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Abstract: Posynomials are nonnegative combinations of monomials with possibly fractional and
both positive and negative exponents. Posynomial models are widely used in various engineering
design endeavors, such as circuits, aerospace and structural design, mainly due to the fact that
design problems cast in terms of posynomial objectives and constraints can be solved efficiently
by means of a convex optimization technique known as geometric programming (GP). However,
while quite a vast literature exists on GP-based design, very few contributions can yet be
found on the problem of identifying posynomial models from experimental data. Posynomial
identification amounts to determining not only the coefficients of the combination, but also
the exponents in the monomials, which renders the identification problem numerically hard.
In this paper, we outline an approach to the identification of both multivariate polynomial
and posynomial models, based on the expansion on a given large-scale basis of monomials.
The model is then identified by seeking coefficients of the combination that minimize a mixed
objective, composed by a term representing the fitting error and a term inducing sparsity in the
representation, which result in a problem formulation of the “square-root LASSO” type, with
nonnegativity constraints on the variables. We propose to solve the problem via a sequential
coordinate-descent scheme, which is suitable for large-scale implementations.

Keywords: Posynomial models, Identification, Sparse optimization, Square-root LASSO,
Coordinate-descent methods.

1. INTRODUCTION

Consider a function ψ : Rnw → R of the form

ψ(w) =

nc∑
i=1

ciw
αi (1)

where ci are coefficients, αi = [αi1 · · · αinw
] ∈ Rnw are

vectors of exponents, and wαi is defined as

wαi
.
=

nw∏
j=1

w
αij

j .

The term ciw
αi is called a monomial. Two important

classes of functions can be cast in the form (1):

(i) polynomials, where ci ∈ R, αij ∈ N0, and w ∈ Rnw ;

(ii) posynomials, where ci ≥ 0, αij ∈ R, and w ∈ Rnw
++ (the

positive orthant).

Polynomial models are widely used in many fields of sci-
ence and technology, and play a fundamental role also in
system identification and control, Leontaritis and Billings
[1985], Spinelli et al. [2006], Novara [2012]. In system
identification, they represent one of the main tools for
estimating NARX (non-linear autoregressive with exoge-
nous inputs) systems, see Spinelli et al. [2006], Bonin
et al. [2010]; in control, they can be effectively used for
the direct design from data of controllers for nonlinear
systems, Novara et al. [2013].

Posynomial models are of great importance in many fields
as well, ranging from structural design, network flow, opti-
mal control, Beightler and Phillips [1976], Wilde [1978], to

aerospace system design, Hoburg and Abbeel [2012], cir-
cuit design, Boyd et al. [2005], Daems et al. [2003], anten-
nas, Babakhani et al. [2010] and communication systems,
Chiang [2005]. The interest in posynomials is motivated
by the fact that they lead to computationally efficient
geometric programming models for optimal system design.

Despite a quite consistent number of papers are available
in the literature where posynomial models and geometric
programming are used for design purposes, very few works
can be found that address the key problem of identifying
a posynomial model from experimental data; see Daems
et al. [2003] for such an exception. The model is in most
cases assumed known (i.e., the coefficients ci and the
exponents αij are assumed known) and then processed by
the geometric programming algorithm. On the contrary,
in many real-world applications the model is not known a
priori and has to be identified from experimental data.

The standard approach to poly/posynomial model iden-
tification is to perform an heuristic search finalized at
finding a viable model structure, i.e., a suitable set of
exponent vectors {αi}, see, e.g., Spinelli et al. [2006],
Pulecchi and Piroddi [2007], Daems et al. [2003]. Once the
exponent vector set has been chosen, the coefficients ci
are estimated by means of convex optimization. A critical
issue in this approach is that the model structure search
may be extremely time consuming and in most cases leads
only to approximate model structures, see Milanese and
Novara [2004]. An alternative approach is to assume (or
estimate by means of some heuristic) a value n̂c for the
basis cardinality nc, and then estimate ci and αi by means
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of nonlinear programming algorithms. However, these kind
of algorithms are non-convex and thus do not ensure
convergence to the optimal parameter estimate. A third
approach, which overcomes the issues of the other two,
consists in considering an over-parametrized model and
inserting in the optimization problem a sparsity promoting
term (or constraint), given by the `1-norm of the coefficient
vector. This term allows one to efficiently select the model
structure and, at the same time, to avoid the problem
of overfitting. This approach is based on the well-known
LASSO (least absolute shrinkage and selection operator)
or other similar algorithms, see, e.g., Tibshirani [1996],
Kukreja et al. [2006], Bonin et al. [2010], Novara [2012].
The optimization problem is in this case convex but, due
to the over-parametrization, it typically involves a very
large number of decision variables.

