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Abstract: A predictor bilinear observer is developed for a class of bilinear systems subject to
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large and constant delays. The theory of the observer is presented and approved by numerical
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1. INTRODUCTION

Unlike systems governed by ordinary differential equa-
tions, time-delay systems are infinite dimensional in nature
and time-delay is often a source of instability. Actually,
the time delay can be present in the system states, the
system inputs or the system outputs with different sizes
and characteristics. Since the last two decades several
approaches have been devoted to control and filtering of
this class of dynamical systems which is also known as
hereditary systems or systems with after effect, see Gu
et al. [2003], Niculescu [2001], Hale and Lunel [1993]. The
significant development of novel strategies dedicated for
control and observation of time-delay systems were moti-
vated by the fact that systems with state and output delays
are ubiquitous in numerus areas of engineering including
but not limited to: sensor networks, process control, and
autonomous vehicle control, see e.g., Wang et al. [2013]. To
defeat this challenge, the control of time-delay systems has
been seen with different looks and quite successfully design
procedures have been applied like sliding-mode-based algo-
rithms, convex-optimization-based methods, and predictor
stabilizing procedures Krstic [2009]. An overview of some
control approaches to time-delay systems is discussed in
Richard [2003]. Referring to the abundant literature in
control of time-delay systems, the size of the delay plays
a key role in the existence of stabilizing controllers Mah-
moud [2000]. However, when the state time delay is large
and known, predictor-based feedbacks have shown their
efficacy in delay compensation of some classes of systems,
see e.g. Krstic [2008], Krstic [2009] and the references
therein.

In a certain way, observer design is generally seen as the
dual problem of state stabilization. Besides the complex-
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ity of making an observer convergent with the use of
output feedbacks, observer design for time-delay systems
has faced additional constraints like the necessity of the
perfect knowledge of the time delay, the structure of the
system under observation, and the size of the delay. For
linear systems, it was shown that state estimation can be
achieved whatever the size of the delay if some conservative
conditions are met. Delay-dependent conditions, generally
stated as convex-optimization problems, have been found
less conservative than delay-free conditions. However, the
maximum tolerable time delay to fulfill the conditions of
existence of an observer is generally small. Among the
most well-known approaches to observer design, we cite
Lyapunov-based methods that have been developed for
special classes of systems like in Ibrir [2011], Cacase et al.
[2010], Germani et al. [2001], Boutayeb [2001], Germani
and Pepe [2005], and convex-optimization based proce-
dures, see e.g. Mahmoud [2000], Ibrir et al. [2006] and the
references therein. A new approach to nonlinear observer
design subject to state delay is given in Germani et al.
[2002]. An interesting approach based upon prediction has
been extended to observer design for linear systems subject
to output delay, where the convergence of the observer is
assured for large constant delays, see Krstic [2009].

Identifiability and observer design for bilinear systems
have been the subject of extensive research contributions
see, e.g. Grasselli and Isidori [1981], Bornard et al. [1988],
Souley Ali et al. [2006], Sontag et al. [2009]. However, to
the best of our knowledge, observer design for arbitrary
bilinear systems with long time-delay measurements has
not thoroughly studied. In this paper, we extend the
design of predictor-observer design to a class of bilinear
systems subject to large output delay. We show that the
observer error can be made globally asymptotically stable
whatever the size of the constant delay. The observer
structure is readily constructed as a copy of the system
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dynamics with a correction predictor term that depends
on the instantaneous solution of a time-varying Ricatti
Equation. We show that the output correction term admits
a time-delay state-space realization that facilitates the
integration of the observer dynamics in real time. An
example of Jacket Stirred-tank heater is considered to
illustrate temperature reconstruction for different time
delays.

