j
F ij (6)

W := col
i
W i where W i := diag

j
W ij (7)

B := diag
i

Bi, (8)

where F ∈ Rnx×L∗nx and W ∈ RL∗nx×nx . In particular,

FW = col
i
F iW i (9)

and

AO =

A1 F 12W 12 . . . F 1NW 1N

F 21W 21
...

...
. . .

. . .
. . .

...
..
. F (N−1)NW (N−1)N

FN1WN1 . . . FN(N−1)WN(N−1) AN

 .

(10)

2.2 Distributed controllers

Since control output yi = xi is the full subsystem state, a
distributed static state feedback controller for such a dis-
tributed system with L subcontrollers can be represented
by

∀i ∈ N[1,L], ∀j ∈ N[1,L]\{i}
ui := Kixi +

∑
j

GijvijK (11)

vijK := W ij
Kw

ji
K = W ij

Kx
j (12)

where Ki and Gij are the controller gain matrices and
W ij
K are pass-through matrices, similar to the subsystem

matrices W ij , determining if subcontroller j affects sub-
controller i, i.e. the subcontrollers are connected. This
representation is similar in structure to the subsystem
representation of the distributed system (1)-(3).

Because W ij
K is restricted to being identity or zero, the

multiplication order of the matrices Gij and W ij
K can be

changed (GWK →WKG, only the dimensions of W ij
K need

to be changed from Rn
i
x

S to Rn
i
u

S ). This will prove useful in
synthesis when searching for unknown Gij .

The full distributed controller can now be described by

u = KCx = [K +WKG]x (13)

where for i, j ∈ Z[1,L]

G := col
i
Gi where Gi := diag

j
Gij (14)

WK := diag
i

W i
K where W i

K := row
j
W ij
K (15)

K := diag
i

(Ki) (16)

where G ∈ RL∗nu×nx and WK ∈ Rnu×L∗nu , such that

KC =

K1 W 12
K G12 . . . W 1N

K G1N

W 21
K G21

...
...

. . .
. . .

. . .
...

... W
(N−1)N
K G(N−1)N

WN1
K GN1 . . . W

N(N−1)
K GN(N−1) KN

 .

(17)

Note that KC is a parameterized structure and can there-
fore represent a centralized controller (all elements W ij

K are

identity) or a decentralized controller (all elements W ij
K are

zero) or anything in between, which can be considered a
distributed controller. In particular it can represent a clas-
sical distributed controller if the identity and zero elements
of WK coincide with the identity and zero elements of W .

When looking for a controller, we assume that all W ij
K are

known, such that the controller structure WK is known.

2.3 Controlled distributed systems

A full closed-loop system, built from the interconnection
of a distributed controller (13) with a distributed system
(4), can be written as

x+ =


Φ1 Γ12 · · · Γ1N

Γ21 . . .
. . .

...
...

. . .
. . . Γ(N−1)N

ΓN1 · · · ΓN(N−1) ΦN

x (18)

= [A+BK + FW +BWKG]x (19)

= ACx (20)

where Φi := Ai +BiKi and Γij := F ijW ij +BiW ij
KG

ij .

3. PROBLEM FORMULATION

Given the parameterization of the closed-loop system, we
can now present our main problem formulation.

Problem 1. Given a distributed system (4), give a proce-
dure to synthesize a controller (13), with a given structure,
that results in global exponential stability (GES) of the
closed-loop system (20), or prove that such a controller
does not exist and find a different controller structure
which results in GES of the closed-loop system (20).

The envisioned solution to the problem provides necessary
and sufficient conditions for the existence of a distributed
controller (13) with a particular structure, with the option
of explicitly reconstructing this controller when these con-
ditions are satisfied. For the solution to be computationally
tractable, we aim to find convex conditions in the form of
LMIs.

4. SYNTHESIS

This section presents methods to synthesize a distributed
controller (13) for a distributed system (4) satisfying
sufficient conditions for GES of the CL system (20). The
methods provide a solution to Problem 1 for construction
of a controller. We need the following assumption:
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Assumption 1. The pair (AO, B) as in (4) is stabilizable.

