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Abstract: The Czochralski process is the only process used commercially for production
of monocrystalline silicon for semiconductor and solar cell applications. The process has
traditionally been controlled using nested single-loop PID controllers. Advanced model-based
control will require the ability to update the model used for control by using the measurements
available on-line. This paper presents a study of non-linear state estimation based on a previously
developed non-linear dynamical model. Data from actual plant operation are used in the
study. Most application studies on state estimation only have on-line, noise corrupted/uncertain
measurements available. In this case, the crystal radius as the main process variable, can be
measured with much greater accuracy after the crystal is produced. It is therefore possible to
assess estimator performance using this more accurate off-line measurement. The experimental
results in this work confirm the simulation results from a preceding paper and show that the
applied non-linear estimators perform well, with the unscented Kalman filter giving somewhat
better results than the extended Kalman filter.

1. INTRODUCTION

Among the existing crystal growth techniques where the
solid material is created without contacting the surround-
ing walls, the Czochralski (Cz) method stands out when
commercial production of monocrystalline silicon is con-
cerned. The Cz process was discovered in the early 1900’s
by Jan Czochralski, while he was investigating the crys-
tallization rate of metals. Even though this technique has
been around for almost a century, it has only found wide
practical application during the last decades because of
the development of semiconductor engineering and the
solar industries. The principle is based on melting the
source material in a crucible, which is usually made of
quartz. Then, a rotating seed crystal mounted on a rod is
dipped into the melt. As the seed comes in contact with
the melt, the melt solidifies on the seed and takes on the
same crystallographic orientation as the seed. The seed is
then slowly withdrawn from the melt, and surface tension
causes the formation of a meniscus which connects the
crystal to the melt. As the crystal is withdrawn, the melt
solidifies along the top of the meniscus, causing the crystal
to grow. The surface along which the material solidifies
is referred to as the (crystal-melt) interface. By precisely
controlling the temperature gradients, rate of pulling and
speed of rotation, it is possible to extract a large, single-
crystal, cylindrical ingot from the melt. At the end, the
ingot is sliced into very thin wafers, and each wafer is
polished and cut into a specific shape, depending on the
final application.
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In [Rahmanpour et al., 2013], a simulation study using
a physically motivated model for the Czochralski process
was used to compare the performance of the Kalman
Filter, the Extended Kalman filter and the Unscented
Kalman filter. The conclusion on the achieved results in
[Rahmanpour et al., 2013] showed that the latter two filters
provide highly accurate state estimates with excellent
noise suppression.

Fig. 1. The setup for taking photo of the edge of the ingot.

In continuation of the previous study, process data from
a crystal puller has been collected. In addition to collect-
ing on-line proceess data, the radius of the ingots were
measured after production was finished. In order to do so,
there was built a setup to correctly place the ingot and a
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digital camera, as shown in Figure 1. With high quality
pictures that was taken from the edge of the crystal and
image processing techniques, the real changes in radius of
the finished crystal resulted in an almost noise-free radius
measurement.

With regard to [Rahmanpour et al., 2013], this paper
further investigates and compares the performance of the
Extended Kalman filter (EKF) and the Unscented Kalman
filter (UKF), based on the collected process data, using
the same physically motivated model for the Czochralski
process. In addition, an attempt was made to tune the
nonlinear filters based on the radius measurement from
the ingot, while the real-time radius measurement was fed
to the estimators.

The Cz process is briefly introduced with a simplified
process model in section 2, while section 3 introduces
EKF and UKF approaches and presents the implemented
estimations methods used in this paper. The results of
the applied estimators to the process model are presented
at section 4, with further discussion and conclusion at
section 5. Section 1 and subsection 2.1 in this paper are
based on [Rahmanpour and Hovd, 2012] and subsection 2.2
is based on [Rahmanpour et al., 2013].

2. THE CZOCHRALSKI CRYSTALLIZATION
PROCESS AND A MODEL FOR THE CRYSTAL

RADIUS

2.1 Czochralski Process Description

A sketch of the Czochralski process is shown in Figure 2.
Normally, a process run (i.e., production of a crystal) is
initiated by placing an amount of solid silicon inside the
crucible. As shown in Figure 2, the crucible is surrounded
by the electrical heater used to melt the solid material and
maintain an appropriate temperature trajectory during
the crystallization.

Fig. 2. An illustration of the main parts of the Czochralski
crystallization process (This Figure is licensed under
a Creative-Commons BY-NC-SA license).