Throughout this paper, we note by IR the set of real
numbers. The notation A > 0 (resp. A < 0) means that the
matrix A is positive definite (resp. negative definite). A′ is
the matrix transpose of A. I stands for the identity matrix
of appropriate dimension, ∥ · ∥F denotes the Frobenius
norm, and ∥ · ∥ denotes the usual Euclidean norm. We
note by λmin(A) and λmax(A) the smallest and the largest
eigenvalue of the matrix A, respectively. A dynamical
system with state variable vector x(t) is input-to-state-
stable (ISS) with respect to its control input u, i.e., there
exists a class K L function β and a class K function γ,
such that, for any x(0) and for any input u continuous and
bounded on [0, +∞) the solution exists for all t ≥ 0 and
satisfies

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0) + γ

(
sup

t0≤τ≤t
∥u(τ)∥

)
. (1)

2. SYSTEM DESCRIPTION AND OBSERVER
DESIGN

Consider the bilinear system

ẋ(t) = A(u(t))x(t) + ψ(u(t)),

y(t) = C x(t− τ), x(0) = x0,
(2)

where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is
the control excitation input, and y(t) ∈ IRp is the only
measured output. We assume that for s ∈ [−τ, 0[ the
value of y(s) = ϕ(s) ∈ IRp where ϕ(s) is a known vector.
The matrix A(u(t)) ∈ IRn×n is a well-known real-valued
matrix, that is only dependent upon the system input
while the input vector ψ(u(t)) ∈ IRn is an input-dependent
known vector. To complete the system description, the
following assumptions are assumed to hold true.

Assumption 1. The pair
(
A(u(t)), C

)
is uniformly observ-

able for all u(t) ∈ IRm; t ≥ 0, i.e., there exist a constant
∆ and another constant ϱ depending on ∆ such that the
observability Gramian J(t−∆, t) satisfies

J(t−∆, t) =

∫ t

t−∆

ψ′(τ, t)C ′Cψ(τ, t) dτ ≥ ϱI > 0, (3)

where ψ(τ, t) is the state transition matrix of the system:

∂ψ(τ, t)

∂τ
= A(u(τ))ψ(τ, t), ψ(t, t) = I,

ψ(τ, t) = ψ−1(t, τ).
(4)

Assumption 2. The delay τ is constant and known.

Assumption 3. The system output y(t) is continuously
measured.

Assumption 4. The excitation input is globally bounded
and null for t < 0.

The objective of this paper is to design a globally-
convergent observer for system (2) whatever the size of
the delay τ . Let Q ∈ IRn×n be any symmetric and positive

definite matrix, and let P (t) be the time solution of the
following Algebraic Riccati Equation (ARE):

Ṗ (t) = P (t)A′(u(t)) +A(u(t))P (t)− P (t)C ′CP (t) +Q,
(5)

where P (0) is chosen as the solution of the following matrix
equation:

P (0)A′(0) +A(0)P (0)− P (0)C ′CP (0) +Q = 0. (6)

From the theory of linear time-varying systems, and based
on Assumptions 1-4, it is then concluded that P (t) > 0 for
all t ≥ 0. Finally, the observer is readily constructed as
follows:
˙̂x(t) = A(u(t)) x̂(t) + ψ(u(t))

+ e

∫ t

t−τ

A(u(r)) d r
L (t− τ)Cz(t− τ)

z(t) = x̂(t)− x(t) +

∫ t

t−τ

e

∫ t

s

A(u(r)) d r
L (s)C z(s) d s,

(7)

where the notation eA stands for the exponential matrix
of A and the observer gain is given by:

L (s) =

{
−P (s)C ′ for s > 0,
−P (0)C ′ for − 2τ ≤ s ≤ 0.

(8)

It is important to note that the input u(t) = 0 for t < 0;
however, the observability condition, as summarized in As-
sumption 1, assures the existence of the observer gain for
t < 0 and therefore, the stability of the observation error
can be maintained. To prove the observer convergence for
the aforementioned settings, let us highlight that the decay
to zero of the state z(t) (see (7)), implies the convergence
of the observation error e(t) = x̂(t) − x(t). From (2), and
(7), the dynamics of the observation error is given by:

ė(t) = A(u(t)) e(t) + e

∫ t

t−τ

A(u(r)) d r
L (t− τ)Cz(t− τ).

(9)

Note

ξ(t) =

∫ t

t−τ

e

∫ t

s

A(u(r)) d r
L (s)C z(s) d s. (10)

This yields,

ξ̇(t) = L (t)Cz(t)

− e

∫ t

t−τ

A(u(r)) d r
L (t− τ)Cz(t− τ)

+

∫ t

t−τ

A(u(t)) e

∫ t

s

A(u(r)) d r
L (s)C z(s) d s

(11)

From (11) and (9), one can get

ż(t) = ė(t) + ξ̇(t) =

(
A(u(t)) + L (t)C

)
z(t). (12)

By taking the Lyapunov function V = z′(t)P−1(t)z(t), one
can show that the inverse matrix of P verifies
d

dt
P−1(t) = −A′(u(t))P−1(t)− P−1(t)A(u(t)) + C ′C

− P−1(t)QP−1(t)
(13)
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and hence, V̇ ≤ −z′(t)P−1(t)QP−1(t)z(t). As a result
lim
t→∞

z(t) = lim
t→∞

e(t) = 0. Remark that system (8) is stable

for all t by the choice of the observer gain (8). We have
proved the following statement.