In other words, we assume that there exist a centralized
controller that stabilizes the distributed system, which is
a necessary condition for the existence of a distributed
controller.

4.1 Full stability conditions

For a system (20) the necessary and sufficient conditions
for GES (Hahn and Baartz, 1967) are

Criterion 1. ∃P � 0 such that

A>CPAC − P ≺ 0. (21)

Such that V (x) = x>Px is a Lyapunov function (LF)
for the CL system. Recall that AC = A + BK + FW +
BWKG. For a given K and G and unknown P , these
LMI conditions can be easily verified. However, these
conditions pose a non-convex problem for unknown P , K,
and G, and can therefore not be solved directly. By Schur’s
complement (Boyd et al., 1994), Criterion 1 is equivalent
to [

P−1 AC
A>C P

]
� 0. (22)

By pre- and postmultiplication of diag(I, P−1) and using
substitution X = P−1, we get[

P−1 ACP
−1

P−1A>C P−1

]
=

[
X ACX

XA>C X

]
� 0. (23)

We can now present the following necessary and sufficient
conditions for the existence of a distributed controller (13)
that stabilizes a distributed system (4).

Theorem 2. Given a distributed system (4), the dis-
tributed controller (13) achieves GES for (20) with pa-
rameterized gain matrices K and G and interconnection
structure WK if and only if there exists X � 0, such that[

X ACX
XA>C X

]
� 0 (24)

where

ACX = AX +BKX + FWX +BWKGX. (25)

Now the problem is a bilinear matrix inequality (BMI) in,
on the one hand X, and on the other hand K and G. For
a given X, i.e. a given candidate LF, the conditions in
Theorem 2 give a feasibility test in the form of LMIs in K
and G. Successful evaluation of the feasibility test gives a
controller with the desired structure.

In general we do not know a LF that will allow for a
distributed controller, and thus X remains unknown. The
classical way to transform the synthesis problem from
BMI conditions to LMI conditions is through a change
of variables (KX = Y and GX = Z):

ACX = AX +BKX + FWX +BWKGX (26)

= AX +BY + FWX +BWKZ. (27)

Since X is invertible, matrices K and G can be explicitly
reconstructed by K = Y X−1 and G = ZX−1. Unfortu-
nately, this procedure results in a loss of the structure of
K and G and will therefore, in general, not give the desired
distributed controller structure.

We can present the following necessary conditions for the
existence of a distributed controller (13).

Theorem 3. Given a distributed system (4), the dis-
tributed controller (13) achieves GES for (20) with pa-
rameterized gain matrices K and G and interconnection
structure WK only if there exist X � 0, Y with dimension
of KX, and Z with dimension of GX, such that[

X ACX
XA>C X

]
� 0 (28)

where

ACX = AX +BY + FWX +BWKZ. (29)

Theorem 3 presents a convex problem in the form of LMI
conditions. In the remainder of the paper we will indicate
the evaluation of these conditions as Method 1.

We can see that the conditions are over-parameterized.
Setting Z = 0 yields necessary and sufficient conditions
for the existence of a centralized controller which can
be reconstructed. From Assumption 1 we know that a
centralized controller exists. Therefore, for full matrices
X, Y , and Z, Method 1 is always feasible, but will likely
not produce a distributed controller since matrices Y and
Z contain more independent variables than K and G. A
logical approach is to give Y and Z the same structure,
and thus the same number of independent variables, as K
and G. Unfortunately, this does not yield sufficient condi-
tions for controller reconstruction. The multiplication of a
matrix with a certain structure (such as Y and Z) by a
full matrix X−1 does not (in general) yield a matrix with
the same structure (which we require for K and G).

Method 1 does not directly yield a practical result for
controller synthesis since it can only prove non-existence of
a controller, as posed in Problem 1, using a method that
is more complex than the centralized synthesis problem.
However, the structure of the conditions in Theorem 3 is
useful as we will show in the remainder of this section.