The main part of the process starts when a small rotating
crystal seed is lowered while it is hanging from the pulling
wire and dipped into the molten silicon. The crystallization
process takes place as the seed is slowly pulled out of the
melt, while the pulling wire is counter-rotating with regard
to the rotating crucible. Even though the crystal diameter
is quickly increased at the beginning, it is desirable to keep
the diameter constant for most of the process progression.
A sketch of the region around the meniscus is shown in
Figure 3.

Fig. 3. A sketch of the crystal and its contact with
the molten metal(This Figure is licensed under a
Creative-Commons BY-NC-SA license).

2.2 A Crystal Formation Model for the Czochralski Process

The basic phenomena that need to be covered by a model
for the Czochralski process are the capillary problem and
the thermal conditions. From the theory of hydrostatics,
the equilibrium shape of the liquid surface is described by
the Laplace capillary equation [Tatarchenko, 1993]:

σLV

R1
+
σLV

R2
+ gρLz̃ = const. (1)

where σLV is the liquid surface tension coefficient at the
three-phase boundary, ρL denotes the liquid density, and
R1 and R2 are the principal radii of curvature of the
meniscus. The value of the constant is defined based
on the selection of the origin of the z̃-coordinate and
the difference between the pressure of the liquid p and
gas pv at the origin. Using the capillary constant a =
(2σLV /gρL)1/2, we get a dimensionless coordinate z̃/a =
z where the z̃-axis is directed vertically upwards. The
liquid surface meniscus for cylindrical or tubular crystals
is obtained by rotating the profile curve around this axis.
The shape of the free liquid surface is given by solution of
the Laplace-Young equation [Tatarchenko, 1993]:

z
′′
r + z

′
(1 + z

′2)± 2(d− z)(1 + z
′2)3/2 = 0,

d =
p · a

2σLV

(2)

In (2), r represents the radial coordinate, z defines the
vertical coordinate and the Laplace constant is denoted
by a.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4892



A heat transfer balance about the interface states that
the heat flow caused by crystallization (Φh) is given by
the difference between the heat flow from the interface to
the crystal (Φs) and the heat flow from the melt to the
interface (Φl) [Winkler et al., 2010, pp. 1007,1012]:

Φh = Φs − Φl (3)

where

Φh = ρsvgAi∆H (4a)

Φs = ksAi∇Ts (4b)

Φl = klAi∇Tl (4c)

The latent heat of fusion is represented by ∆H, Ts and
Tl denote the temperatures in the solid and the melt,
respectively, the growth rate which is normal to the
interface is denoted by vg, ρs is the solid state density,
ks and kl are the thermal conductivity coefficients in
crystal and the melt, and Ai is the interface or meniscus
area. Higher accuracy of the Cz model will require higher
model complexity, involving coupled PDE’s [Tatarchenko,
1993]. There exist such highly complicated and accurate
simulation models with the quasi-stationary conditions
as the fundamental design assumption. Such models are
poorly suited for controller design, due to both the high
complexity and the quasi-stationarity assumption.

Steel and Hill [1975, p. 49] and Hurle et al. [1990, p. 15]
suggest the following estimate of the melt temperature
gradient under the assumption that the heat radiation
from the meniscus to the environment is negligible

∇Tl ≈
TB − TM

h
(5)

This results in the following expression for the melt-
meniscus heat flow

Φl ≈ klAi
TB − TM

h
(6)

Here TB is the temperature at the base of the meniscus,
TM is the melting temperature (at the lower surface of the
cylindrical crystal). Since, over time, the growth rate (vg)
equals the average pulling rate (vp), the following estimate
of the rate of heat release can be obtained from (4a) by
assuming a flat interface:

Φh ≈ πr2cρs∆Hvp (7)

In describing the dynamics of the crystal radius, the
growth rate is the most important quantity. It can be
calculated from the heat flow caused by crystallization (4a)
as follows

vg =
Φh

πr2cρs∆H
(8a)

where a flat interface has been assumed. By consider-
ing (3), (4b), (6) and (8a), the following expression for
the growth rate is obtained

vg =
1

ρs∆H

(
ks∆Ts −

kl
h

(TB − TM)

)
(9)

where ∆Ts represents the temperature gradient in the
crystal.

