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Abstract: Variants of the S-procedure provide an important tool in robust stability and robust
performance design, mainly in the state space framework based on linear matrix inequalities.
The aim of this paper is to formulate three classical results, the basic S-lemma, the Finsler’s
lemma and a variant of the full-block S-procedure, in the input output framework, i.e., in the
infinite dimensional setting. While the presented results widen the scope of the applicability
of these fundamental tools, they also provide a link to the theory of indefinite spaces, as an
efficient framework to handle robust control problems.

1. INTRODUCTION AND MOTIVATION

Robust stability and robust performance analysis and syn-
thesis of control systems with parameter uncertainties and
parameter variations is one of the fundamental issues in
system theory. In the most common framework models
are augmented with performance specifications and uncer-
tainties while weighting functions are applied to the per-
formance signals to meet performance specifications and
guarantee a tradeoff between performances. As a result of
this construction a linear fractional transformation (LFT)
interconnection structure, which is the basis of control
design, is achieved, in which a design problem for robust
quadratic performance is formulated.

An efficient solution technique was developed in the state
space framework by solving a set of linear matrix inequali-
ties (LMIs). The LMIs are obtained by using some variant
of the S-procedure and usually involve a relaxation of an
infinite number of conditions to a set of finite number
of constraints. The main theoretical and practical tools
in this respect are the full-block S-procedure (extended
KYP lemma, or robust Finsler’s lemma), a variant of
the Elimination lemma and some variant of the classical
S-procedure, see, e.g., Iwasaki and Hara [1998], Scherer
[2001]. The classical S-procedure, Yakubovich [1977] is a
relaxation method: it tries to solve a system of quadratic
inequalities via a LMI relaxation.

Despite the success of the approach in handling all kinds
of control problems there are still some basic issues con-
cerning the design. Apart the basic H∞ problem and
some special configurations these techniques leads to a cer-
tain amount of conservatism in the achieved performance.
Much effort has been done in the lossless parametrization
of the multipliers associated to a given uncertainty set.
One way to reduce the conservatism is the application of
an IQC technique, see, e.g., Megretski and Rantzer [1997],
with some dynamic multipliers. More difficulty arises in
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the solution of the qLPV problems, formulated in the
solution of quasi linearized nonlinear design tasks.

In Szabó et al. [2013] the authors provide the infinite
dimensional counterpart of the robust stability framework
based on quadratic separators. Here we are to continue
these efforts with those methods that focus on performance
issues. Besides the theoretical challenge, one of the main
motivations to extend these techniques to infinite dimen-
sion, i.e., to the input output setting, is to investigate the
effect of the application of the relaxations on a higher level.
This issue, however, is well beyond the scope of this paper.

The aim of this paper is to formulate three classical results,
the basic S-lemma, the Finsler’s lemma and a variant of
the full-block S-procedure, in the input output framework,
i.e., in the infinite dimensional setting. We consider that
the presented results widen the scope of the applicability of
these fundamental tools. Moreover, they also provide a link
to the theory of indefinite spaces, as an efficient framework
to handle robust control problems, see, e.g., Helton [1987],
Hassibi et al. [1999]. Thus the presented methods have
also an educative value, putting in a different perspective
already known approaches and enlightening their role in
the solution of the control relevant problems.

Section 2 presents the main tools that lead to the S–
lemma. Despite the use of the indefinite techniques, the
approach is elementary and it is quite accessible, revealing
the ideas behind the result. Section 3 introduces the
infinite dimensional version of the Finsler’s lemma. This is
followed, in Section 4, by an infinite dimensional version of
the extended KYP lemma. In the finite dimensional setting
this is a special formulation of the full-block S-procedure
and it can also be viewed as a generalization of the Finsler’s
lemma, see Iwasaki and Hara [1998]. For the motivation
of labeling this statement as an extended KYP lemma see
Szabó et al. [2012]. Our approach to this problem is from a
pure analysis, i.e., performance assessment point of view. A
possible application of the result in the finite dimensional
context is sketched in Section 5.
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2. THE S–LEMMA

In the finite dimensional setting the S-lemma is a funda-
mental result with a wide range of applications, see, e.g.,
Boyd et al. [1994], Polik and Terlaky [2007]. It has differ-
ent versions and proofs, mainly based on some convexity
arguments.

While the infinite dimensional version of the result was
already available, apparently it is not known in the control
community. Thus, the result of this section have already
appeared in the indefinite space theory in Krein and
Shmulyan [1986] and were also included in the books of
Bognár [1974] and Azizov and Iokhvidov [1989].