We have shown that we can present necessary and suf-
ficient conditions for the existence and construction of a
distributed controller in the form of BMIs. Also, we have
shown that we can present necessary conditions for the
existence of a distributed controller in the form of LMIs
at the cost of losing sufficient conditions for controller
construction. This shows that there is a gap between the
necessary conditions, which are related to a full X, and
sufficient conditions, related to the structure of K and G.

4.2 Structured stability conditions

In Section 4.1, a way to retain the controller structure
in Method 1 was suggested by giving Y and Z the same
structure as K and G, respectively. Because X is a full
matrix the reconstruction did not yield a controller of
the desired structure. However, if we allow for a specific
structure in X, in particular require X to have a block
diagonal structure (Zecevic and Siljak, 2010), the recon-
struction does yield a controller with the desired structure.
We can present the following sufficient LMI conditions for
the existence of a distributed controller (13).

Theorem 4. Given a distributed system (4), the dis-
tributed controller (13) achieves GES for (20) with pa-
rameterized gain matrices K and G and interconnection
structure WK if there exist X � 0, Y with dimension of
KX, and Z with dimension of GX, such that
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[
X ACX

XA>C X

]
� 0 (30)

where

ACX = AX +BY + FWX +BWKZ (31)

and X has block diagonal structure of compatible dimen-
sion to K, and Y and Z have block structures conform
with the block structures of K and G, respectively. In that
case, the controller matrices K and G can be reconstructed
through

K = Y X−1 (32)

G = ZX−1. (33)

The proof of the theorem follows directly from the manipu-
lations of Criterion 1 in Section 4.1 and elementary matrix
inversion algebra. Theorem 4 presents a convex problem
in the form of LMI conditions. In the remainder of the
paper we will indicate the evaluation of these conditions
as Method 2.

Using a block diagonal X corresponds to a decentralized
controller synthesis problem. The parameterization pre-
sented in Section 2 allows for synthesis of a distributed
controller with a particular interconnection structure. If
Method 2 yields a solution we immediately have a stabi-
lizing distributed controller and a LF for the CL system.
As an additional benefit of the method, the number of
unknown variables is reduced. However, for a given system
there may only exist a stabilizing controller for which
only a full (or merely non-block-diagonal) matrix X can
prove stability. This limitation is addressed in the next
subsection. Method 2 gives a solution to Problem 1 if the
CL system only admits block diagonal quadratic LFs.

4.3 Fixed control Lyapunov function

The results given by Method 1 and Method 2 have limita-
tions. Method 1 uses a full matrix X for the candidate LF,
but is unable to recover the desired controller structure.
Method 2 can recover the structure of the controller, but
poses structure on X and giving a smaller set of candidate
LFs. Here we propose a synthesis method that uses a full
matrix X for the candidate LF and allows for construction
of a controller with the desired interconnection structure.

We have mentioned that, for a given X, we can evaluate
Theorem 2 as a feasibility test and find parameterized gain
matrices K and G. The problem lies in having a good
choice for the candidate LF. As a good choice, we suggest
taking the Lyapunov matrix X from Method 1, which
represents a control Lyapunov function (CLF) for the
system. This leads to a search for a distributed controller
(13) that achieves the same convergence rate for the states
of the system as a centralized controller can achieve. We
argue that this is a useful result, since implementation
of a distributed controller with a particular structure has
various benefits over the implementation of an unstruc-
tured centralized controller. In the remainder of the paper,
solving the matrix inequalities in Theorem 2 for Lyapunov
matrix X inferred from Method 1 and structured matrix
variables K and G, such that the conditions are LMIs in
K and G, will be indicated as Method 3a.

