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Abstract: Currently, reset control focuses on using structures which allow new resetting rules in order
to avoid limit cycle to be caused and improve the performance of the system. This paper investigates the
properties of some reset strategies, of integer and fractional order, which reset controller states to fixed
or variable non-zero values and are able to eliminate or reduce the overshoot in first and higher order
systems, respectively. Based on them, a general reset control strategy with fractional order dynamics
is proposed with both fixed and variable resetting to non-zero values. A comparative study is given to
show its benefits in terms of prevention of limit cycle and reduction of the overshoot. As a result, some
guidelines to be considered for the design of such controllers depending on the application are offered.
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1. INTRODUCTION

Since the first reset strategy, the well-known Clegg integrator
(CI) (Clegg [1958]), further controllers have been developed
to overcome the fundamentals limitations of linear controllers
and give more flexibility in controller design. Indeed, correctly
designed, the reset action commonly leads to a faster system
response without output excessive overshoot, but unfortunately
additional negative phenomena may be derived.

Recently, it has been shown that resetting to zero at the zero
crossings of the error is completely inadequate since it may
cause limit cycle in the system response (see e.g. Baños and
Barreiro [2012] and references therein). As a result, current
trends in the field focus on using new reset structures which
allow reset to occur on more complicated and sophisticated
sets so as to improve the performance of the system. To this
end, several solutions have been reported in the literature.
For example, the controller states were reset to certain non-
zero values in Zheng et al. [2007, 2008] to make the system
response be even faster in comparison with the linear solution.
In Baños and Barreiro [2012], Baños and Vidal [2012, 2007],
a PI+CI controller was used to reduce considerably both the
percentage of overshoot and the settling time by resetting only
a percentage of the integral term of the PI controller. Nesic
et al. [2011] proposed a new class of first order reset element
(FORE) together with set-point regulation, which allow new
resetting rules. And a modified version of this reset strategy
was applied in Panni et al. [2012] to a diesel engine. In our
previous works (HosseinNia et al. [2013a,b]), the possibilities
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of using fractional order CI (CIα ) with a classic PI controller
as base controller were investigated. It was demonstrated that
CIα is also capable of handling the mentioned problems in reset
control by adjusting its order adequately.

Given this context, the main objective of this paper is to
continue the investigation on different resetting rules. Hence,
we summarize the particular properties of different reset con-
trollers, of integer and fractional order, to improve the perfor-
mance of a system, especially in terms of prevention of limit cy-
cle and traditional time domain specifications. Based on them, a
general reset control is proposed. Thus, the contribution of this
paper is twofold: (i) propose a general reset structure which
will combine some properties of the reviewed reset controllers,
and (ii) provide a comparative study and some guidelines for
designing such controllers depending on the application.

The remaining of the paper is organized as follows. Section 2
concerns fundamentals of some reset controllers which avoid
limit cycle occurrence. Section 3 presents a general reset con-
trol strategy which combines features of the previous con-
trollers. A comparative study between the proposed and ex-
isting reset strategies is given in Section 4. Finally, Section 5
draws the main conclusions of this paper.

2. MODIFIED RESET CONTROL

This section recalls the formulations and main properties of
different reset controllers with zero crossing and periodic reset
reported in the literature to avoid the occurrence of limit cycle.
In particular, the following reset strategies will be summarized
next: (i) reset control based on resetting to a non-zero value
periodically, at fixed instants tk; (ii) a combination of a linear PI
and reset –referred to as PI+CI–; (iii) a FORE controller with
set-point regulation; (iv) a fractional order version of classical
CI with proportional action; and (v) the fractional order ver-
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sion of PI+CI compensator –referred to as PIα +CIα . The latter
controller is used in this work to show the possibilities of intro-
ducing one more parameter, the order α , to PI+CI compensator.
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Fig. 1. Block diagram of a reset control system

Basically, the block diagram of a reset control is shown in
Fig. 1. In a general form and assuming K = 0, the dynamics
of a fractional order reset controller can be described by a
differential inclusion (DI) as follows:

Dα1xr(t) = Arxr(t)+Bre(t), e(t) 6= 0,
xr(t+) = ARr xr(t), e(t) = 0,

ur(t) =Crxr(t)+Dre(t),
(1)

where α1 ∈ R+ is the (fractional) order of the derivative –in
the case of an integer order controller: α1 = 1–, matrix ARr ∈
Rnr×nr , xr(t) ∈ Rnr is the reset controller state and ur(t) ∈ R is
its output. Let consider a fractional order plant P(s), in general,
with the following state space representation:

Dα2xp(t) = Apxp(t)+Bpur(t),
y(t) =Cpxp(t),

(2)

where α2 ∈ R+ is the basic order of the plant, Ap ∈ Rnp×np ,
Bp ∈Rnp×1, Cp ∈R1×np are its state, input and output matrices.
Assuming α = α1 = α2, the closed-loop reset control system
can be then described by the following DI:

Dα x(t) = Aclx(t)+Bclr(t), x(t) /∈M , x(0) = x0
x(t+) = ARx(t), x(t) ∈M ,

y(t) =Cclx(t),
(3)

where x =
[

xp
xr

]
, Acl =

[
Ap−BpDrCp BpCr
−BrCp Ar

]
, AR =

[
Inp 0
0 ARr

]
,

Bcl = [BpDr Br]
T , Ccl = [Cp 0]. The reset surface M is defined

by M = {x ∈ Rn : Cclx = r, (I−AR)x 6= 0}, with n = nr +np.

In the incommensurate case, i.e., α1 6=α2, it is worth remarking
that the closed-loop system needs to be augmented to a com-
mensurate system of order α = 1

M as follows: writing both the
system and the controller orders as αi = vi/ui, for i = 1,2, with
(ui,vi) = 1, ui,vi ∈ Z+, M will be the lowest common multiple
of the denominators ui. Refer to HosseinNia et al. [2010] for
more details about augmented systems.

2.1 Controller based on fixed reset instants

Zheng et al. [2007, 2008] proposed a reset controller based on
time whose states are reset to certain non-zero values at every
instant tk and makes the system response be faster that the linear
solution. It can be represented as follows:

ẋr(t) = Arxr(t)+Bre(t), t 6= tk
xr(t+) = Ekxp(t)+Fkxr(t)+Gkr(t), t = tk

ur(t) =Crxr(t)+Dre(t)
(4)

The main idea of this controller is to let free its after-reset
state xr(t+) (not necessarily equal to zero) and compute it and
its parameters Ek, Fk, Gk, Cr and Dr in order to minimize a
quadratic performance function of the form:

Jk = eT (tk+1)P0e(tk+1)+ ėT (tk+1)Q0ė(tk+1)+

+
∫ tk+1

tk
eT (s)P1e(s)ds,

where P0, Q0 and P1 are weighting vectors.

2.2 PI+CI controller

Following the classical condition of zero input, Baños and
Vidal [2012, 2007] designed a PI+CI compensator to reduce
considerably both the percentage of overshoot and settling time
by resetting only a percentage of the integral term of a PI
controller, namely Preset . Its transfer function is given by

R(s) = kp

(
1+

1−Preset

τis
+

PresetCI
τi

)
, (5)

where kp is the proportional gain and τi is the integral time
constant. It can be written in state space of the form of (1) with

α1 = 1, Ar = 0, Br =

[
1
1

]
, ARr =

[
1 0
0 0

]
, Cr =

[
0

kp

τi

]
, Dr = kp.