The proofs, however, were provided only for Hilbert spaces
over the complex field. Here we give the proofs of the
assertions for the general case, i.e., for spaces over the
real field, too. For the sake of completeness we include all
proofs.

Let φi : H×H 7→ C(R) be sesquilinear forms given by

φi(x, y) = 〈Φix, y〉
defined on the Hilbert space (H, 〈·, ·〉), where Φi are
bounded linear symmetric operators on H. Let us consider
the sets

H−i = {x |φi(x, x) < 0}, H−0i = {x |φi(x, x) ≤ 0},
H+
i = {x |φi(x, x) > 0}, H+0

i = {x |φi(x, x) ≥ 0},
Ni = {x |φi(x, x) = 0, x 6= 0}.

In what follows we suppose that φ1 is indefinite, i.e., there
are y, z ∈ H such that φ1(y, y) = −1 and φ1(z, z) = 1. This
is an essential assumption for the validity of the assertions
that follows.
Lemma 2.1. If φ1 is indefinite and N1 ⊂ H−2 then either
H−1 ⊂ H

−
2 or H+

1 ⊂ H
−
2 .

Proof. Suppose that there are y, z ∈ H such that

φ1(y, y) = −1, φ1(z, z) = 1

and φ2(y, y) ≥ 0, φ2(z, z) ≥ 0. Take xν = z + νy with
ν ∈ R.

Note, that φ1(xν , xν) = 0 is equivalent to

1 + 2νReφ1(y, z)− ν2 = 0,

which always has two solutions: ν+ > 0 and ν− < 0.

Thus

φ2(xν , xν) = φ2(z, z) + 2νReφ2(y, z) + ν2φ2(y, y) =

= φ2(z, z) + φ2(y, y) + 2νReφ2(y, z) + (ν2 − 1)φ2(y, y) =

= φ2(z, z) + φ2(y, y) + 2ν(Reφ2(y, z) + φ2(y, y)Reφ1(y, z))

can be made negative with a suitable ν, which is a
contradiction.

The following lemma is a fundamental result here:
Lemma 2.2. Let T be a linear relation on H such that
TN1 ⊂ H−2 (H−02 ). Then, for all y ∈ H−1 and z ∈ H+

1 we
have

φ2(Ty, Ty)

φ1(y, y)
> (≥)

φ2(Tz, Tz)

φ1(z, z)
. (1)

Moreover, with

µ+(T ) = sup
z∈H+

1

φ2(Tz, Tz)

φ1(z, z)
=

= sup
φ1(z,z)=1

φ2(Tz, Tz) <∞, (2)

µ−(T ) = inf
y∈H−1

φ2(Ty, Ty)

φ1(y, y)
=

= inf
φ1(y,y)=−1

−φ2(Ty, Ty) > −∞, (3)

we have

(1) µ+(T ) ≤ µ−(T )
(2) φ2(Tx, Tx) ≤ µφ1(x, x) for µ+(T ) ≤ µ ≤ µ−(T ).

Proof. The proof of (1) follows the idea applied already
at Lemma 2.1. Suppose that there are y, z ∈ H such that
φ1(y, y) = −1, φ1(z, z) = 1 and

φ2(Tz, Tz) + φ2(Ty, Ty) ≥ (>)0.

Take xν = z + νy with ν ∈ R such that φ1(xν , xν) = 0.
Then

φ2(Txν , Txν) = φ2(Tz, Tz) + φ2(Ty, Ty)+

+2ν(Reφ2(Ty, Tz) + φ2(Ty, Ty)Reφ1(y, z)) < (≤)0.

Thus by a suitable choice of ν we have

φ2(Tz, Tz) + φ2(Ty, Ty) < (≤)0,

a contradiction.

From (1) we have µ+(T ) ≤ µ−(T ), thus, with an arbitrary
φ1(y0, y0) = −1 and φ1(z0, z0) = 1

−∞ ≤ φ2(Tz0, T z0) ≤ µ+(T ) ≤ µ−(T ) ≤ φ2(Ty0, T y0) ≤ ∞.

If µ+(T ) ≤ µ ≤ µ−(T ) then for x ∈ H+0
1 we have

φ2(Tx, Tx) ≤ µφ1(x, x) while on x ∈ H−1 we have

µ ≤ φ2(Tx,Tx)
φ1(x,x)

, i.e., φ2(Tx, Tx) ≤ µφ1(x, x). Thus

φ2(Tx, Tx) ≤ µφ1(x, x) on H, as claimed.