Theorem 1. Consider system (2) under the Assumptions
1-4. Then, for all initial conditions x̂(s) and z(s); −2τ ≤
s ≤ 0 the states of the predictor observer (7) converge
asymptotically to those of system (2) when time elapses.

Even the observer is able to reproduce the system states
whatever the size of the delay, the predictor term in
the observer dynamics evolves the computation of the
exponential of a time-varying matrix. The expansion of
the exponential matrix depends essentially on the form
of the matrix A(u(t)). If the matrix A(u(t)) is nilpotent
for some order k, i.e., Ak(u(t)) = 0 then, the expansion
of the exponential matrix is finite, and therefore, the
integration of its expansion over a limited time interval
can be easily done. In the following section, we give an
easy and systematic procedure to compute the observer
gain in case where A(u(t)) is arbitrary.

3. STATE-SPACE REALIZATION OF THE
PREDICTOR OBSERVER

The formulation of the predictor observer as stated in
the statement of Theorem 1 is very helpful to prove
the convergence of the predictor observer, however, the
observer correction terms cannot be easily implemented
in that form. The purpose of this section is to propose a
state-space realization of the observer gains with stability
analysis related issues. It will be shown that the observer
gains are the solution of a set of retarded differential
equations.

3.1 Dynamic realization of the the observer gains

In this section, we give a state-space realization of all the
variables of the predictor observer (7). To this end, let us
define

α(t) = e

∫ t

t−τ

A(u(r)) dr
. (14)

Then,

α̇(t) =

(
A(u(t))−A(u(t− τ))

)
α(t),

α(0) = e

∫ 0

−τ

A(u(r)) dr
.

(15)

Let

µ(t) =

∫ t

t−τ

e

∫ t−τ

w−τ

A(u(r)) d r
L (w − τ)C z(w − τ) dw.

(16)
Then, we have,

Cz(t− τ) = Cx̂(t− τ)− y(t) + C µ(t). (17)

This yields,

µ̇(t) = L (t− τ)Cz(t− τ)

− e

∫ t−τ

t−2τ

A(u(r)) d r
L (t− 2τ)C z(t− 2τ)

+A(u(t− τ))

∫ t

t−τ

e

∫ t−τ

w−τ

A(u(r)) d r
L (w − τ)

× C z(w − τ) dw.
(18)

As a consequence,

µ̇(t) = L (t− τ)

(
Cx̂(t− τ)− y(t) + Cµ(t)

)

− e

∫ t−τ

t−2τ

A(u(r)) d r
L (t− 2τ)×(

Cx̂(t− 2τ)− y(t− τ) + Cµ(t− τ)

)
+A(u(t− τ))µ(t).

(19)

Finally, the dynamics of the µ vector can be expressed as
state-space time delay system of the form:

µ̇(t) =

[
A(u(t− τ)) + L (t− τ)C

]
µ(t)

− α(t− τ)L (t− 2τ)Cµ(t− τ)

+ L (t− τ)
(
Cx̂(t− τ)− y(t)

)
− α(t− τ)L (t− 2τ)

(
Cx̂(t− 2τ)− y(t− τ)

)
,

(20)

with µ(s) = 0 for −τ ≤ s ≤ 0, and α(s) = e

∫ 0

−τ

A(u(r)) dr

for −2τ ≤ s ≤ 0. For a given Cx̂(s) = ϕ̂(s); s ≤ 0, the
dynamics of the observer (7) is then rewritten as

˙̂x(t) = A(u(t)) x̂(t) + ψ(u(t))

+ α(t)L (t− τ)
[
Cx̂(t− τ)− y(t) + Cµ(t)

]
,

(21)

where the dynamics of α(t), L (t), and µ(t) are given by
(15), (8), and (20), respectively.