2.3 FORE controller with feedforward

A feedforward controller was combined together with a tradi-
tional reset controller in Nesic et al. [2011] and Panni et al.
[2012], as shown in Fig. 1. In order to avoid limit cycle, K
should be chosen as the inverse of DC gain of the system, i.e.,

K =

−
1

CpA−1
p Bp

, if Ap is invertible

0, otherwise
(6)

In classic reset control, controller resets to zero when error is
zero. Therefore, the feedforward controller adds u=Kr = 1

P(0) r
to classic reset controller. As mentioned above, resetting to zero
may cause limit cycle, but it can be eliminated by resetting to
the non-zero value Kr. Actually, this feature is also common in
reset control with fixed reset instants tk and PC+CI controllers;
all these three controllers will force the system to reset to Kr.
More precisely, in reset control with fixed reset instants tk, the
controller parameters should be tuned to minimize xr, which
is not possible unless limt→∞ ur = Kr. This condition was not
proven in Zheng et al. [2007, 2008] but can be stated from
provided experiment in the mentioned work. This condition is
satisfied in PC+CI by a linear integrator and, in FORE with
feedforward, by the feedforward gain K.

2.4 Fractional order proportional-CI

As another solution to eliminate limit cycle, a fractional order
proportional CI –referred to as PCIα – was proposed in our
previous work (HosseinNia et al. [2013b]), where a CIα was
used instead of the classic CI. The state space representation
of PCIα can be obtained by substituting Ar = 0, Br = 1,
ARr = 0, Cr =

kp
τi

and Dr = kp in (1). Unlike integer order
reset controllers, the asymmetrical transient response output
waveform of CIα makes the control signal to be different at
the reset time, which may avoid the occurrence of limit cycle
by adjusting its order adequately.
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2.5 Fractional order PI+CI controller

So far we have seen, on the one hand, CIα can increase
the phase lag of the system and, on the other, PI+CI can be
used to avoid limit cycles. Therefore, a fractional order PI+CI
controller (both components of non-integer order, i.e., PIα and
CIα ) can be given by:

R(s) = kp

(
1+

1−Preset

τisα
+

PresetCIα

τi

)
. (7)

It can be written in state space of the form of (1) with Ar = 0,

Br =

[
1
1

]
, ARr =

[
1 0
0 0

]
, Cr =

[
0

kp

τi

]
, Dr = kp. The describing

function (DF) of PIα +CIα is expressed as

N( jω) = kp

1+
1−Preset

τi( jω)α
+

Preset

4τi
πωα

(
sin
(
α

π

2

)
+ π

4 e− jα π
2

)
 .

(8)

Figure 2 shows the possibilities of the PIα +CIα compensator
thanks to its two parameters, the reset ratio Preset and the
order α by using DF (8). In Fig. 2(a), the traditional PI+CI
is compared with its base PI controller. It can be observed that
it allows to achieve both higher phase margin and crossover
gain frequency than the obtained with the base controller.
Moreover, changing the order α in PIα +CIα , it is possible to
obtain higher phase margin and crossover gain frequency than
the PI+CI compensator when Preset = 0.5 (see Fig. 2(b)). At
the same time, the lower the value of α and Preset , the higher
both the phase margin and the crossover gain frequency. This
means that a better performance in terms of speed of response
and relative stability can be obtained by means of PIα +CIα

compensator, overcoming limit cycle problem and improving
the performance obtained with PI+CI.

3. GENERAL FORMS FOR RESET CONTROL

This section presents the main result of this paper: the introduc-
tion of a general SISO reset control, including fractional order
dynamics, with both fixed and variable resetting to non-zero
values.

3.1 Reset when error crosses zero

Taking into account the properties of the previous reset strate-
gies, the following general fractional order reset controller –
henceforth referred to as general reset controller– can be de-
rived, where its state is reset to Kr when error crosses zero. It
can be represented as

Dα xr(t) = Arxr(t)+Bre(t), e(t) 6= 0,

xr(t+) = ARr xr(t)+
K

nRcr
BRr r, e(t) = 0,

ur(t) =Crxr(t)+Dre(t),

(9)

where matrix ARr ∈ Rnr×nr identifies that subset of states xr(t)
that are reset (the last R states) and has the form ARr =[

InR̄
0

0 0nR

]
, with nR̄ = nr − nR and nR the length of the last

R states, BRr =

[
0
1

]
, Cr = cr [0 1], cr ∈ R. And I and 0 denote

identity and zero matrices with proper dimension, respectively.
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Fig. 2. Describing function (8) for different values of: (a) Reset
percentage Preset with α = 1 (b) Order α with Preset = 0.5.
In both cases, kp = τi = 1

More specifically, controller (9) is a reset control with feedfor-
ward where its feedforward part becomes active when the first
time error crosses zero. Actually, it activates the feedforward
gain when it is necessary –the first reset time– in order to avoid
limit cycles. Therefore, the general reset controller, unlike the
reset controller with feedforward, maintains the same rise time
as the base controller.