Lemma 2.3. One has:

(1) (H+
1 ⊂ H

−0
2 ) ⇒ (N1 ⊂ H−02 ),

(2) (H−1 ⊂ H
−0
2 ) ⇒ (N1 ⊂ H−02 ).

Proof. 1.) Suppose that φ1(x, x) = 0 and φ2(x, x) = 1.
Let φ1(z, z) = 1 and take zν = x + νz, ν ∈ R such that
Reφ1(x, z) ≥ 0. Then φ1(zν , zν) = ν2 + 2Reφ1(x, z) > 0.
But φ2(zν , zν) = 1 + 2Reφ2(x, z) + ν2φ2(z, z) is positive
for sufficiently small ν, a contradiction. 2.) can be proved
analogously.

Theorem 2.1 (S-lemma). If H−1 ⊂ H
−
2 then there exists

an α ≥ 0 such that φ2(x, x) ≤ αφ1(x, x) for x ∈ H.

Proof. Using Lemma 2.3 from H−1 ⊂ H
−
2 follows that

N1 ⊂ H−02 . Then, applying Lemma 2.2 one has φ2(x, x) ≤
µφ1(x, x).

Since on φ1(y, y) = −1 we have φ2(y, y) ≤ 0 it follows that
µ− ≥ 0. Thus α = µ can be chosen such that α ≥ 0.

If φ2 is indefinite, them α > 0. Indeed, otherwise one has
φ2(x, x) ≤ 0, a contradiction. In this case if µ+ 6= µ− the
acceptable α values are those with 0 ≤ α ≤ µ−.
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3. FINSLER’S LEMMA

For the validity of the S-lemma (Theorem 2.1) it was
essential that φ1 is indefinite. It turns out, however, that
the results of the previous section can be also used to
obtain the infinite dimensional version of the Finsler’s
lemma.
Theorem 3.1 (Finsler’s lemma). Let φ1 be positive
semidefinite, i.e., φ1(x, x) ≥ 0 on H. If N1 ⊂ H−02 then
there is an α ≥ 0 such that φ2(x, x) ≤ αφ1(x, x).

Proof. For β > 0 set ψβ = φ2 + βφ1. Without re-
stricting generality we can consider ψβ indefinite. In-
deed, ψβ(x, x) ≥ 0 implies φ2(x, x) ≥ −βφ1(x, x) on H
which contradicts the assumption. ψβ(x, x) ≤ 0 implies
φ2(x, x) ≤ −βφ1(x, x) ≤ 0 on H, i.e., the assertion if the
theorem is fulfilled with α = 0.

With ψβ indefinite, ψβ(x, x) = 0 implies φ2(x, x) =
−βφ1(x, x) ≤ 0, i.e., by Lemma 2.2, there exists a µβ such
that φ2(x, x) ≤ µβψβ .

Since (1 − µβ)φ2(x, x) ≤ µββφ1(x, x), the assertion is
proved if we can chose 0 < µβ < 1.

From φ1(x, x) ≥ 0 it follows that ψβ(x, x) ≥ φ2(x, x) thus

φ2(z, z)

ψβ(z, z)
≤ 1, z ∈ H+

ψβ
,

φ2(y, y)

ψβ(y, y)
≥ 1, y ∈ H−ψβ

.

On φ1(x, x) = 0 we have ψβ(x, x) < 0 thus µβ,− = 1.

On the other hand ψβ(z, z) = 1 is equivalent to

φ2(z, z) = 1− βφ1(z, z). (4)

If φ1(x, x) = 0, then ψβ(x, x) = φ2(x, x) < 0, so, by
continuity we have ψβ(x, x) < 0 on φ1(x, x) ≤ ε, for a
sufficiently small ε > 0. Thus (4) can hold only on the set
{x |φ1(x, x) ≥ ε}.
It follows that

sup
ψβ(z,z)=1

φ2(z, z) ≤ sup
{x |φ1(x,x)≥ε}

1− βε < 1.

Thus µβ,+ < µβ,− = 1 and one can chose µβ such that
0 < µbeta < 1, as desired.

The more familiar version of the lemma can be obtained
by considering φ1(x, x) = x∗V ∗V x and φ2(x, x) = x∗Px.
Then N1 = KerV .

