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Abstract: Reconfigurable computing is a paradigm in computing architecture that refers to the
practice of using interchangeable hardware modules to enhance the performance of conventional
Von-Neumann style computing. Despite the numerous advantages of reconfiguration, it is only
suitable for quasi-static applications with slowly changing reconfiguration criteria. In general, it
is only advantageous to reconfigure if the execution time exceeds reconfiguration time. Since the
execution time of real-time systems are quite limited, the control of dynamic non-linear systems
are typically not reconfigured. Instead, adaptivity is mostly gained from reading coefficients or
gains from memory. Where different controller architectures are required, the route of parallel
implementation could be taken, switching between architectures. The drawback of this approach
is an increase in area required to implement the controllers. Reconfiguration on the other hand
could allow the different control architectures to be swapped on the fly without interrupting
operation of the controller, while minimizing the area required. Unfortunately, this process
is limited by the overhead introduced by the reconfiguration. Even though various survey
papers exist on the topic of reconfiguration, none really focus on methods to reduce the cost of
reconfiguration. This survey summarizes different means of reducing configuration overhead in
an attempt to allow reconfiguration of applications with limited execution time. A block RAM-
based (BRAM) architecture is proposed as the optimal architecture for reconfiguring dynamic
applications. As an example, this architecture is used to discuss the methodology used to design
a reconfigurable PID controller.
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1. INTRODUCTION

Reconfigurable computing allows improving system per-
formance by utilizing customizable hardware. Initially, this
was done by a modular design where a hardware module
can be substituted with another to perform a specialized
function. Field-programmable gate arrays (FPGAs) allow
their hardware to be changed and are thus a viable op-
tion to be used in reconfigurable computing systems. In
fact, some vendors incorporate a feature called dynamic
partial reconfiguration that allows a section of the FPGA
to be reconfigured while the rest of the device remains
operational. Most of Xilinx®’s FPGAs from the Virtex -
II series incorporate this feature with the addition of the
internal configuration access port (ICAP) that allows the
developer direct access to the configuration memory.

Reconfigurable computing is not only used to improve
system performance, but also reduces power consumption
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(Kusse and Rabaey (1998)) and component count (Tod-
man et al. (2005); Stitt et al. (2004)). The improvement
in system performance is due to the circuit being tailored
for the specific application, which improves the functional
density. Functional density is a metric to measure the
composite benefits obtained by a specialization technique
(Wirthlin and Hutchings (1998)). It is defined as the cost of
implementing the computation in hardware and measures
the computational throughput of the hardware resources
in operations per second:

1 1
“c=ar o

with D the functional density, C the cost of a computation,
T the total execution time and A the total area required
to implement the computation in hardware. The total
execution time includes the execution time of the hardware
(Thw), the time required to generate the new hardware
(Tyen) and the time to configure the FPGA (Tyons). The
equation can thus be expanded to:

1 1 1

D = —= = — = .
c AT A(Thw + Tgen + Tconf)

(2)
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Despite the various advantages of reconfigurable comput-
ing, it has several drawbacks and limitations. One of the
most significant drawbacks is the high overhead introduced
by the reconfiguration process. The two primary contrib-
utors of this overhead are the placement and routing
(PAR) methods used by conventional design tools. Due to
this, only quasi-static applications gain an advantage from
reconfiguration. Various attempts are made in an attempt
to mitigate the configuration overhead to allow reconfigu-
ration of applications with more dynamic behaviour, such
as adaptive control.

This paper supplements other survey papers, such as
Todman et al. (2005), Bondalapati and Prasanna (2002),
Compton and Hauck (2002), Schaumont et al. (2001),
Hartenstein (2001) and Papadimitriou et al. (2011), by
listing various research techniques aimed towards reducing
the configuration overhead. It starts off in section 2 by dis-
cussing instances where reconfiguration has been applied
to control theory. Section 3 discusses the methods used
to reduce reconfiguration overhead. The term “hardware
controlled reconfiguration” of section 4 is used in this
paper to describe the reconfiguration using block RAM
(BRAM)-based architectures. The design of a gain sched-
uled reconfigurable PID controller is discussed in section
5.