In this paper, we follow this latter approach: we minimize
a convex objective, defined as the sum of a regularized
accuracy term based on the `2-norm of the estimation
residual, and a sparsity-inducing term given by a weighted
`1-norm of the coefficient vector. We name this approach
regularized square-root LASSO or rsqrt-LASSO, since it is
similar to LASSO but presents three differences which may
give advantages in terms of computational efficiency and
model regularity. The first one is to use in the objective
function an accuracy objective that is the square-root of
the one used in LASSO. Thanks to this feature, we obtain
an a-priori sufficient condition for a monomial appearing
in the over-parameterization to be null. This condition
(called feature elimination condition, El Ghaoui et al.
[2012]) can be verified very efficiently, and can thus be used
in a pre-optimization phase to eliminate all the monomials
which have very low relevance in explaining the data. The
second difference is to include an `2 regularization in the
accuracy term, allowing us to account for uncertainty in
the data and to improve the numerical conditioning. The
third difference consists in using a weighted `1-norm of
the coefficient vector in place of the standard `1-norm.
This allows for more generality in problems where the
entries of c have different scales. Along with the basic rsqrt-
LASSO model, we also consider a nonnegative version
of the problem (named nonnegative rsqrt-LASSO), where
variables are constrained to be nonnegative, as required
for the identification of posynomials.

In order to solve the rsqrt-LASSO and nnrsqrt-LASSO
problems, we propose a large-scale-capable iterative algo-
rithm based on sequential coordinate descent, which is able
to deal with problems involving a large number of decision
variables.

2. IDENTIFICATION OF POLY/POSYNOMIALS

Consider a poly/posynomial

ψo(w) =

nc∑
i=1

coiw
αo

i (2)

where the coefficients coi , the exponent vectors αoi and the
expansion cardinality nc are not known. Suppose that a
set of noise-corrupted measurements is available:

D = {y(k), w(k)}mk=1 ,

where y(k) = ψo(w(k))+e(k), and e(k) ∈ R is a noise term.
The problem considered in the paper is to estimate from
these data the unknown parameters coi , α

o
i , i = 1, . . . , nc,

and the cardinality nc. To solve this problem, we define an
over-parametrized poly/posynomial family

ψ(w) =

n∑
i=1

xiw
αi (3)

where n � nc. In real-world situations, this over-
parametrization can be obtained from the available prior
information on the exponents αoij . For example, a certain
exponent may be unknown but it can be known to be an
integer in a given interval; another one may be known to be
fractional in another interval; another one can be known
to be negative, etc.

More formally, suppose that the following prior informa-
tion is available on the exponents: αij ∈ Qj , where Qj is a
set of exponents which, on the basis of the available prior
information, can be considered reasonable for the variable
wj . Then, the set of exponent vectors defining the over-
parametrization (3) can be constructed as Sα

.
= {αi}ni=1 =∏nw

j=1Qj , where
∏

denotes the Cartesian product. Note
that this approach can be adopted also if an exponent
is known to belong to a continuous (finite) interval, in
which case the set Qj can be obtained by properly dis-
cretizing the interval. If the information is correct, then
Sα is guaranteed to contain the true exponent vectors:
Sα ⊃ Sαo

.
= {αoi }

nc

i=1.

2.1 A square-root LASSO formulation

Model identification is here performed by minimizing
with respect to the coefficients xi an objective func-
tion defined as the sum of an accuracy objective and
a sparsity-promoting term, allowing us to select, in the
over-parametrized family, a parsimonious model structure.
Define y = [y(1) · · · y(m)]>, x = [x1 · · · xn]>, and

Φ =

 w(1)α1 · · · w(1)αnw

...
. . .

...
w(m)α1 · · · w(m)αnw

 .
The objective we consider is of the form

f(x)
.
=
∥∥∥[Φx− y

σx

]∥∥∥
2

+ λ> |x| , (4)

where σ ≥ 0, λ ∈ Rn with λ ≥ 0, and |x| denotes a vector
whose entries are the absolute values of the entries in x.
We define, for notational compactness,

Φ̃
.
=
[

Φ
σI

]
, ỹ

.
=
[
y
0

]
, φ̃i

.
=
[
φi
σei

]
,

where φ̃i, i = 1, . . . , n, denotes the i-th column of Φ̃, and
ei is the i-th vector of the standard basis of Rn.