Remark 1. A condition for this procedure to work is that a
X can be found in Method 1, but computational complex-

ity is a limitation for the procedure. As a computationally
more tractable approach to find a X in Method 1, vari-
ables corresponding to elements of X can be set to zero.
Practical suggestions for choosing these variables are the
(i, j)-th and (j, i)-th blocks where subsystem i and j are far
apart in terms of graph distance, or choosing X to have the
same structure as KC . The same procedure can be followed
for Y and Z. Since a full X corresponds to particular
convergence conditions for a centralized controller which
can be infeasible for a distributed controller, having a non-
full CLF can relax the necessary conditions enough to
make the sufficient conditions feasible, yielding a solution
in Method 3a.

Remark 2. A computationally more tractable procedure
for finding a CLF X than to solve Method 1, is to solve
the centralized synthesis problem. Or equivalently, solving
Method 1 with the variables in Z eliminated.

Alternatively or supplementary to Method 3a, one may
search for a full matrix K in Method 3a and minimize
the off-diagonal elements. This is done by minimizing
a cost function consisting of the sum of the squares
of the off-diagonal elements in K which are decision
variables of the convex problems. In the remainder of
the paper this method will be indicated as Method 3b.
This relaxation in the structure of KC will always yield
a feasible solution as it is an extension of the centralized
synthesis problem. If the resulting K is not diagonal, it will
show which off-diagonal elements are problematic. This
gives an indication as to which additional interconnections
are needed in the controller network, i.e. suggestions to
change elements of WK from zero to identity.

Remark 3. Unallowable interconnections can be prevented
by not introducing the corresponding off-diagonal elements
in K.

Remark 4. If some connections are more preferred than
others, this can be reflected in a variation in cost per
variable. A practical choice is to relate this variation to
the graph distance.

Remark 5. Eliminating the non-zero off-diagonal elements
in K can be a good alternative to adding interconnections,
i.e. changing WK , even if the elements are not small. The
inferred controller may still yield a stable CL system.
This can be easily checked with a stability test, e.g. an
eigenvalue test, on the CL system.

Methods 3a and 3b do not give a complete solution to
Problem 1, since for a given X, a distributed controller
with a particular structure may not exist, while there
exists a controller and another LF that satisfy Theorem 2.

4.4 Complexity assessment

The complexity of the presented synthesis methods can be
analyzed through the number of independent variables in
the convex optimization problems that need to be solved.
In Table 1 an overview of the complexity of each of the
presented methods is given as well as the case of synthesis
of a centralized controller for comparison. For each method
the unknown elements, the variables that are used in the
LMI problem, and the number of independent variables is
given.
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Table 1. Complexity of Synthesis Problems.

Synthesis Problem (Method) Unknown elements Variables (Structure) #Variables

Centralized X, K X (full, sym), Y (full)
nx×(nx+1)

2
+ nu × nx

Distributed Necessary (M. 1) X, K, G X (full, sym), Y (full), Z (full)
nx×(nx+1)

2
+nu ×nx +L×nu ×nx

Distributed Diagonal (M. 2) X, K, G X (diag, sym), Y (diag), Z (diag)
∑

i

ni
x×(ni

x+1)

2
+ nu × nx

Fixed X (M. 3a) K, G K (diag), G (diag) nu × nx

Fixed X, minimize K (M. 3b) K, G K (full), G (diag) nu × nx

The number of variables shows that Method 1 does in-
deed add more variables to the centralized conditions. In
Method 2 the number of variables is reduced compared to
the centralized case. In the case of Method 3a, Method 1
has to be solved first and is therefore more involved.
However, the controller synthesis part of Method 3a has
a greatly reduced number of variables since variable X is
known. When the off-diagonal elements of K are reintro-
duced in Method 3b, the number of variables grows again.

Some elements of G or Z do not affect the stability con-
ditions, since they are always multiplied by zero elements
in WK . These element can be removed from the procedure
(note that some LMI solvers do this automatically). In
the case of minimizing K, the elements corresponding to
an identity element in WK are removed, since adapting G
can then always reduce them to zero. This can be done for
Methods 1, 2, and 3a.