2. RECONFIGURABLE COMPUTING IN CONTROL

As mentioned in the previous section, reconfiguration is
only suitable for quasi-static applications. Typical exam-
ples include: key specific data encryption standard (DES)
(Leonard and Mangione-Smith (1997)), sub-graph isomor-
phism (Ichikawa and Yamamoto (2002)), Boolean satisfia-
bility (SAT) (Zhong et al. (1998)), adaptive filters (Bruneel
et al. (2007)), reconfigurable artificial neural networks
(Eldredge and Hutchings (1994)) and FSK modulation
(Giovagnini and Marzo (2012)).

Eldredge and Hutchings (1994) and [1996] showed that
run-time reconfiguration can be used to enhance the func-
tional density of an artificial neural network. This net-
work was dubbed the Run-time Reconfigurable Artificial
Neural Network (RRANN) and reconfiguration was used
to adapt each stage of the backpropagation algorithm to
suit specific requirements. The reconfiguration process is
controlled using an external processor that adds between
14 and 21 ms to the execution time and the configuration
data are stored on a host computer. It was shown that
reconfiguration expands the number of neurons that can
be implemented, which in turn increases the functional
density. It was stated that an FPGA can be used to fur-
ther improve the reconfiguration time by storing multiple
configurations and switching between configurations using
external pins. However, this approach will further reduce
the functional density due to the additional overhead of
the implementation.

Zhao et al. (2005), Chan et al. (2004) and Chan et al.
(2007) each derived a static PID controller for implementa-
tion on an FPGA. By far the most popular implementation
of PID control is distributed arithmetic (Sen et al. (2007a);
Zhou and Shi (2011a,a)). This is due to the fact that
multipliers are seen as an expensive resource on FPGAs
and since FPGAs are memory rich, distributed arithmetic
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allows for optimal usage of the resources. In fact, any
multiply-accumulate (MAC) instruction on an FPGA can
by implemented using distributed arithmetic (other exam-
ples can be found in Sen et al. (2007b) and Zhou and Shi
(2011b)). However, most of these controllers are static in
nature.

In order to allow for more intelligent control, fuzzy logic-
based controllers can be used. Examples of such an ap-
proach can be found in Lago et al. (1998), Sanchez-Solano
et al. (2002) and Vuong et al. (2006). A different approach
is to use fuzzy logic in conjunction with a PID controller
to refine the parameters (Zhao et al. (1993); Li and Hu
(1996); Tipsuwanporn et al. (2004)). This allows for an
adaptive PID controller, but in most cases only the con-

stants are adjusted while the rest of the controller remains
fixed.

Kim (2000) shows an example of a fuzzy logic controller
being segmented so that it can be implemented on an
FGPA using run-time reconfiguration. This is especially
handy if the controller is too large for the resources
available on the FPGA.

An attempt to reconfigure a PID controller for control
purposes can be found in Economakos and Economakos
(2007). Again, fuzzy logic was used to refine the PID
parameters, but contrary to Tipsuwanporn’s method, a
micro-controller was used to reconfigure the parameters
using configuration data stored in the on-chip block RAM
(BRAM). The configuration data have to be transferred
to the configuration memory via the internal configuration
access port, or ICAP. The smallest configuration segment
that can be transferred through the ICAP is defined as
a frame, which consists of 1312 bits. By placing a set
of PID parameters inside a frame, Economakos showed
that the reconfiguration time for each parameter change is
0.41 ps, while the fuzzy controller takes 0.75 us to refine
the parameters. The drawback of this implementation
is the large number of resources required to implement
the softcore processor. A softcore processor, such as the
MicroBlaze  from Xilinx®, requires FPGA resources to
implement. A hardcore processor on the other hand has
dedicated hardware embedded into the die. This implies
that this particular implementation is not scalable to
multiple PID controllers. Another drawback is that only
the gains of the controller can be reconfigured.