3.2 Stability of the “α” and the “µ” systems

Since u(t) is globally bounded then all the entries of the
matrix α(t) are bounded. Consequently, ∀t ≥ 0, ∥α(t)∥
verifies the following inequality:

∥α(t)∥ ≤
∥∥∥∥e

∫ t

t−τ

A(u(s)) ds∥∥∥∥
F

≤ ne

∥∥∥∥∫ t

t−τ

A(u(s)) ds

∥∥∥∥
F .

(22)
The dynamics of observer (21) is seen as a copy of
the system dynamics with two injection terms. The first
correction term is the delayed-output injection and the
second one is the µ correction term that compensates
the error made by the output delay. Our task here is
to show that the realization of the µ dynamics given by
(20) assures the convergence of the vector µ(t) to zero
when time elapses. From (20), one can write an equivalent
representation of the µ(t+ τ), that is

µ̇(t+ τ) =

[
A(u(t)) + L (t)C

]
µ(t+ τ)

− α(t)L (t− τ)z(t) + L (t)C e(t).

(23)

From (23), it can be seen that the dynamics of µ(t+ τ) is
composed by a stable dynamics perturbed by the input
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−α(t)L (t − τ)z(t) + L (t)C e(t) that vanishes to zero
according to the result of Theorem 1. Therefore, µ(t+ τ)
will converge to zero when t→ ∞. To prove this fact, it is
sufficient to take the Lyapunov function W (µ, τ) = µ′(t+
τ)P−1(t)µ(t + τ) and show that system (23) is Input-to-
State-Stable (ISS) with respect to z(t) and e(t). The first
derivative of W (µ, τ) along the trajectories of system (23)
is given by:

Ẇ (µ, τ) = µ̇′(t+ τ)P−1(t)µ(t+ τ)

+ µ′(t+ τ)P−1(t)µ̇(t+ τ)

+ µ′(t+ τ)
d

dt
P−1(t)µ(t+ τ)

= −µ′(t+ τ)P−1(t)QP−1(t)µ(t+ τ)

− µ′(t+ τ)C ′C µ(t+ τ)− µ′(t+ τ)C ′C e(t)

− 2µ′(t+ τ)P−1(t)α(t)L (t− τ)z(t).
(24)

Using the following inequalities:

−µ′(t+ τ)C ′C e(t) ≤ µ′(t+ τ)C ′C µ(t+ τ)+ e′(t)C ′Ce(t),
(25)

and

− 2µ′(t+ τ)P−1(t)α(t)L (t− τ)z(t)

≤ 1

2
µ′(t+ τ)P−1(t)QP−1(t)µ(t+ τ)

+ 2z′(t)L ′(t− τ)α′(t)Q−1α(t)L (t− τ)z(t).

(26)

This yields,

Ẇ (µ, τ) ≤ −1

2
µ′(t+ τ)P−1(t)QP−1(t)µ(t+ τ)

+ e′(t)C ′Ce(t)

2z′(t)L ′(t− τ)α′(t)Q−1α(t)L (t− τ)z(t).

(27)

The boundedness of µ(t+ τ) depends on the boundedness
of all the entries of the matrix α(t) and the boundedness of
the matrix P (t) as well. Since ∥α(t)∥ is bounded as in (22)
and ∥P (t)∥ is bounded by the uniform observability con-
dition of the pair (A(u(t), C) (see Lemma 1 in Chen and
Kao [1997] for more details) then, there exit two constants
c1 = λmin(P

−1(t)QP−1(t)) and c2 = λmax(Q
−1)∥P (t −

τ)∥2∥α(t)∥2 such that

Ẇ (µ, τ) ≤ −c1
2
∥µ(t+ τ)∥2 + ∥Ce(t)∥2 + 2c2∥Cz(t)∥2,

(28)

which implies the ISS property of system (23) with respect
to Ce(t) and Cz(t). Since e(t) and z(t) converge to zero by
the result of Theorem 1 then, lim

t→+∞
µ(t+τ) = lim

t→+∞
µ(t) =

0.