Remark 6. One may argue that a centralized solution may
not be computable, but alternative approaches, such as
dissipativity or small-gain approaches, are prone to reach
computational limits quickly as well (Bobiti et al., 2013).
To date, no distributed solution has been found for solving
a set of LMIs with coupling constraints and existing results
solve a problem that is more complex than the centralized
problem (Van Horssen and Weiland, 2013). The proposed
approach starts from the centralized problem and suggests
methods of reducing the number of variables.

The conditions in this section are only sufficient, since
there can exist another X which proves stability for a
distributed controller, while the X resulting from the
centralized problem does not. However, they can be solved
for large problems as shown in what follows.

4.5 Synthesis procedure

Here we propose an algorithm for the application of
the synthesis methods. A graphical representation of the
algorithm is shown in Fig. 1. The idea of the algorithm is
to use the complexity of the methods to order them. The
number of variables is a relevant metric for distributed
systems of growing complexity. The number of variables is
also related to the complexity of the resulting controller.

First, Method 2 is evaluated with a given controller struc-
ture WK . If the procedure is successful we are done and
have a LF corresponding to X, and controller gains K
and G. If the procedure fails, i.e. there exists no block
diagonal LF X for the chosen controller structure, we solve
Method 1 to get a CLF corresponding to X which we use
as a candidate LF in Method 3a. Successful evaluation
again gives X, K, and G. If the procedure fails we can
choose to re-evaluate Method 1 with a new structure for
X (and Y and Z), and repeat the procedure. Or we can
use Method 3b and find a full K which has off-diagonal

Fig. 1. Algorithm flowchart.

elements. We can then choose to introduce new control
interconnections by extending the structure of WK by
introducing more/other identity elements. After extending
the structure of WK we can restart with Method 2. Or we
can eliminate the off-diagonal elements in K and test if the
resulting CL system is stable. If the system is stable we
have K and G and solve a convex optimization problem
to find a LF corresponding to X for the CL system. If
the resulting CL system is not stable, we again change the
allowed set of control LFs in Method 1 by changing the
structure of X (and Y and Z). If we have exhausted all
possible structures for X we have to look for an extended
structure of WK .

Note that the algorithm always gives a solution, but the
resulting controller structure can differ from the origi-
nally desired structure, depending on choices made in the
algorithm by the user. The presented algorithm uses a
heuristic approach to solving Problem 1 using a trade-off
between problem complexity and conservatism. The candi-
date solution set will be rich, since for each interconnection
structure the algorithm can iterate through a large number
of CLFs for the CL system.
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5. DISTRIBUTED CONTROLLER SYNTHESIS FOR
POWER SYSTEMS

To show the applicability of the developed synthesis meth-
ods for a relevant real-life application, this section focuses
on synthesis of stabilizing distributed controllers for power
systems. Power systems, see, e.g., (Kundur, 1994; Saadat,
1999) are becoming more demanding due to the decentral-
ization introduced by the reorganization from monopolis-
tic to liberal markets and introduction of renewable power
generation technologies. In this context, guaranteeing sta-
bility of the network is not a trivial problem any more.

5.1 Modeling of power systems

Typically, two different control layers can be distinguished
in power systems. An upper market–based layer and a
lower control layer, see details in (Jokić, 2007). Typically,
the upper control layer determines slowly varying gen-
eration profiles for each power plant while for the lower
control layer, relatively small changes with respect to these
profiles are considered. This particular case study focuses
on the lower control layer, where the most important
parameter for control is the frequency of the network.

Basically, a power system is composed of N generator-load
components and a finite number of simple loads q, which
are interconnected through a network of tie lines. We
denote this as a (N+q)–bus system. Therefore, we start by
describing the model of a subsystem in a power system. An
accurate model for the i–th generator dynamics, i ∈ N[1,N ]

is given by (Pai, 1981) the linearized equations

δ̇i(t) = ωi(t)

ω̇i(t) = 1
Hi

(PTi
(t)−Diωi(t)−

∑N
j=1[Υ]i,jδj(t))

ṖTi(t) = 1
τTi

(PGi(t)− PTi(t))

ṖGi(t) = 1
τGi

(−PGi(t)− 1
ri
ωi(t))

, (34)

with t ∈ R+ and where δi [rad] is the rotor phase angle,
ωi [rad/s] the rotor frequency, PTi

[MW] the turbine state
and PGi

[MW] the governor state of the i–th generator,
respectively. The corresponding parameters are the inertia,
Hi, the damping coefficient Di, the turbine and governor
time constants, i.e., τTi

and τGi
and the regulation con-

stant of the primary loop ri.