3. REDUCING RECONFIGURATION COST

As can be seen from (2), any form of reconfiguration adds
additional cost (C') to a system, either in terms of area
(A) or time. In reconfiguration terms, the time required
to both generate new hardware (T},,) and to configure
the FPGA (Tony) is referred to as the specialization time
(Bruneel et al. (2007)). The time required to generate new
hardware is represented by Tye,,. The fuzzy specializer used
by Economakos and Economakos (2007) (mentioned in
section 2) contributes to Tyep, thus increasing functional
density even more.

As already mentioned, the two primary factors contribut-
ing to Tgen is the placement and routing (PAR) required
to generate instance-specific configurations. Traditionally,
negotiation-based algorithms are used to determine the
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optimal placement and routing, which adds a significant
overhead to the cost of dynamic reconfiguration. As shown
in Table 1 and Table 2 extensive research aim to minimize
the specialization cost using advanced PAR techniques.

Of particular interest for this paper is the methods used
to improve the throughput of the system after PAR. Claus
et al. (2007) states that after placement and routing, there
are three methods to reduce configuration cost:

e Reducing the bitstream size

e Optimizing the way the bitstreams are written to the
configuration memory

e Optimizing the transfer of the bitstream from the
memory to the ICAP

These methods aim to improve the throughput of the
system to rival that of the ICAP. This allows the ICAP
to process new data every clock cycle. As will be shown in
section 3.1, the first two methods both reduce the size of
the bitstream. The general idea is that a smaller bitstream
requires less time to be transferred and by changing the
ay the configuration data is written to memory, T.on s can
be greatly reduced.

The transfer of the configuration data to the ICAP is
governed by the reconfiguration architecture used. By
making changes to the architecture, it is possible to reduce
Teong- The different adaptations to the architecture are
discussed in section 3.2.

3.1 Bitstream generation

The bitstream contains the configuration data of the
FPGA and can be generated on-line and off-line (Bruneel
and Stroobandt (2008b)). Off-line generation implies that
the bitstreams are generated independently from the
FPGA, usually with conventional design tools. These bit-
streams can contain the information required to configure
the FPGA with an initial configuration, or partial config-
uration data used during dynamic partial reconfiguration.
For a limited set of configurations, these bitstreams can
be stored in on-board memory from where the FPGA can
be reconfigured. Applications where this technique have
been successful include DNA sequencing (Davidson et al.
(2012)), neural networks (Wirthlin and Hutchings (1998))
and automatic target recognition (Villasenor et al. (1996)).

On-line bitstream generation refers to generating a bit-
stream dynamically while the FPGA is running and refers
to specializing the initial bitstream for a specific appli-
cation. It is possible to use conventional tools, but this
induces a significant amount of configuration manager
(CM) overhead. This adds to Tgep in (2), which reduces
the functional density advantage due to the additional
time spent generating the new hardware. The improve-
ment obtained in the circuit should always justify the
configuration time (Leonard and Mangione-Smith (1997);
Singh et al. (1996)). For this reason, only applications with
quasi-static behaviour can benefit from this method, due
to their pseudo-static dynamics and small changes in the
circuit during reconfiguration.

Table 3 summarizes some of the changes made in the
bitstream to improve the reconfiguration throughput by
minimizing the CM overhead.

8.2 Reconfiguration throughput

Reconfiguration throughput refers to the maintainable
speed of the system between the memory housing the par-
tial bitstream and the internal configuration access port
(ICAP). As the name suggests, the ICAP is an internal
port allowing access to the configuration registers (Xilinx
(2010)). Assuming that the ICAP is capable of processing
data every clock cycle, the maximum theoretical through-
put (MTT) is defined by Claus et al. (2007):
IDIW

MITT = ———.
Clock period (3)

IDIW is the ICAP data input width, which is 8 and 32-
bit for the Virtex®-II and 5 respectively. The maximum
recommended clock frequency for the ICAP is 100 MHz.
Substituting these values into (3) gives an ICAP MTT of
800 Mbps for the Virtex®-II and 3.2 Gbps for the Virtex®-
5to 7.

