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Abstract: The paper presents a learning from demonstration approach to the catching of
moving objects with a robot manipulator. The work explicitly reduces the impulse exchange by
minimizing the relative velocity during the contact phase by learning relative relation between
the object and the catcher instead of learning separate forward model of the object and trajectory
generator for the robot. This contributes to the damage prevention on both, the object and
the robot. The demonstrated catching movements are modelled by a Gaussian mixture model
(GMM), which describes the probability distribution over the demonstrated data set. Gaussian
mixture regression (GMR) is employed for motion prediction. A timing controller is designed to
trade-off the catch location and the catching time. The learning scheme comprises the relative
position and velocity profile between the object and the catcher. The approach allows to generate
the movement of the catcher with guaranteed position and velocity convergence to the reference
inferred from the position and velocity of the object. Experimental results with a five degree
of freedom arm and a Photonic-Mixing-Device (PMD) camera for object detection validate the
approach.

1. INTRODUCTION

Catching moving objects by a robot can be used in many
applications. Catching work pieces moving on a conveyer
belt speeds up cycle times and may reduce fatigue in the
belt mechancis through avoiding repeated belt decellera-
tion, waiting and acceleration phases. Another example is
the cooperation between manipulators and mobile robots
in intralogistics. Mobile robots transport goods while the
manipulators take and organize them on shelves without
requiring the mobile robots to stop. Conversely the ma-
nipulators can place the goods on moving mobile robots.

A crucial skill is the minimization of potentially harmful
impact forces during the contact phase of the catching
task. According to Kajikawa et al. [1999], humans gen-
erally accomplish this quite well, even with previously
unknown moving objects. This motivates the learning from
demonstration approach proposed in this paper. A manip-
ulator realizes the catching task for a moving object and
mimics human demonstrations to minimize the potential
harm to the object.

Robot ”learning from demonstration” or ”robot program-
ming by demonstration” describe a technique to enable
quick and intuitive robot programming even for non-
robotic specialists. The technique experiences great atten-
tion in motion planning for robots (Schaal et al. [2007],
Aleotti and Caselli [2006], Hoffmann et al. [2008], Phung
et al. [2011]). Aleotti and Caselli [2006] cluster the demon-
strated trajectories before they use hidden markov models
(HMM) and rational B-splines to select and approximate
a desired trajectory. Schaal et al. [2007], Hoffmann et al.
[2008] and Phung et al. [2011] use the dynamical movement
primitives (DMP) to model the demonstrated trajectory.

1 This work is supported by Karl Kolle Foundation.

The model allows to estimate the subsequent states. The
advantages of DMP are the guaranteed convergence to a
goal point and the straightforward adaptivity in the spatial
as well as the temporal domain by modification of the goal
point and the time constant of the dynamical system. A
similar approach to learn, represent and generalize point-
to-point movements is based on autonomous dynamical
systems (DS) and proposed by Calinon et al. [2007],
Khansari-Zadeh et al. [2010], Gribovskaya et al. [2011]. In
contrast to conventional robot motion planning methods
using polynomial functions of time or DMP systems, DS
do not depend on an explicit time variable. Hence, there
is no need for temporal adaptation, which renders the
mapped dynamics insensitive to temporal perturbations
of the actual task.

For the measurement of the object positions as well as
trajectory prediction Frese et al. [2001], Riley and Atke-
son [2002], Namiki and Ishikawa [2003] employ vision
systems. Analogously, this work uses a Photonic-Mixing-
Device (PMD) camera, which also provides scene depth
measurements. Namiki and Ishikawa [2003] directly map
the object trajectory to the joint angle trajectory. Frese
et al. [2001], Riley and Atkeson [2002] predict the catching
point and perform a point-to-point movement to intercept
the object at this location. Malzahn et al. [2012] implement
a similar concept on a multi-elastic-link robot arm to catch
multiple balls subsequently thrown by a human.

Kim et al. [2010] also apply learning from demonstration
to catch a flying ball. DS are used to encode and generate
both, the object as well as the robot trajectory. The
ball trajectory is predicted by forward integration of the
DS learned offline from several throws. A catch point
is determined by checking the intersection line of the
estimated ball trajectory with the robot workspace. The
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intercept point represents the attractor of the DS learned
for the robot motion from human demonstrations. Since
the DS is a time-independent system, the authors use a
speed-up or slow-down factor for the DS so that the robot
is able to catch the ball in time.