In the finite dimensional context usually two ”extensions”
of the Finsler’s lemma are considered. The one is the
Projection lemma and the other is the robust Finsler’s
lemma. Actually the first result is a special version of the
Elimination lemma and despite the apparent similarities
with the Finsler’s lemma its roots are different. The control
relevant infinite dimensional extension of the Elimination
lemma is not our concern here.

The robust Finsler’s lemma, a special formulation of the
full block S-procedure, however, has its roots in the S-
lemma. In the finite dimension case this fact was revealed
in Szabó et al. [2013]. The particularities of the infinite
dimensional case are presented in the next section.

4. EXTENDED KYP LEMMA

In order to put the result in its proper context it is
necessary to reveal first the linear structures behind the
linear fractional transforms (LFTs), as a general frame-
work to include the rational dependencies that occur in
the formulation of robust feedback control problems.

If P is partitioned as P =

(
P11 P12

P21 P22

)
then a lower and an

upper LFT is defined as

Fl(P,K) = P11 + P12K(I − P22K)−1P21, (5)

Fu(P,∆) = P22 + P21∆(I − P11∆)−1P12, (6)

provided that the inverse (I−P22K)−1 and (I−P11∆)−1,
respectively, exists. Then P is called the coefficient matrix
of the LFT.

There is an intimate relationship between linear relations
and LFTs, revealed by the concept of transformers, intro-
duced in Shmulyan [1976, 1980].

4.1 Linear relations and LFTs

If X and Y are linear spaces, a linear relation T , defined
as a set of pairs (x, y) ∈ T , is a linear subspace of
X ⊕ Y . If x ∈ dom(T ) then T (x) = {y ∈ Y : (x, y) ∈ T}
and correspondingly if y ∈ ran(T ), then T−1(y) =
{x ∈ X : (x, y) ∈ T}. Let T ⊂ X × Y and R ⊂ Y × Z
be linear relations. Then the product RT ⊂ X × Z is the
linear relation defined by

RT = {{x, z} ∈ X × Z : {x, y} ∈ T, {y, z} ∈ R} .
The product of relations is clearly associative. λT =
{{x, λy} : {x, y} ∈ T}. These definitions agree with the
usual ones that correspond to operators. A linear operator
P : X 7→ Y is equivalent to a special relation defined by

a graph subspace GP = Im

(
I
P

)
, i.e., the graph of the

operator. For details see, e.g., Arens [1961].

Möbius transformations, which are defined as

Z ′ = MS(Z) = (C +DZ)(A+BZ)−1, (7)

relate two graph subspaces, GZ and GZ′ , through the

invertible linear operator S =

(
A B
C D

)
, i.e., GZ′ = SGZ .

Moreover, it turns out that the Möbius transformation
inherits the group structure of the linear operators, i.e.,

MP ◦MQ = MPQ,

for details see, e.g., Szabó et al. [2012].

It turns out that LFTs can be obtained in the same
way as the Möbius transformations, by performing some
interchange in the signal spaces and by considering linear
relations instead of the linear operators.

Given the linear spaces X = X1 ⊕ X2 and Y = Y1 ⊕ Y2
consider L = X ⊕ Y and L̃ = (X2 ⊕ Y1) ⊕ (X1 ⊕ Y2).

Observe that we have L̃ = SpL with the permutation

matrix Sp =

0 0 I 0
I 0 0 0
0 I 0 0
0 0 0 I

.
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Every linear operator T : (X2 ⊕ Y1) 7→ (X1 ⊕ Y2) induces
a relation RT ⊂ L through its graph subspace, i.e.,

RT = SpGT ∼

T11 T12I 0
0 I
T21 T22

 . (8)

It turns out that evaluating this relation on the graph
subspaces GZ , i.e., on the linear operators Z : X1 7→ X2,
we obtain a graph subspace GZ′ = RTGZ , corresponding to
the linear operator Z ′ : Y1 7→ Y2, provided that I−T11Zis
boundedly invertible.

This map is given by the (upper) LFT

Z ′ = Fu(T,Z) = T22 + T21Z(I − T11Z)−1T12.

Analogously, by a slight modification of the permutation
matrix Sp, i.e., by considering L̃ = (Y1 ⊕ X2) ⊕ (Y2 ⊕
X1) one can obtain the expression of the (lower) LFT
Z ′ = Fl(T,Z) = T11 + T12Z(I − T22Z)−1T21, too.