Unfortunately, the throughput of the system is lower than
that of the ICAP, due to the bus-architectures most com-
monly used, making it impossible for the ICAP to process
new data every clock cycle. Table 4 compares various
architectures from literature used to improve the through-
put. Each architecture is comparable to the Xilinx® de-
fault ICAP controllers listed at the top of the table. The
buffer is used to store the bitstream locally after being
fetched from external memory. The processor can be used
to initiate and control the reconfiguration process. Di-
rect memory access (DMA) allows the ICAP controller
to directly access the bitstream located in the external
memory, without processor intervention. Coupling DMA
with streaming (or burst-modes) allows the throughput of
the system architecture to rival that of the ICAP. The
architectures listed without a processor are equipped with
hardware reconfiguration controllers used to control the re-
configuration process and might result in a pure hardware
reconfiguration solution. Even though not prominent in
the table, some architectures utilize bitstream compression
to reduce the size of the bitstream. Readback refers to
the capability of the reconfiguration controller to read the
current configuration of the device.

The work listed in the table mostly refer to improving
the general architecture of the system in order to improve
throughput. However, various attempts is made to im-
prove the MTT of the ICAP. This is mostly done using
overclocking techniques. This implies clocking the ICAP
at a frequency higher than the recommended 100 MHz
(Claus et al. (2010); Hansen et al. (2011); Hoffman and
Pattichis (2011); Shelburne et al. (2010)). However, the
reason for the 100 MHz recommendation is that this is
the maximum frequency at which Xilinx® can guarantee
stable reconfiguration. At higher frequencies, errors can
occur due to voltage fluctuations in the die. Error checking
in the form of CRC validation should thus be included in
the design.

4. HARDWARE CONTROLLED
RECONFIGURATION (HCR)

Bus-based architectures are most commonly used for re-
configuration to connect the various different components
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Table 1. Placement research

Placement technique

Description

Quadratic (Xu and Khalid
(2005))

Min-cut (Shi (2009); Lee and
Raahemifar (2008))

Parallel placement (Shi
(2009))

Hybrid algorithms (Lee and
Raahemifar (2008); Shi
(2009))

Simulated annealing
(Kirkpatrick et al. (1983))

Versatile place and route
(VPR) (Betz and Rose (1997);
Lam and Delosme (1988))

Ultra fast placement (UFP)
(Sankar and Rose (1999))

Analytical placers (Chan and
Schlag (2003); Xu (2009); Xu
et al. (2011))

Hardware-assisted simulated
annealing (Wrighton and
DeHon (2003))

Quadratic placement tries to minimize total squared length by solving linear equations.

The min-cut optimization technique uses recursive partitioning to divide a net-list of circuits
into increasingly smaller sub-circuits and maps these smaller circuits onto the FPGA. This
leaves the highly connected blocks in one partition thus decreasing placement cost.

The rapid development of multi-core CPUs make parallelization an appealing solution for
providing fast placements. Multiple logic blocks are routed in parallel.

Hybrid algorithms are usually multi-stage placement algorithms that combine multiple
placement techniques, one of which is usually simulated annealing.

Simulated annealing is the most widely used algorithm for placement on an FPGA and
forms the basis of most placement algorithms. Simulated annealing placement mimics the
annealing process used to gradually cool molten metal. The most optimal placement is
obtained by initially placing random logic blocks and swapping the blocks to reduce the
cost.

VPR is a time-driven simulated annealing placement and routing technique that is based on
PathFinder and includes enhancements that improve run-time and quality. Its annealing
schedule is based on calculated parameters, rather than fixed start and end temperatures.