In this paper a Gaussian Mixture Model is combined with
a nonlinear autonomous dynamical system to model the
motion task from demonstrations. The idea is to calculate
the probability distribution between the motion variables,
so that the generalization to new trajectories is feasible
through Gaussian Mixture Regression (GMR). A variety of
GMR techniques exist: Expectation-Maximization (EM)
(Dempster et al. [1977]), Binary Merging (BM) (Khansari-
Zadeh and Billard [2010]). This contribution applies Stable
Estimator of Dynamical Systems (SEDS) (Khansari-Zadeh
et al. [2010]) for the identification of the GMM parameters
from the demonstrations. The work extends the approach
presented in Kim et al. [2010] by considering not only
the relative position between the robot and the object,
but also their relative velocity right before the contact.
Instead of focousing at the predicted poses of the moving
object, we directly use the actual velocity of the object to
generate the robot motion. This increases the robustness of
the system with respect to unexpected object movements,
which otherwise would require the computationally inten-
sive reestimation of the complete object trajectory.

The next section presents the GMM formulation and the
reproduction as well as generation of the movement using
GMR. Section 3 shows the simulation results for catching
the moving object in two cases: with explicit minimization
of the impulse exchange during contact in subsection 3.1
and with implicit time dependency in subsection 3.2.
The experimental results are illustrated in section 4.
Conclusions are drawn in section 5.

2. MOTION GENERALIZATION WITH GAUSSIAN
MIXTURE MODEL

This section presents the autonomous dynamical system
ẋ = f (x,θ) based on gaussian mixture model (GMM),
where x is the state variables and θ the parameters of the
system. A GMM comprising K Gaussians is defined by the
probability distribution function:
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Assume that the demonstrated movements are modelled
by a GMM expressed by (1). Gaussian mixture regression
(GMR) infers the expected distribution from a given input
and a given Gaussian distribution. This way, it is feasible
to reproduce a previously seen movement or to generate
new movements. In conjunction with a dynamical system,
the GMR is applied to compute the probability of ξ̇i from

the actual state ξi by using p
(
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)
estimated from the

GMM as follows:
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The dynamical system with GMR is given by:
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described by (4). Khansari-Zadeh et al. [2010] propose
a learning algorithm called Stable Estimator of Dynam-
ical Systems (SEDS), which estimates the parameters

θk =
{
hk,µk,Σk

}
(k = 1..K) of the model (8) with the

constraints
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where ξg is the attractor of the dynamical system. The
constraints ensure the global stability of the system and
preserve the nature of the GMM.

3. CATCHING MOVING OBJECT

3.1 Catching moving object with consideration of the shock

In this section we apply the GMM and GMR to learn
and generate a movements to catch a moving object.
Learning to catch a flying ball without consideration of
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impulse exchange during contact is presented by Kim
et al. [2010]. The additional challenge emerging with the
consideration of the impulse exchange is that not only
the relative position error but simultaneously the relative
velocity error between the catcher and the object must be
controlled with appropriate coordination.
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Fig. 1. Examples of catching moving object. (a) object tra-
jectories (dashed line) and subject trajectories (solid
line) and (b) relative position error (solid line) and
relative velocity error (dashed line) between object
and subject

To simulate the catching process, a subject is asked to
move a computer mouse to catch a moving point on a
screen and continue the movement after catching the point.
Because of this kind of simulation, we do not use any unit
for the variables in the next figures and results. Figure 1
presents some examples of the movement of the catcher
and the object and shows the same characteristics of the
movement as analyzed by Kajikawa et al. [1999], in which
the catcher first moves to the object with a seemly straight
line, then accelerates to reduce the velocity error, finally
catches the object and continues the movement before
stopping.
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Fig. 2. Performance of GMM and GMR approximated by
4 Gaussians. (a) - (c) Reproduction of the demon-
strated trajectories, (d) Stream lines of the generated
trajectories starting with ∆y = −0.4, ∆ẏ = 0 and a
meshgrid of ∆x and ∆ẋ

In order to learn both, the relative position x = [∆x,∆y]
T

and velocity ẋ = [∆ẋ,∆ẏ]
T

between the catcher and the

object, the state vector is defined as ξ = [ x, ẋ ]
T
. The

relative position x is computed from the object pose xo

and the robot pose xr according to

x = xo − xr. (10)

The GMM and GMR are used to predict the derivative
ˆ̇
ξ =

[
ẋ
ẍ

]
based on relation (8).