The interconnections in the power system are described
by a weighted adjacency matrix Υ ∈ RN×N , where the
elements of the matrix Υ have the unit [Ω−1] and define
the virtual inductive reactance between bus i and bus
j. The virtual inductive reactance is obtained via an
elimination of the buses (Hermans, 2012) that do not
contain generators but only external loads such that Υ :=
(B11−B12B

−1
22 B21) ∈ RN×N where B =

[
B11 B12

B21 B22

]
:= C−

diag(C1N ). The matrix C ∈ R(N+q)×(N+q) contains the
real inductive reactances of the (N + q)–bus system.

Fig. 2. 4–Generators [(Jokic et al., 2012)].

The paper considers four benchmark power systems, i.e.
4–Generators (Jokic et al., 2012), i.e., CIGRÉ–7, see, e.g.,

Fig. 3. CIGRÉ–7 [(Hermans, 2012)].

Fig. 4. New England [(Jokić, 2007)].

Fig. 5. 118–bus [(Yamin and Shahidehpour, 2003)].

(Hermans, 2012), the 39–Bus New England test system,
see, e.g., (Jokić, 2007; Pai, 1981) and the IEEE 118–bus.
For the 4–Generators model the parameters are taken from
(Venkat et al., 2008). For the other three power systems
the corresponding parameters are taken to be in the ±20%
interval from the values given by (Saadat, 1999) on page
545, as done by Bobiti et al. (2013). In Table 2 the number
of subsystems, states, and the number of inputs for each
system are shown in increasing order of dimension.

Table 2. Number of subsystems, states, and
number of inputs of the power system model.

Power system #Subsystems
L

#States
nx

#Inputs
nu

4–Generators 4 15 4

CIGRÉ–7 7 28 7
New England 10 40 10
IEEE 118–bus 54 216 54

The discretization of the networks is performed with Euler
forward method and a sampling time of 0.01s, such that it
complies with the Shannon–Nyquist sampling theorem in
the context of the considered power systems, which have
the time constant of the governor around the value of 0.2s.
Note that Euler forward can be used on the system as a
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whole. Other discretization methods such as zero–order
hold do not retain the interconnection structure of the
system.

5.2 Synthesis results

Each synthesis method has been implemented for each of
the power systems. A controller structure equivalent to the
system structure was chosen. All computations are done
on a PC with a Intel i7-3770 processor @3.4GHz with
16GB RAM and are carried out in Matlab using freely
available software Yalmip (Lofberg, 2004) and SeDuMi
(Sturm, 1999).

4–Generators: Methods 1 and 2 were solved successfully
and without errors. Method 3a failed on numerical prob-
lems in the solver and was not able to find a K with
diagonal structure. Method 3b provided a solution where
the off-diagonal elements were small (order 103 smaller
compared to the other elements). Eliminating them still
gave a stable CL system, which was proven by the same
X. This shows that even though Method 3a might fail on
numerical difficulties in the solver, a distributed solution
may exist, which can be found with Method 3b.

CIGRÉ–7: Methods 1, 2, and 3b were solved successfully
and without errors. Method 3a gave a warning on nu-
merical difficulties, but was able to find a controller with
diagonal structure.

New England: Equivalent results to the CIGRÉ–7 system.