UFP aims to improve on VPR by combining VPR with a multi-level clustering strategy.
This improves the scalability of the placer at the cost of an increase in wirelength.

Analytical placers aim to improve scaling issues without a reduction in quality by creating
a smooth placement function that approximates routed wirelength. Analytic placers tackle
the placement problem from the top-down and considers global connectivity, rather than
iteratively evaluating small-scale modifications.

Each space where a lookup-table (LUT) could reside is assigned its own processing element.
The processing element is responsible for keeping track of which LUT it contains, as well as
the connectivity to its neighbours. The processing element is also aware of its position and
an estimate is kept of the connected LUTs.

Table 2. Routing strategies

Routing technique

Description

Rip-up and reroute (Dees Jr
and Smith II (1981); Brown
et al. (1992))

PathFinder (McMurchie and
Ebeling (1995))

Versatile place and route
(VPR) (Betz and Rose (1997);
Lam and Delosme (1988))
Stochastically (Lin et al.
(2010); Lin and Gamal (2008))

Parallel placement (Chan
et al. (2000); Fatima and Rao
(2008))

Hardware assisted (DeHon
et al. (2002))

Rip-up and reroute was proposed to remedy the unrouted nets of other techniques. The
success of the routes are dependent on the order in which they are routed. Additional cost
functions can be added to ensure critical paths are routed first.

Pathfinder is a router that aims to find a balance between performance and routability. An
iterative algorithm is used to negotiate which signal needs a resource the most. Delay is
minimized by allowing critical signals a higher preference in resource-allocation.

As already discussed, VPR is an optimization and extension to PathFinder and is arguably
the most popular placement and routing technique.

The idea is to use stochastic methods to locate near-optimal placement solutions without
exhaustively enumerating all design points.

Parallel placement aims to increase performance by implementing standard
negotiation-based routing algorithms in parallel without a reduction in the quality of the
results.

Adding hardware to the routing network, assists the routing network in finding free routes
to be used in the routing process.

of the system. In fact, even the configuration controllers
provided by Xilinx® (HWICAP) are bus-based, as illus-
trated in Fig. 1. The major drawback of these architectures
is that the bus adds additional overhead to the configura-
tion process, which increases configuration time. It was
shown by Bruneel (2011) that almost 20% of the special-
ization overhead is spent in the Xilinx® driver function.
Another drawback of these architectures is that multi-

tasking is limited by the use of the bus and while the bus is
in use for reconfiguration, operation in the other modules
attached to the bus is suspended (Hoffman and Pattichis
(2011)).

As seen in the preceding section, various additions to this
architecture, such as DMA and burst modes, either aim to
mitigate the overhead induced by the bus, or to remove the
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Table 3. Research in bitstream development

Bitstream generation

Description

Lean versions (Lysecky et al.
(2006, 2004))

Reducing quality (Sankar and
Rose (1999))

Partial evaluation (Hauck and
DeHon (2008))

Generic netlists (Leonard and
Mangione-Smith (1997); Singh
et al. (1996); Steiner et al.
(2011))

Reusing place and route
(McKay et al. (1998); Bruneel
et al. (2007))

Constant multiplication
(Wirthlin (2004))

Tunable lookup tables
(TLUTSs) (Bruneel et al.
(2009b); Bruneel and
Stroobandt (2008b,a, 2010);
Bruneel et al. (2007, 2009a))

Tunable connections (Bruneel
and Stroobandt (2010, 2008b);
Bruneel (2011))

Combitgen (Claus et al.
(2006, 2007))

Compression (Bayar and
Yurdakul (2008); Liu et al.
(2010))

Shift register lookup table
(SRL) (Bruneel (2011); Heyse
et al. (2012))

A just-in-time approach is taken to dynamically convert software binary instructions onto
FPGASs. These compilers require lean versions of the conventional mapping, placement and
routing algorithms to improve mapping, placement and routing times respectively.