Figures 2 (a) to (c) compare the demonstrated and repro-
duced trajectories. They illustrate the good reproduction
the learning trajectories by the GMM. The gray ellipses
represent the approximated Gaussian functions, where the
mean and the covariance of the Gaussian are indicated by
the center and the semiaxes of the ellipse. By choosing
the state variable as described above, the GMM allows to
learn and reproduce a variety of different trajectories with
identical initial positions but approaching the goal from
different directions. This is shown by the dashed arrows
in fig. 2 (a). The different directions of approach account
for altered movement directions direction of the object.
Figure 2 (d) illustrates the stability and the generalization
ability of the dynamical model with varying initial states
located on a meshgrid. All trajectories converge to the goal
with a similar motion pattern, even if they start from the
locations within state space, which are outside the demon-
stration set. The result indicate excellent generalization
capabilities in terms interpolation and extrapolation of the
imitation sheme.

The generalization ability of the system is shown from
another perspective in fig. 3 (a) and (b). Both figures
capture the path of the object as well as the catcher
(fig. (a)) as well as the time evolution of the motion
velocity (fig. (b)). An important characteristic of catching
motions observed with human’s can be clearly seen. The
catching time is shorter when the object moves faster.
Moreover, the system can be used for catching objects
at rest, even though this scenario was not part of the
demonstrations. Figure 3 (c) - (f) illustrate the robustness
of the system to perturbations. In particular, the object
suddenly changes the direction of motion (fig. (c) and (d))
or moves on an plane with positive (inclined downward
plane), negative (with friction) or large negative (inclined
upward plane) acceleration (fig. (e) and (f)).

3.2 Catching moving object with implicit time

Kim et al. [2010] propose a temporal scaling to modify the
execution speed:

λk+1 = λk + kP

(
T̂k − T

)
+ kD

(
T̂k − T̂k−1

)
, (11)

λ0 = 1,

where T is the desired duration of the maneouver, T̂k

is the estimated duration including the period elapsed
betweenthe beginning of the movement and the current
time step tk as well as time between tk and the convergence
to the goal predicted by using the model in (8).

The velocity mean µk

ξ̇
and the covariance Σk

ξ̇ξ
are multi-

plied by the factor λ and thus the GMM system becomes:
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In equation (12) the original predicted velocity from (8)
is multiplied with λ and allows to speed up or slow
down the motion. The scaling equation (11) with properly
tuned parameters kP and kD can be interpreted as a
PID controller with the maneouver execution time as the
control variable.

The verification of this timing controller is shown in
figure 4. The dashed light lines in fig. 4 (a) and (b) present
the unmodified trajectoties, where the object is caught at
2.3 s. The modified system is applied and set to catch the
object at the time point of 2.5 s, 3.0 s and 3.5 s. Figure 4
(b) illustrates that the object is being caught at 2.47 s,
3.00 s and 3.47 s, respectively.

According to Kajikawa et al. [1999], the catching position
is determined based on the prediction of the object move-
ment, but independent of the object velocity. In this work,
the catching point is selected as to maximize the time left
for catching the object after the approaching maneouver.
Based on this point, the system adjusts the velocity and
the timing, so that the object is caught either at the

desired time or rather at the desired position. Figure 4
(c) and (d) show the archievement of using the system to
catch the object at the desired position. In the scenario the
catcher and the object always start from a same positions.
However, the object moves with different velocities.

Figure 5 depicts the control architecture used in this work.
The camera system detects the object and provides the
position and velocity of the object. The relative position
and velocity error between the robot and the object are
calculated and defined as the input of the GMM. GMR
estimates the model output and computes the velocity and
acceleration error. The catching point is chosen and the
temporal scaling of the timing controller is adjusted. The
desired velocity and acceleration of the robot are finally
determined and handed to the robot low-level controller.
GMM is asymptotically stable when it is approximated
with SEDS as proved by Khansari-Zadeh et al. [2010]. The
whole system is thus globally stable for positive values for
the proportional gain K.