During growth, the radius (diameter) of the crystal is typ-
ically measured by a CCD camera aimed at the meniscus,
which can be identified as a ’glowing ring’ due to reflections

from the glowing hot environment. However, the radius
thus measured is sensitive to changes in meniscus height
as well as waves on the melt surface. Since the CCD camera
is calibrated to be aimed at the meniscus, the melt level
must be the same at all time. Otherwise, the camera will
not be able to detect the glowing ring. In practice, the melt
level is not measurable, instead an approximate algorithm
is used to find a lift ratio for the crucible, which should
compensate for the changes in the melt level.

In this paper, an ideal assumption is taken into account
where the vertical position of the melt level is kept con-
stant, which means that the crucible lift rate is such that
it compensates for the drop in melt level perfectly, leaving
the following simple model [Hurle et al., 1989]:

ẋ = f(x,u) (10a)

y = g(x) (10b)

with

f(x, u) = [f1, f2]
>

= [vg tan θ, vp − vg]
>

(11a)

g(x) = rCCD, x = [rc, h]
>
, u = vp (11b)

where θ defines the growth angle. For most of the crystal,
the growth angle θ is small and nearly constant, but it
cannot be measured during operation. Instead we replace
it with the approximation [Duffar, 2010].

sin(θ) ≈ 1−
(
h

a

)2(
1 +

a

r
√

2

)
≈ θ (12)

Here a, as above, represents the Laplace constant. In
normal operation, the angle θ will stay within a few
degrees from zero. Thus, we can use the approximation
tan(θ) ≈ sin(θ) ≈ θ for θ ≈ 0.

A basic summary of the introduced equations can be
the following: Meniscus geometry will strongly affect the
heat transfer from the molten metal to the interface.
Furthermore, the crystal growth angle and the crystal
diameter will also be influence directly by the meniscus
geometry. Consequently, the crystal diameter will influence
the heat transfer from the interface to the environment.
Thus, it is vital to control the proper shape of the melt
meniscus, in order to pull an adequate crystal [Duffar,
2010].

Automated Cz growth requires multiple control loops, in-
cluding loops for pressure, seed and crucible rotation rates
and crucible lift rate control. However in the conventional
control scheme, there are three control loops whose per-
formance are strongly correlated with the crystal quality.
The first one is a diameter controller which affects the
diameter by manipulating the pulling rate, and uses feed-
back from diameter measurement to follow a desired target
trajectory. The purpose of the second one is to ensure that
the temperature conditions in the melt are satisfactory by
manipulating the electrical heater which should follow an
empirically predetermined setpoint trajectory. The third is
the growth rate controller which is placed in cascade con-
nection with the temperature controller, and adds offset
to the temperature setpoint trajectory when the output
(pulling rate) from the diameter controller differs from
a pre-calculated pulling rate trajectory. These three con-
trollers are usually PID controllers. To deal with the time-
varying operating conditions, such as the decreasing melt
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level, the parameters of the controllers change with time
through gain scheduling.

Preferably, the estimators should estimate both states
(rc, h). Since the radius (rc) is the only quantity that is
measured (rCCD), this will be the only measurement avail-
able for state estimation, and will have to allow updating
of both crystal radius and meniscus height estimates. It
will be found below that the model is indeed observable
with this single measurement.

Linearized system dynamics The EKF requires a lin-
earized model. Through Taylor series expansion of these
equations, a standard LTI model is obtained

˙̄x = Ax̄ + Bū+ Ew̄ (13a)

ȳ = Cx̄ +Dū+Hv̄ (13b)

with

w̄ = w −w0 = w = [w1, w2]
>

= [0, vg,noise]
>

(14a)

v̄ = v − v0 = v (14b)

where

A =


∂f1
∂rc

∂f1
∂h

∂f2
∂rc

∂f2
∂h


∣∣∣∣∣∣∣∣
∗

=

vg,0 ∂θ

∂rc

∣∣∣∣
∗
vg,0

∂θ

∂h

∣∣∣∣
∗

0 0



≈

0 −2
h0
a
vg,0

0 0

 (15a)

B =

[
∂f1
∂u

,
∂f2
∂u

]>∣∣∣∣∣
∗

= [0, 1]
>

(15b)

C =

[
∂g

∂rc

∂g

∂h

]∣∣∣∣
∗

=

[
∂rCCD

∂rc

∂rCCD

∂h

]∣∣∣∣
∗

≈
[
1,
∂rCCD

∂h

∣∣∣∣
∗

]
(15c)

D =
∂g

∂u

∣∣∣∣
∗

= 0 (15d)

E =

[
∂f1
∂w1

,
∂f2
∂w2

]>∣∣∣∣∣
∗

=

[
0
−1

]
(15e)

H =
∂g

∂v

∣∣∣∣
∗

= 1 (15f)

and where ∗ indicates the points at which the expressions
are evaluated, i.e., the linearization points. With these
matrices, the observability and controllability matrices are
respectively given by

O ≈

1
∂rCCD

∂h

∣∣∣∣
∗

0 −2
h0
a
vg,0

 , C ≈
[

0 −2
h0
a
vg,0

1 0

]
(16)

Both matrices have full rank for a positive growth rate.
The system is therefore structurally always observable,
since ∂rCCD/∂h is always positive. This has been shown
numerically in [Bones and Haugen, 2012].