IEEE 118–bus: Solving the centralized synthesis problem
for this system resulted in a memory error from the solver,
due to the large amount of variables involved. Obviously
Method 1 was not solvable either. Method 2 was successful
and resulted in a stabilizing controller. This shows that the
reduction of variables in Method 2 is useful. Because the
118-bus system did not have a full centralized solution,
Method 1 was solved for a new structure of the variables.
A full X, and Y and Z with structure of K and G were
used. This reduced the number of variables sufficiently to
find a X. Note that this involved a long computation time
(12-24 hours). In the next step, Method 3a gave numerical
problems. Method 3b still involved a lot of variables, and
again took a long computation time (12-24 hours), but
finds a solution as well. The resulting K has off-diagonal
elements that are non-negligible. However, setting the off-
diagonal elements to zero still resulted in a stable CL
system as proven by a CL stability test. The CLF of
the centralized problem was not a LF for the closed loop
system. To reduce the computation time, the centralized
synthesis problem was also solved with both X and Y with
structure of KC to find X. Note that this is equivalent to
searching for Y with structure of K and Z with structure
of G in Method 1. This gave similar results to using a full
X but resulted in a lower computation time.

For the IEEE 118–bus system, the response to an initial
condition of ’1’ for each state for controllers resulting from
different synthesis procedures is shown in Fig. 6, Fig. 7,
Fig. 8, and Fig. 9.

From the plots we can see that all closed-loop systems
are stable, which is confirmed by checking the eigenvalues
of the stability conditions, the Lyapunov matrix, and the

Fig. 6. Response to initial conditions for IEEE 118-bus
system and controller from Method 2.

Fig. 7. Response to initial conditions for IEEE 118-bus
system and centralized controller using full X and Y
with structure of KC .

Fig. 8. Response to initial conditions for IEEE 118-bus
system and controller from Method 3b using full X
and Y + Z with structure of KC , where the off-
diagonal elements of K have been eliminated.

Fig. 9. Response to initial conditions for IEEE 118-bus
system and controller from Method 3b using X and
Y + Z with structure of KC .

eigenvalues of the CL system. No comparison between
the rates of convergence can be made since no condition
to optimize this is incorporated. To optimize the rate
of convergence we could add a constraint X � αI and
maximize α > 0, such that the maximum eigenvalue of
Lyapunov matrix P is minimized. Since no such constraint
is added in the used methods, and since no condition
to keep the controller gain small is added, we see a
variation in the responses. In particular, Fig. 6 shows fast
convergence, but has a large controller gain (order 101−102

larger) compared to the other controllers.

For comparison we give the number of variables involved
in the problems for various cases on the IEEE 188-bus
system. A full X has 23426 variables, whereas a X with
the structure of KC has only 3052 variables. A full Y has
11664 variables, whereas a Y with the structure of KC has
only 1472. A full G, i.e. all interconnections are allowed,
introduces 11664 variables, whereas WK × G reduces the
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number of variables to 1256. This shows that more complex
problems may be solvable by reducing the number of
independent variables, which can be done in a logical way
as explained in Section 4.3.

6. CONCLUSIONS AND COMMENTS

In this paper we presented a number of synthesis results
for stabilizing distributed static state feedback controllers
for interconnected discrete time dynamical systems. The
results follow from a parameterization of the closed-loop
system. The interconnection structure of the controller
is an explicit design choice, such that the distributed
controller can have the structure of a decentralized or
a centralized controller. The main results include fea-
sibility tests involving linear matrix inequalities (LMIs)
of necessary conditions and sufficient conditions for sta-
bility in controller synthesis. The synthesis results have
been brought together in a synthesis algorithm. With
modern numerical tools in semi-definite programming the
presented procedures are computationally powerful and
efficient. The results in this paper still show a gap between
the necessary and sufficient conditions for the existence of
a stabilizing state feedback law. A number of suggestions
is given to bridge this gap using a heuristic approach.
Procedures for controller synthesis involve restricting the
LF to be block diagonal, and using the LF from the cen-
tralized synthesis problem. Suggestions for reduction of the
complexity of all problems are given, as to infer procedures
that are computationally tractable even for systems of high
state-space and input-space dimensions. This is shown in
simulations on benchmark power systems. To the authors’
knowledge the presented synthesis procedures are novel.
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