4. EXPERIMENTS

In this section we perform two experiments with the five
degree of freedom Katana robot arm, The experimental
system is depicted in fig. 6 (a). The 3D Camboard Nano
PMD camera with a field of view of 90◦×68◦, a framerate
of 90 fps and a solution of 160 × 120 pixels provides not
only the intensity but also the depth images and is used
to detect the object. The object is a pingpong ball. In
order to detect the pingpong ball, we use the same method
as presented in Phung et al. [2011], in which a pingpong
ball is segmented from the depth image by region growing
algorithm (Ballard and Brown [1982]). The background is
removed from the depth image, the region in the image,
which is most similar to a circle, is defined as the ping
pong ball to be caught. The transformation between the
camera coordinate frame and robot coordinate frame is
obtained from prior calibration. The teacher demonstrates
the desired trajectory by moving the robot endeffector to
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catch a pingpong ball running on a downward oriented
plane. Figure 6 (b) depicts the demonstrated robot endef-
fector and the object trajectories in the robot coordinate
system. Note, that in these experiments we also perform
the ”rendezvous” task but not catching task and the task
is considered to be finished when the differences between
the robot and the object position as well as velocity are
smaller than a threshold value. The position of the object
is defined as the topmost point of the pingpong ball to
avoid the collision between the robot end effector and the
object during the movement.
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In the first experiment, the object is mounted on a stick
and moved in a constant direction. The initial position
of the robot and the object are equivalent to the initial
positions in the demonstration. Figure 7 (c) shows the
trajectory of the robot and object expressed in the robot
coordinate frame, while fig. 7 (a) and (b) show the position
and velocity of the robot (solid lines) together with the
object (dashed lines) in space. Although the velocity signal
of the object is neither smooth nor exactly constant and
corrupted by measurement noise, the robot also accom-
plishes the task and aligns its motion in parallel with
the object trajectory. The relative velocity between the
robot and the object is reduced as far as possible. The
variables of the GMM shown in fig. 7 (d) converge to
zero and present a stable system. The remaining errors
are attributed to to friction and the time delay in the
communication of commands to the robot.

The second experiment illustrates the robustness of the
system against sudden changes in the object’S direction of
motion as seen in fig. 8 (a) - (c). The velocity component in
x-direction varies the sign at the time instant of 5 seconds.
The robot and the object both start from the positions,
which are completely differ from the initial positions in
the demonstrations. Nevertheless, the robot aproaches
the object during these first 5 seconds in spite of the
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Fig. 7. Katana robot arm catching moving object with
consideration of the damaging impact factor

previously unseen initial configuration as shown in fig. 8.
Then it adopts to the altered object movement. The GMM
generates the correct outputs to let the robot accomplish
the catching task. It can be seen again in fig. 8 (d), that
all variables of the GMM converge to the goal.

5. CONCLUSION

In this paper we present a learning approach using Gaus-
sian mixture model together with Gaussian mixture re-
gression to enable a robot to catch a moving object.
The concept reduces the impulse exchange during contact
phase by synchronizing the velocity vectors of the catcher
and the object. A temporal scaling enables the adjustment
of the finite catching time instead of actual the catching
point along to the estimated object trajectory. This way
the proposed concept can account for restrictions imposed
e.g. by the robot workspace. Both, the simulated and the
experimental results with a five degree of freedom Katana
robot arm prove the reproduction and the generalization
ability as well as the stability and robustness of the system
with respect to untrained szenarios and sudden changes in
the object trajectory.

The GMM models the relative position and velocity be-
tween the object and the robot with respect to a third eye-
to-hand camera coordinate frame of reference. The GMR
generates the relative velocity and acceleration in the same
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Fig. 8. Robustness of the system against a suddenly change
of movement direction of the object

frame. The quantities have then to be transformed into
the robot coordinate frame. The author’s future works
aim at the extension of the concept to an eye-in-hand
camera , which directly measures the object movements
in a robot centered frame of reference. This is expected
to yield improved precision in conjunction with visual
servoing controllers based on the difference between the
actual view and the desired view of the object. Next, the
catching tool with a mounted camera may be detached
from the actual robot during the instruction phase. This
presumably facilitates the demonstrations. The instructor
can focus on guiding the camera without the need of
paying attention to the configuration of a backdrivable
arm.
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