Let us denote the transfer function of the base controller as
Rbase(s). According to Fig. 1, in presence of error, the closed-
loop transfer function of the system controlled by the reset
controller with feedforward and general reset controller are,
respectively, (K+Rbase(s))P(s)

1+Rbase(s)P(s)
and Rbase(s)P(s)

1+Rbase(s)P(s)
. Comparing these

transfer functions with the transfer function of a classic con-
troller (controller with no reset), it is obvious that only the gen-
eral reset controller preserves some specification of the classic
controller like rise time.

3.2 Reset periodically at fixed instants

Likewise, the controller described above can be reshaped to
reset periodically when t = tk, similarly to the reset control with
fixed reset instants tk, which will lead us to a more general reset
controller as follows:

Dα xr(t) = Arxr(t)+Bre(t), t 6= tk,

xr(t+) = ARr xr(t)+BRr

(
Kr−Dre(tk)

nRcr

)
, t = tk,

ur(t) =Crxr(t)+Dre(t).

(10)
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Due to the fact that reset happens periodically, and not necessar-
ily when error is zero, it will take place at a variable non-zero
value, which is function of both DC gain of the system and
error.

4. EXAMPLES AND DISCUSSION

This section gives some examples of application of the afore-
mentioned general and modified reset controllers for first
and second order systems. It also provides some guidelines
to be considered for designing reset controllers depending
on the application. Fractional derivatives were simulated by
Grünwald-Letnikov definition.

4.1 First order systems

In this first example, PI+CI, PCIα and general reset strategies
are going to be compared for the following first order system.
Let us consider the system (Baños and Barreiro [2012])

ẋp =−0.5xp +1.5u
y = xp

, (11)

whose transfer function is P(s) = 1.5
s+0.5 , controlled by a PI+CI

of the form of (5) with kp = 2, τi = 0.15, and Preset = 0.21 –
the base PI controller was tuned to set the rising time to 0.31
s–. Now, consider controller (9) with a proportional-CI (PCI)
resetting to K = 1

P(0) : Ar = 1, Br = 0, Cr =
kp
τi

and Dr = kp. With
respect to PCIα , the parameters of the PI were chosen equal to
the PI+CI case. In what concerns the selection of α , there is a
trade off to overcome limit cycle and settling time: the lower
its value, the higher the ability to avoid the limit cycle but the
larger the settling time. For this reason, α was set to 0.9.

Simulation results are shown in Fig. 3 when applying the PI
and PCI controller in (a) and using PI+CI, PCIα and general
reset control in (b). As observe in Fig. 3(a), PI and PCI cause
an undesirable overshoot and limit cycle, respectively. In Fig.
3(b), it can be seen that the three controllers avoid the occu-
rrence of limit cycle. Moreover, PI+CI and PCIα controllers
reduce the overshoot, whereas general reset control eliminate it
completely. Taking into account the control signals, the system
output when applying the PI tends to K = 0.33 when t → ∞.
By contrast, the PCI always resets to zero (when error is zero)
which causes the limit cycle. This problem is solved in PI+CI
by adding a linear integrator to the PCI, and in the PCIα and the
general reset controller by using a CIα which will allow to reset
to non-zero values. It can be observed that the control signal
with the general reset controller reaches the value 0.33 after the
first reset and, consequently, the overshoot is removed. For the
PI+CI, the overshoot is reduced slightly. The PCIα causes an
undershoot in the system response, which is significantly lower
than the overshoot obtained with the PI+CI and PI controllers.