Nested LFTs corresponds to the composition of the associ-
ated linear relations. The group structure on the represen-
tants is also present, however, the familiar matrix product
should be changed to the less accessible Redheffer (star)
product, see, e.g., Zhou and Doyle [1999].

However, if invertibility conditions holds for the matrix(
T11 T12
I 0

)
then one has Fu(T,Z) = MT̂ (Z) with

T̂ =

(
0 I
T21 T22

)(
T11 T12
I 0

)−1

=

(
T−1
12 −T−1

12 T11
T22T

−1
12 T21 − T22T−1

12 T11

)
.

The transformation T 7→ T̂ is called Potapov-Ginsbourg
transformation. This relation between an LFT and a
Möbius transformations has the advantage to use the
matrix product instead of the star product. This fact
was widely exploited in the solution of the robust control
problems, see, e.g., Ball et al. [1991], Kimura [1997].

The main motivation of introducing this construction is
the fact that it provides a natural framework to introduce
indefinite spaces, see, e.g., Bognár [1974], Azizov and
Iokhvidov [1989].

To illustrate the idea let us consider the linear spaces
X = X1 ⊕ X2 and Y = Y1 ⊕ Y2 as indefinite spaces with
inner products [·, ·]X = 〈JX ·, ·〉 and [·, ·]Y = 〈JY ·, ·〉. If
we endow the space L = X ⊕ Y with the inner product
[·, ·] = −[·, ·]X +[·, ·]Y then for L̃ = (X2⊕Y1)⊕(X1⊕Y2) it

can be expressed [·, ·] = 〈JL̃·, ·〉, where JH =

(
−IH1

0
0 IH2

)
for H = H1 ⊕H2.

Maximal negative subspaces of L̃ are obviously maximal
negative subspaces of L. On one hand side these subspaces
are parametrized by contractions T , on the other hand we
have 1

(?)∗(−JX )

(
T11 T12
I 0

)
+ (?)∗JY

(
0 I
T21 T22

)
< 0.

Thus if T is a contraction then Z ′ = Fu(T,Z) maps
the contractive ball to the contractive ball. It turns out,
that conversely, if Z ′ = Fu(T,Z) has this property, then

1 To save space, here and in what follows we use the notation (?)∗Pv
for v∗Pv.

the matrix Tα =

(
T11 αT12

α−1T21 T22

)
is a contraction for a

suitable α > 0, see Shmulyan [1978].

Observe that

Z ′ = Fu(T,Z) = Fu(Tα, Z). (9)

We can put this result in a slightly modified form: if
‖Fu(T,Z)‖ < 1 holds for ‖Z‖ < 1 then there exists α > 0
such that

(?)∗(−αJX )

(
T11 T12
I 0

)
+ (?)∗JY

(
0 I
T21 T22

)
< 0,

i.e., the graph subspace GTα is a maximal negative graph

subspace in L̃.

4.2 The extended KYP lemma

The comparison of the construction with the claim of the
robust Finsler’s lemma reveals that there is a possibility
for a specific, robust control relevant, interpretation of this
result. Moreover, it suggests a general formulation of the
claim by replacing the special J-scalar products with more
general ones. In the finite dimensional setting this was
done in Szabó et al. [2013], and can be formulated as:
Proposition 4.1 (Extended KYP lemma). Consider the
set ∆a defined by the inequality(

δ
I

)∗
P

(
δ
I

)
> 0,

where P ∈MA. Then(
I

F (δ)

)∗
Pp

(
I

F (δ)

)
< 0, ∀δ ∈∆a

where F (δ) = D + Cδ(I −Aδ)−1B if and only if(
I 0
A B

)∗
(αP )

(
I 0
A B

)
+

(
0 I
C D

)∗
Pp

(
0 I
C D

)
≤ 0,

for some α > 0.

Here MA = {P |∆P ⊂ DA}, where

∆P = {δ |
(
δ
I

)∗
P

(
δ
I

)
> 0}

and DA = {I − Aδ is nonsingular}. Condition P ∈ MA

usually can be relaxed.

If we are going to formulate the infinite dimensional result
the meaning of the symbols in Proposition 4.1 can be
changed in a straightforward way.