3. STATE ESTIMATION

The meniscus height is not measurable and the measured
radius is quite noisy. Thus, the actual radius and the
meniscus height are not available during crystal growth.
Therefore, use of feedback from estimators that attempt
to compute these quantities are explored. Two types of
state estimators are investigated: the extended Kalman
filter and the unscented Kalman filter. It is common to
convert the continuous-time model (f, g) to a discrete-
time model (F,G) in order to implement the model in
a computer. Therefore, the estimator equations in this
section are illustrated in their discrete-time version. The
following notation is used in this section:

• x̄ is the mean value of x
• x̂ is the state estimate
• x̂− is the predicted (a priori) state estimate
• ŷ is the measurement estimate
• P is the estimate covariance
• Q is the covariance of the process noise
• R is the covariance of the observation noise
• Kk is the Kalman gain

3.1 Extended Kalman Filter Design

The Extended Kalman Filter (EKF ) uses a nonlinear
model to predict a new state estimate, and a local lin-
earization of the nonlinear model is used to improve the
state estimate when new measurements are available. In
this case, the algorithm takes the following form [Brown
and Hwang, 1997, pp. 343-347]

• Step 1: Predict

Predict new state estimate

x̂−k+1 = F(x̂k,uk)

Compute the error covariance of the new estimate

P−k+1 = Ad,kPkA>d,k + Ed,kQkE>d,k
• Step 2: Update

Compute the Kalman gain

Kk = P−k C>d,k
(
Cd,kP−k C>d + Rd,k

)−1
Update the state estimates

x̂k = x̂−k + Kk

[
yk −G

(
x̂−k ,uk, k

)]
Compute the error covariance for the updated esti-
mate

Pk = E
[
eke>k

]
= (I−KkCd,k) P−k (I−KkCd)

>
+ KkRd,kK>k

where the Jacobian matrices Ad,k and Cd,k are re-
calculated along the systems trajectories according to the
discretization of

Ad,k =
∂F

∂x

∣∣∣∣
x̂k,uk

and Cd,k+1 =
∂G

∂x

∣∣∣∣
x̂−
k+1

,uk

3.2 Unscented Kalman Filter Design

In Unscented Kalman Filter (UKF ), the state distribution
is represented by a Gaussian random variable (GRV) which
is specified using a minimal set of carefully chosen sample
points (sigma points). These sample points completely
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capture the true mean and covariance of the GRV, and
when propagated through the true nonlinear system dy-
namics, capture the posterior mean and covariance accu-
rately to the second order (Taylor series expansion) for any
nonlinearity. The statistics of the transformed points can
then be calculated to form an estimate of the nonlinearly
transformed mean and covariance [Haykin, 2001].

It is noticeable that the sigma points are not chosen
randomly; they are deterministically chosen so that they
exhibit certain properties. Furthermore, the sigma points
can be weighted [Julier and Uhlmann, 2004]. Assume
propagating a random variable x of dimension L through
y = f(x) with mean and covariance defined above. To
calculate the statistics of the propagated points (y), a
matrix χ of 2L+ 1 sigma vectors χi is defined as [Haykin,
2001]:

χ0 = x̄,

χi = x̄ + (
√

(L+ λ)Px)i, i = 1, · · · , L
χi = x̄− (

√
(L+ λ)Px)i−L, i = L+ 1, · · · , 2L

(18)

where λ = α2(L + κ) − L is a scaling parameter. The
constant α determines the spread of the sigma points
around x̄, and is usually small (1 ≥ α ≥ 10−4). κ and

β are also scaling parameters. (
√

(L+ λ)Px)i is the ith
column of the lower-triangular Cholesky factorization. The
UKF used in this paper is implemented as described in
[Haykin, 2001], where a full description of this technique
and how to select scaling parameters also can be found.
The weights applied to the propagated sigma points and
the UKF algorithm are defined as follows:

W
(m)
0 =

λ

L+ λ
,

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β,

W
(m)
i = W

(c)
i =

1

2(L+ λ)
, i = 1, · · · , 2L

(19)

• Step 1: Initialize

Initialize with

x̂0 = E[x0],

P0 = E[(x0 − x̂0)(x0 − x̂0)>].