Furthermore, Fig. 4 compares the behaviour of the system when
applying PIα +CIα for several values of α . It can be observed
that the lower the value of α , the lower the overshoot and the
faster the response. This is just to show the possibilities of
extending PI+CI to fractional order.

4.2 Second order systems

This example firstly compares different strategies with error
zero crossing and, then, controllers with periodic reset for
second order systems.
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Fig. 3. Comparison of different reset controllers for first order
system (11): (a) Using PI and PCI (b) Using PI+CI, PCIα

and general reset control
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Let us now consider the dynamics of a micro-actuator plant
described by (Zheng et al. [2007, 2008]):

ẋp1(t) = xp2(t),
ẋp2(t) =−a1xp1(t)−a2xp2(t)+bu(t)

y(t) = xp1(t)
, (12)

where xp1 and xp2 are position and velocity of the moving stage,
with a1 = 106, a2 = 1810, and b = 3×106. This system can be
also given by its transfer function P(s) = b

s2+a2s+a1
. Consider a

reset controller with a PI as base linear controller and a periodic
reset action, so:
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ẋr(t) = e(t), t 6= tk
xr(t+) = E1xp1(t)+E2xp2(t)+Gr(t), t = tk

u(t) =
kp

τi
xr(t)+ kpe(t)

, (13)

with kp = 0.08 and τi =
8
3 ×10−4. The optimization function Jk

was minimized with the following parameters: P0 = 2.1,Q0 =
10−6, and P1 = 0. The reset time interval 5tk = tk − tk−1
was fixed to 1 ms. Then, the optimal solution is given by the
constant matrices E1 = −2.8× 10−4, E2 = −6.8× 10−7, and
G= 0.0014. For the general controller, similar values were used
with α = 1.

Indeed, general reset controller, reset controller with feedfor-
ward and reset control with fixed reset instants tk (13) reset
to non-zero values. In particular, reset control with fixed reset
instants tk will reset to kp

τi
(E1xp1 +E2xp2 +Gr)+ kpe. As time

tends to infinity, the states xp1 and xp2 and error tend to r, 0
and 0, respectively. Therefore, the control signal ur tends to
kp
τi
(E1 +G)r = 0.336, which is very close to the feedforward

gain for the unit step input, i.e., K = 1
P(0) = 0.333. Likewise,

reset control with fixed reset instants, resets when t = tk at each
1 ms, whereas general reset controller and reset controller with
feedforward reset when e = 0.

The step responses and control signals when applying reset
controller with feedforward and general reset controller are
shown in Fig. 5. The performance of the system using a PI and
a PCI were also obtained. As expected, reset controller with
feedforward and general reset controller are able to eliminate
the limit cycle caused by PCI, and this is because of the control
signals reach the steady state value K. Figure 6 compares
general reset control for different values of α . It can be seen
that the higher the value of α , the lower the overshoot but the
slower the response. Thus, a trade off between an integer and
a fractional order general reset controller (in this case α = 1.1)
may be a good way to overcome both limit cycle and overshoot
at the same time. The feedforward gain in the reset controller
with feedforward and the fractional order CI in PCIα cause
different rise time in comparison with the classic PI controller.

Now, consider a general reset control with periodic resetting
with the following parameters: α = 1, nR = 1, Ar = 0, Br =

1, cr = Cr =
kp
τi

and Dr = kp. Simulation results using this
controller and reset controller with reset instants are depicted in
Fig. 7 for tk = 1 ms. In comparison with the other strategies, it is
seen that the overshoot is considerably reduced when applying
controllers with periodic reset since they reset periodically
before error reaches zero. However, it is worth mentioning that
the general reset is capable of obtaining similar results than the
controller proposed by Zheng et al. [2007, 2008] but without an
optimization process, making the design of the reset controller
simpler and more efficient. Notice that all the controllers have
the same PI controller as base controller and, consequently, the
system responses have similar rising time to the obtained with
the classical PI controller, except with the PCI with feedforward
controller.