Reducing the quality of the placement and routing allows quicker convergence of the tools
that results in quicker bitstream generation. In this context, reduction in quality is defined
as an increase in the wiring area of the circuit, a reduction in the operating speed of the
circuit, greater wirelength of the mapped circuit, and an unnecessary increase in
resource-utilization.

Partial evaluation is a process that automates specialization in software and hardware and
aims to produce a circuit that performs faster than the original.

A generic netlist is a netlist not physically mapped to a device. This research aims to
improve mapping of generic FPGA netlists to physical netlists for real architectures.

Placement and routing take a significant amount of time. By reusing the place and route
netlists saves configuration time.

Constant multiplication is a technique used to reduce FPGA resource requirements by
exploiting constant-specific optimizations.

The configuration bits of the lookup tables are expressed as a Boolean function of the
parameter inputs. All the other configuration bits are static. These Boolean functions are
evaluated at run time to produce a new configuration. This leads to fast reconfiguration,
but is not the most compact implementation. A tunable mapper is used to map a gate-level
circuit into these tunable lookup tables.

These aim to expand on TLUTSs by also expressing the routing configuration bits of an
FPGA as a Boolean function. This allows for faster rerouting.

Combitgen is a technique that combines the advantages of existing Xilinx partial dynamic
reconfiguration flows. It also utilizes redundancy to reduce the number of frames in the
bitstream without an increase in quantity.

This aims to improve reconfiguration time by reducing the bitstream size either by
eliminating the redundant frames in the bitstream or by traditional compression techniques.

The SRL capability of the Xilinx Virtex-series FPGAs are used to reconfigure the
functionality of the LUTs. SRLs are LUTs whose elements are organised as a shift register.
By shifting the data into the SRL, the functionality is changed.

use of the bus completely. Even though these alterations
enable throughputs rivalling that of the ICAP, most of
these architectures suffer from configuration latency due
to the multiple clock cycles required to transfer the initial
configuration frames to the local memory where it can be
used by the ICAP.

Liu et al. (2010) aimed to minimize the configuration over-
head by proposing an architecture incorporating stream-
ing, compression and DMA into an intelligent ICAP con-
troller. The proposed architecture is shown in Fig. 2. It
utilizes a system bus to connect the independent ICAP
state machine to the external memory, but are equipped
with units capable of accessing the memory directly, thus
eliminating the need for a bus controller. The ICAP state
machine issues the reconfiguration command. It is then the
responsibility of the DMA to fetch the partial bitstream
from the external memory and load it into the localized
FIFO buffer, from where it it used by the ICAP controller
to reconfigure the device via the ICAP port. These ar-
chitectures aim to minimize the large overhead associated
with bus-transfers.

Despite the fact that the architecture proposed nearly
saturates the ICAP, the DMA and compression adds con-
figuration overhead of 17 and 6 clock cycles respectively.
The BRAM-based architectures illustrated in Fig. 3 aim
to address this issue by using dedicated BRAM to store
the configuration data. Evidently, the BRAM should be
large enough to hold the data. Unfortunately, the BRAM
available on the FPGA is extremely limited. For configu-
ration data too large to fit inside the BRAM, the data has
to be transferred from external memory to local BRAM
using the bus.

The architectures proposed by Liu et al. (2010) can be
classified as:

e DMA-based architectures (Fig. 2)
e Localized architectures (Fig. 3)

Since these two architectures have no bus-overhead and
no configuration latency, T¢op s is minimized. Using these
architectures, it is possible to implement a reconfigurable
PID controller with the least reconfiguration overhead.
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Table 4. Architectures to improve reconfiguration throughput