For k ∈ {1, · · · ,∞}, calculate the sigma points:

χk−1 = [x̂k−1 x̂k−1 + γ
√

Pk−1 x̂k−1 − γ
√

Pk−1].

• Step 2: Predict

The time-update equations are

χ∗k|k−1 = F(χk−1,uk−1)

x̂−k =

2L∑
i=0

W
(m)
i χ∗i,k|k−1

P−k =
2L∑
i=0

W
(c)
i (χ∗i,k|k−1 − x̂−k )(χ∗i,k|k−1 − x̂−k )> + Q

• Step 3: Update

We redraw a complete new set of sigma points

χk|k−1 = [x̂−k x̂−k + γ
√

P−k x̂−k − γ
√

P−k ]

Yk|k−1 = G(χk|k−1)

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k|k−1

and the measurements-update equations are

Pykyk
=

2L∑
i=0

W
(c)
i (Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )> + R

Pxkyk
=

2L∑
i=0

W
(c)
i (χi,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )>

Kk = Pxkyk
P−1ykyk

x̂k = x̂−k + Kk(yk − ŷ−k )

Pk = P−k −KkPykyk
K>k

where γ =
√
L+ λ and Wi are the weights as

calculated in (19).

4. SIMULATION RESULTS
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Fig. 4. Comparison of online measurment of crystal radius
by CCD camera and the measured ingot radius using
image processing tools.

Figure 4 shows the actual radius measured both during the
pulling process and afterwards. When using a CCD camera
for real-time radius measurement, it is quite noisy. In order
to investigate how close the CCD camera measurement is
to the true radius, it is interesting to measure the radius
of the resulting ingot, when the crystallization process is
over. Since the latter radius measurement is done without
process disturbances, using photographs taken at a more
appropriate angle, higher accuracy measurements of the
ingot radius can be obtained.

Figure 5 and 6, both illustrate the ingot radius rc esti-
mated by the EKF and UKF. Based on Figure 5, both es-
timators have performed quite well. By inspecting Figure 6
and Table 1, it becomes more clear that the UKF has done
a better job estimating rc, compared to the EKF. Most
probably, this better performance by the UKF is because
of the more precise handling of the non-linearities within
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Fig. 5. Comparison of online measurment of crystal radius
by CCD camera and the estimated radius using EKF
and UKF.
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Fig. 6. Comparison of measured ingot radius and the
estimated radius using EKF and UKF.

the model. In addition, this confirms that the existing non-
linearities inside the model are capable of representing the
actual process qualities.

The performance of these estimators was dependent on the
accurate characterization of the uncertainties in the state
dynamics and in the measurement. The parameters of the
noise densities associated with these uncertainties were,
however, treated as tuning parameters and were adjusted
in an ad hoc manner while carrying out state estimation.
It should be noted that both estimators used the same
process noise and measurement noise covariance matrices
and were tuned to fit the ingot radius while updating
their estimates based on the CCD camera measurement.
Equal importance were given to both estimators when
selecting weight matrices, and it was found that similar
noise densities gave good performance for both estimators.

Table 1. Root Mean Square Error of estimates

Observers RMSE of r̂c
EKF 7.4042e-04
UKF 5.2499e-04

The overall performance of the estimators based on the
deviation from the true ingot radius have been summarized
in Table 1.

5. DISCUSSION AND CONCLUSIONS

The experimental results in this paper confirm the sim-
ulation based findings in [Rahmanpour et al., 2013]. It
has been shown in this paper that the Kalman filters
do an excellent job in dealing with measurement noise
and provide acceptable estimates of both states. Advanced
model-based control will require the model to be updated
from measurements available on-line. The study confirms
that both the EKF and UKF are capable of doing this. The
differences between these two estimators are moderate,
and practical issues may therefore dictate the choice of
estimator. However, as the computational cost of both
estimators are modest and comparable, the UKF would
appear to be the preferred candidate. The good results of
the two estimators, and the finding that the UKF (which
does not linearize the model) performs better than the
EKF, can be seen as an indication that the model captures
the main non-linear effects in the plant well.

Plans for future work include applying the estimates in a
model predictive control scheme.
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