For comparison purposes, Table 1 gives the integral of the
squared error (ISE), the maximum value of the control signal,
the overshoot and the rising time for system (12) when applying
the designed controllers. As observed, the application of peri-
odic reset, in comparison with traditional zero crossing reset,
reduces considerably the ISE and the overshoot, but changes

the rising time –it is increased. Considering controllers with
fixed reset instants, the system response, in terms of ISE and
overshoot, is slightly better when applying the reset control in
Zheng et al. [2007, 2008]. However, as commented previously,
the general reset control proposed in this work is easier to tune.
On the other hand, among strategies with the classical reset
condition, it is observed that the lowest value of the ISE is
obtained when using the general reset controller. The worst
result in terms of high control signal is obtained by the reset
control with feedforward.
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Fig. 5. Comparison of controllers with zero crossing reset for
second order system (12)
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Fig. 6. Comparison of general reset control for different values
of α for second order system (12)

4.3 Discussion

Taking into account the examples, the following remarks can be
stated:

(1) Reset control with fixed reset instants tk, PC+CI, PCIα ,
reset controller with feedforward and general reset con-
troller are useful strategies to avoid the occurrence of limit
cycle.

(2) A reset controller can avoid the occurrence of limit cycle
when its control signal reaches a value equal to the inverse
of the DC gain of the system multiplied by the input.

(3) General reset controller and reset controller with feedfor-
ward show the best performance for first order systems
and are capable of eliminating the overshoot completely.

(4) In order to reduce the overshoot for higher order systems,
it is recommended the use of general reset controller with
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Table 1. Performance of the designed controllers for second order system (12)

Strategies with zero crossing reset Strategies with fixed reset instants
PCI PI PCI+Feedforward General reset Controller by Zheng et al. [2007, 2008] General reset

ISE 650.3390 31.5634 4.8773 3.1660 0.0870 0.1595
Max(u) 0.5315 0.5305 0.6639 0.5325 0.7054 0.5646
Mp (%) 55.81 36.30 24.56 15.50 0.42 3.2
ts (ms) 0.284 0.284 0.18 0.284 0.403 0.30
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Fig. 7. Comparison of controllers with periodic reset for second
order system (12)

periodic reset and reset control proposed by Zheng et al.
[2007, 2008], due to their ability to switch when error is
not necessarily zero. General reset control of fractional
order can be another choice to reduce the overshoot in
such systems.

(5) Despite the high ability of the reset control proposed by
Zheng et al. [2007, 2008] in reducing the overshoot, its
design is complicated due to the optimization process
required. By contrast, the general reset controller (10)
with periodic resets is simpler and, consequently, more
useful.

(6) In general reset control, the feedforward part is active
when the first reset happens. This feature makes this
controller different from the one proposed by Nesic et al.
[2011] and Panni et al. [2012], in which the feedforward
controller is always on the loop. This fact causes that the
rising time obtained by this reset controller is different
from the obtained by the base one. On its behalf, the reset
controller proposed by Zheng et al. [2007, 2008], due to its
periodic reset, neither preserves the rise time of the base
controller.

(7) For first order systems, in order to design a controller to
have a response with no overshoot and a certain rise time,
two steps are required: (i) tune the base controller to obtain
the desired rise time, and (ii) apply general reset control.

5. CONCLUSIONS AND FUTURE WORK

This paper has investigated the main features of different mod-
ified reset control strategies, of integer and fractional order, to
improve the performance of a system, especially in terms of
prevention of limit cycle and traditional time domain specifica-
tions. A fractional order general reset control has been proposed
by combining the more beneficial features of the previous con-
trollers, which allows not only to avoid the occurrence of limit

cycle but also to reduce, or even eliminate, the overshoot. A
comparative study has been given to offer some guidelines to
be considered when designing such controllers, depending on
the application.

Since there is no a general agreement of the interpretation of
state space representation of fractional systems, mainly con-
cerning initial values (see e.g. Sabatier et al. [2013]), a further
study should be carried out based on this issue in future work.
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