Method Buffer Bus type | Stream Memory DMA Processor Read Compress

OPB_HWICAP DP_RAM OPB N DDR N MB Y Possible
SDRAM

XPS_HWICAP FIFO PLB Y DDR N PPC Y Possible
SDRAM

OPB_HWICAP BRAM OPB N DDR N PPC Y Possible
SDRAM

XPS_HWICAP FIFO PLB Y DDR N MB Y Possible
SDRAM

Cuoccio et al. FIFO Any N Slice Y PPC/MB Y N

(2008) BRAM

Claus et al. (2007) FIFO PLB N SDRAM Y PPC N Combitgen

Claus et al. (2008) BRAM PLB N DDR PPC Y N

Claus et al. (2010) FIFO PLB Y DDR Y PPC N N
SDRAM

Sedcole et al. FIFO OPB N DDR N PPC/MB Y N

(2006)

Van der Bok et al. FIFO N N v None N N

(2007) BRAM

Liu et al. (2010) FIFO Any Y SRAM Y None N Proprietary

Liu et al. FIFO PLB N DDR Y PPC/MB Y N

(2009) FIFO PLB Y DDR Y PPC/MB Y N

None None N BRAM N None Y N
?2%1111;)11 nier et al. FIFO None N Compact Y None Y N
BRAM Flash

Papadimitriou BRAM OPB N Compact N PPC Y N

et al. (2007) Flash

Papadimitriou BRAM OPB N PPC N PPC Y N

et al. (2010)
memory

Delahaye et al. FIFO OPB N SRAM N MB Y N

(2007) BRAM

5. DESIGN OF A RECONFIGURABLE PID
CONTROLLER

Due to the dynamic nature of their applications, PID
controllers are typically not reconfigured. When adaptive
PID is required for an application, their gains are rather
adjusted using a micro-controller, which reads the gains
from a memory space. However, as this survey showed,
it is possible to reduce the configuration cost to such
an extend that reconfiguration of dynamic applications
should be possible. The advantage of reconfiguration above
its adaptive counterpart is that the architecture of the
controller can be adapted. This is of particular interest,
since poles can be added to or removed from the control
loop.

This section discusses the methodology for designing a
reconfigurable PID controller using the above mentioned
BRAM-based architectures. This reconfigurable PID is
shown in Fig. 4. Even though this figure only shows the
gains of the controller being adjusted using reconfigura-
tion, this methodology is also applicable to architectural
reconfiguration. Even though reconfiguration is capable of
completely changing the architecture of the PID controller,

the gain scheduled PID controller is sufficient for the
discussion.

The configuration controller is responsible for transferring
the configuration data from the BRAM to the configura-
tion memory via the ICAP. This new configuration data
contain a set of new PID parameters to be used in the
controller.

5.1 BRAM initialization

The configuration data to be stored in the BRAM have
to be generated beforehand using conventional tools. A
configuration is required for each set of PID-parameters.
As already mentioned, the BRAM is extremely limited
and as a result, only a subset of PID-parameters can be
reconfigured. External memory can be used to store a
larger set of configurations, however, in most cases this
requires a bus interface.

Initialization of the BRAM is done by using a .coe-file.
A .coe-file is a text based file containing a header and
initialization data for the BRAM. Since the bitstream
consists of binary data, it has to be converted into an
ASCII format before it can be loaded into the BRAM.
This is done by using the “b”-switch when generating the
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bitstream using BitGen' . An added benefit of this format
is that the data are grouped into 32-bit words, simplifying
analysis and command extraction. This ASCII-formatted
bitstream can easily be loaded into the BRAM as a .coe-
file or during synthesis.

5.2 Configuration controller

The configuration controller is responsible for:

Reading the configuration data from the memory
Transferring this data to the configuration memory
Driving the ICAP pins

Controlling the ICAP timing

This functionality is achieved using a state machine based
on a Xilinx® feature called Multiboot. MultiBoot allows
an active application to fall back to a previous good
configuration (known as the golden image) in the event of
a configuration failure, operational failure or single event
upset (SEU) Xilinx (2008, 2010). This state machine is
illustrated in Fig. 6.