We consider the quadratic forms Φ(x, x) = 〈Px, x〉 and
Φp(x, x) = 〈Ppx, x〉, where P and Pp are bounded sym-
metric operators and we use the notation 〈Px, x〉 = x∗Px.
Thus, after a slight modification, i.e., replacing the J-
spaces with the indefinite spaces defined by [·, ·]X = 〈P̄ ·, ·〉
and [·, ·]Y = 〈Pp·, ·〉, where

P̄ =

(
0 I
I 0

)∗
(−P )

(
0 I
I 0

)
, (10)

the condition of the assertion, i.e., the original implication
reads as(

I
δ

)∗
P̄

(
I
δ

)
< 0 ⇒

(
I

F (δ)

)∗
Pp

(
I

F (δ)

)
< 0,

and the equivalent condition is

(?)∗Pp

(
0 I
C D

)
≤ (?)∗αP̄

(
A B
I 0

)
.
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This formulation reveals the intimate relation of the as-
sertion with the S-lemma. In both the finite and infinite
dimensional case at the heart of the result we have the fact
that the implication

(?)∗P̄

(
A B
I 0

)(
η
w

)
< 0 ⇒

(?)∗Pp

(
0 I
C D

)(
η
w

)
< 0,

which holds on a set {(η, w)} constrained by the feed-
back connection (LFT), can be lifted (extended) to the
unconstrained set, for which the common S-lemma can be
applied.

In the infinite dimensional case, however, some restrictions
on the possible quadratic forms has to be imposed in order
to prove this assertion. Besides P ∈MA we have to impose
the technical requirement that P = M∗JM where M is
a boundedly invertible operator such that M−1H+

φ should
contain the inverse graph subspaces that correspond to
the full operator unit ball, i.e., the set of contractions
K = {K | ‖K‖ ≤ 1}.
These conditions are not very restrictive. Among the sets
∆a that correspond to such P s are all the operator balls
U+VKW , which are relevant in the control applications as
models of the bounded perturbations. It is also assumed
that Pp = M∗pJMp where Mp is a boundedly invertible
operator.

Under these assumptions the proof of the assertion follows
the main steps of the proof presented in Shmulyan [1978]
for the basic case from the previous section. The technical
details are involved and left out for brevity.

We conclude this section with a related result, when the
inclusion condition holds only on a smaller set. This asserts
that if the Möbius transform generated by a nondegenerate
meromorphic (on the right half plane) function W maps
the constant strict contractive matrices into the ball of
contractive operators then there is a scalar meromorphic
function ρ such that ρW is a J-contractive function. For
details see Chapter 4 in Dym [1989].

5. A POSSIBLE APPLICATION

While at a formal level the analysis oriented version of the
extended KYP lemma bears essentially the same informa-
tion that the classical version, it represents a different view
on the topic. To illustrate a potential application of this
new viewpoint let us consider a finite dimensional setting
where the nontrivial task is to find a common solution X
for the finite set of LMIs(

I
Di + CiXBi

)T
Qi

(
I

Di + CiXBi

)
< 0,

where the matrices Qi, Di, Bi, Ci are given. For a motiva-
tion of this problem see, e.g., de Oliveira [2005], Vesely
et al. [2009].

It is known that the solution sets of the individual in-
equalities are either empty or a set obtained as an image
of the contractive ball through a Möbius transform, see
Szabó et al. [2012]. Thus, if the problem is solvable, there

always exists a matrix ellipsoid

(
X
I

)T
P

(
X
I

)
> 0 formed

entirely by solutions of the inequality. It follows that
applying Proposition 4.1 we can formulate the following
result:
Lemma 5.1. The given set of inequalities has a common
solution if and only if there is a multiplier P and constants
βi > 0 such that(

I 0
0 Bi

)∗
P

(
I 0
0 Bi

)
+

(
0 I
Ci Di

)∗
(βiQi)

(
0 I
Ci Di

)
≤ 0.

By considering matrix ellipsoids, i.e., by imposing suitable
sign constraints on the block diagonal matrices of P one
can relax the implicit nonlinear condition for the inertia
for a multiplier P imposed by the solvability of(

X
I

)T
P

(
X
I

)
> 0.

Thus we can reduce the problem to a set of LMIs that can
be efficiently handled.

6. CONCLUSIONS

The paper formulate three classical results, the basic S-
lemma, the Finsler’s lemma and a variant of the full-block
S-procedure (extended KYP lemma), in the input output
framework, i.e., in the infinite dimensional setting.

The presented results widen the scope of the applicability
of these fundamental tools and they also provide a link to
the theory of indefinite spaces, as an efficient framework
to handle robust control problems. The presented methods
have also an educative value, putting in a different perspec-
tive already known approaches and enlightening their role
in the solution of the control relevant problems.
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