4. NUMERICAL SIMULATION

A jacket stirred-tank heater is shown in Figure 1 where a
hot fluid is circulated through the jacket of the Continuous
Stirred Tank Reactor. Heat flows between the jacket and
the vessel which increases the energy content of the fluid
inside the vessel. The heat transferred to the vessel fluid
from the jacket fluid is UA(Tj − T ), where U is the
overall heat transfer coefficient, A is the area for heat
transfer, Tj is the temperature of the jacket fluid and T the
temperature of the vessel fluid. Assuming that the volume
and the density are constant, Fi = F . The energy balances

Tm

Fi

Ti

Fj

Tjin

F

T

T

Tj

Fj

Product

Jacket outlet

Jacket inlet

Feed

Fig. 1. The Jacket Stirred-tank heater

on the vessel and fluids result in the following differential
equations Bequette [2003]

dT

dt
=
F

V
(Ti − T ) +

UA

V ρ cp
(Tj − T ),

dTj
dt

=
Fj

Vj
(Tjin − Tj)−

UA

Vjρj cpj
(Tj − T ),

(29)

where V and Vj represent the volumes of the vessel and
the jacket, F and Fj represent feed rates, cp and cpj
represent the specific heat capacity, ρ and ρj represent
densities and the input temperatures are Ti and Tjin. The
output of this system is a time delayed measurement of the
jacket temperature represented by τ . Allowing x1(t) = T ,
x2(t) = Tj , u1(t) = F , u2(t) = Ti, u3(t) = Fj and
u4(t) = Tjin the system given by Eq. (29) can be rewritten
as

ẋ1(t) = −
(

1

V
u1(t) +

UA

V ρ cp

)
x1(t) +

UA

V ρ cp
x2(t)

+
1

V
u1(t)u2(t),

ẋ2(t) =
UA

Vj ρj cpj
x1(t)−

(
1

Vj
u3(t) +

UA

Vjρj cpj

)
x2(t),

+
1

Vj
u3(t)u4(t),

y(t) = x2(t− τ).
(30)

In this simulation x̂(s) and y(s) are null for −2τ ≤ s < 0.
The system parameters are: V = 20 ft3, Vj = 5.5 ft3, U =

61.3Btu/(ft2 · ◦F ·min), A = 3 ft2, ρ = 60.49 lb/ft
3
, ρj =

61.3 lb/ft
3
, cp = 0.5Btu/( ◦F · lb), and cpj = 1Btu/( ◦F ·

lb). The simulation is performed with the following initial
conditions of the observer and the heater system: x̂0 =
[105 54]′, µ(0) = [0 0]′, and x0 = [21 85]′; where
u1(t) = 10.5 + 0.5 sin(0.5 t) ft3/min, u2(t) = 68 ◦F ; ∀t,
u3(t) = 15.5 + 0.5 cos2(0.1 t) ft3/min u4(t) = 150 ◦F ; ∀t.
The performance of the time-delay observer is tested for a
small and large constant delay. For τ = 5 (sec), and Q = I,
we have

P (0) =

(
0.63131 0.09026
0.09026 0.1595

)
. (31)
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Fig. 2. The observer errors for τ = 5 (sec), Q = I
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Fig. 3. The observer errors for τ = 100 (sec), Q = 20I

The observer is conceived by integrating simultaneously
the dynamical equations (5), (15), (20) and (21). As
shown in Fig. 2, the observer states converge rapidly
to the true states when time is greater than the time
delay. This observation is explained by the availability of
measurements when t − τ ≥ 0. The second simulation is
performed for τ = 100 (sec) which represents a significant
time delay that affects the observation process. In this
simulation we set Q = 20I which gives

P (0) =

(
11.7457 1.08992
1.08992 2.33750

)
. (32)

Notice that the observation errors, depicted in Fig. 3, enter
a small neighborhood of the origin after τ = 200 (sec).
From this numerical simulation, we stress that the large
amount of time delay does not prevent the stability of
the observation error even a high-gain output injection is
employed to correct the observer dynamics (Q = 20I). The
oscillations recorded for t ≤ 200 (sec) are mainly due to

the sinusoidal employed input and the retarded dynamics
of the µ-state and α-state systems.

5. CONCLUSION

A generalization of predictor observers for a class of bi-
linear systems is given. Numerical simulations have shown
the efficiency of the developed observation procedure for
different sizes of time delays. Even the developed ob-
server is globally convergent for arbitrary large delay,
the knowledge of the time delay remains necessary for
the construction of the observer. The generalization of
predictor-observer design for larger classes of systems is
under investigation.
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