As summarized in Table 5, each ICAP pin serves a specific
function during the reconfiguration process. The reconfig-
uration controller is directly connected to these pins, as
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Fig. 4. Illustration of a reconfigurable PID controller

shown in Fig. 7, and is responsible for driving these pins ac-
cording to the timing diagram shown in Fig. 5. The IPROG
command is an external pin that prepares the device for
configuration without resetting the configuration logic and
is not connected to the ICAP. In fact, this pin is not used
when reconfiguring via the ICAP. For the purpose of this
discussion, this pin can be seen as the trigger-event for the
reconfiguration.
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Fig. 6. Hardware reconfiguration state machine flow dia-
gram (Le Roux et al. 2012)

6. CONCLUDING REMARKS

Despite the numerous advantages reconfigurable comput-
ing adds to a system, it is mostly limited by the long
reconfiguration time. This makes reconfigurable comput-
ing only suitable for quasi-static applications. A general
rule of thumb is that reconfigurable computing is only
viable where execution time of the application exceeds
reconfiguration time. This also implies that in most cases,
it is not possible to generate reconfiguration bitstreams
on-line.

In order to migrate reconfigurable computing to more
dynamic applications, various researchers aim to minimize
the cost of reconfiguration. One approach is to change
the way the bitstream is generated. The aim is not only
to enable bitstreams to be generated on-line, but also
to reduce the amount of configuration data inside the
bitstream. Less information in the bitstream allows for
faster reconfiguration, since less data has to be transferred
to the ICAP. Placement and routing add a significant
amount of overhead to the configuration process and
extensive research aim to improve these techniques.

A factor contributing to specialization time is the bus-
based architectures most commonly used for reconfigu-
ration. These architectures utilize a bus to connect the
various components in the system. As a result, this adds
additional overhead to the reconfiguration process. Various
attempts are made to mitigate this overhead. This paper
summarized the four primary research fields aiming to
achieve this:

CLK
CLK CE
Control state
TRIGGER . WRITE ICAP
machine
1[31:0]

Fig. 7. Control state machine interface to the ICAP (Le
Roux et al. 2012)

Table 5. ICAP pin description table

Pin Name | Type Description

CLK Input ICAP interface clock

CE Input Active-low ICAP interface select
WRITE Input Selects read or write operation
1[31:0] Input ICAP write data bus

0O[31:0] Output | ICAP read data bus

BUSY Output | Active-high busy status

(1) Placement research

(2) Routing strategies

(3) Research in bitstream development
(4) Improving reconfiguration throughput

The most promising way to improve the reconfiguration
throughput is to use BRAM-based architectures. These
architectures mitigate configuration overhead by allowing
the reconfiguration controller direct access to the configu-
ration data and memory.

Using these architectures, the design of a reconfigurable
PID controller was discussed. Issues such as loading the
BRAM with the configuration data and the functionality
of the configuration controller were discussed. Even though
an example of gain scheduled PID was used to illustrate
the design of the reconfigurable PID controller, this ap-
proach can easily be adopted to reconfigure the entire
structure. The only limitation however, is the control cycle
of the application using the controller especially when it
is used in a real-time application. A real-time system is
defined as “one in which the correctness of a result not only
depends on the logical correctness of the calculation but
also upon the time at which the result is made available”
Gambier (2004). This implies that the reconfiguration time
has to fit within one control cycle.

Take the Xilinx® Virtex-5 — for example, assuming a
configuration file occupying the entire BRAM of 18 kB.
If the ICAP is clocked at the Xilinx® recommended
100 MHz, this results in a maximum throughput of 3.2
Gbps with a word width of 32-bits. This implies that
the entire contents of the BRAM can be transferred to
the configuration memory within 45 us. This time can
be further reduced by clocking the ICAP at a higher
frequency as shown by Hoffman and Pattichis (2011),
Claus et al. (2010) and Hansen et al. (2011).

A reconfigurable PID controller based on the above men-
tioned architectures is currently being investigated.
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