Note that λ> |x| is a weighted `1-norm. Vector λ is thus
a penalty factor which quantifies the tradeoff between the
accuracy objective ‖Φ̃x − ỹ‖2 and the term λ> |x|, which
is a proxy for sparsity in the solution, see, e.g., Fuchs
[2005], Tropp [2006], Donoho et al. [2006], Candes and Tao
[2006]. Clearly, for λ = γ1 (where 1 is a vector with all
entries equal to one), and σ = 0, the rsqrt-LASSO problem
coincides with the standard sqrt-LASSO. The use of the
sparsity promoting term λ> |x| instead of the standard
term γ‖x‖1 allows for more generality, in problems where
the entries of x have different scales. The regularization
parameter σ ≥ 0 is introduced to improve the numerical
conditioning of the problem, guaranteeing (if σ > 0) that

Φ̃ has full rank, and that the `2 term remains differentiable
for all x.

We hence consider the following two optimization prob-
lems, which we name regularized square-root LASSO
(rsqrt-LASSO)

p∗
.
= min
x∈Rn

f(x), (5)

and nonnegative regularized square-root LASSO (nnrsqrt-
LASSO)

p∗+
.
= min
x∈Rn

+

f(x), (6)
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where Rn+
.
= {x ∈ Rn : x ≥ 0} (the inequality is

element-wise). The first is to be used for polynomial
model identification, and the second for posynomial model
identification.

Remark 1. Notice that the cardinality n of the set Sα, and
hence the dimension of the decision vector x, may be very
large, since it is given by the product of the cardinalities
of Qj , for j = 1, . . . , nw. For this reason, although the two
previous problems are standard convex optimization prob-
lems, they may not be practically solved using standard
interior-point methods for convex optimization. Actually,
in some cases, even just storing in memory the data matrix
Φ may be unfeasible due to dimensionality issues.

In the following sections, we describe a simple scheme
for solving both the unconstrained and the constrained
versions of the regularized sqrt-LASSO problem, based
on a two-phase procedure. In the first phase, we apply a
feature elimination step to eliminate a-priori all variables
that are guaranteed to be zero at optimum, thus possibly
reducing the dimensionality of the problem. In the second
phase, we apply a coordinate-descent scheme to the re-
duced problem, in order to find the optimal solution. This
latter phase is based on the fact that we can find in “closed
form” an optimal solution to the univariate restriction of
the above problems.

We shall assume throughout that y 6= 0, since for y = 0
the optimal solution of both problems (5), (6) is trivially
x∗ = 0.

3. DUAL FORMULATIONS AND FEATURE
ELIMINATION

We next state dual formulations of the rsqrt-LASSO and
nnrsqrt-LASSO problems, and then show how a feature
elimination condition is obtained from these dual formu-
lations.

3.1 Dual of the rsqrt-LASSO problem

The dual of problem (5) can be expressed in the following
form (derivations are omitted here for space reasons; see
Calafiore et al. [2014] for full details)

p∗ = max
u

−u>ỹ (7)

s.t.: ‖u‖2 ≤ 1

|φ̃>i u| ≤ λi, i = 1, . . . , n. (8)

3.2 Dual of the nnrsqrt-LASSO problem

The dual of the nnrsqrt-LASSO problem (6) can be
expressed in the following form (see again Calafiore et al.
[2014] for a derivation)

p∗+ = max
u

−u>ỹ (9)

s.t.: ‖u‖2 ≤ 1

φ̃>i u+ λi ≥ 0, i = 1, . . . , n. (10)

3.3 Safe feature elimination

We next analyze the dual formulations of problems (5), (6)
in order to derive a simple sufficient condition that permits
to predict when an entry xi is zero at optimum, and hence
to eliminate a priori some features (i.e., columns of Φ̃) from
the problem. This type of condition, first introduced by El
Ghaoui et al. [2012] in the context of the standard LASSO
problem, is named safe feature elimination. Observe that

max
‖u‖2≤1

|φ̃>i u|= ‖φ̃i‖2 =
∥∥∥[ φiσei ]∥∥∥2 .

Therefore, if for some i ∈ {1, . . . , n} it holds that∥∥∥[ φiσei ]∥∥∥22 = ‖φi‖22 + σ2 < λ2i

then the corresponding constraint in (8), as well as in (10),
will certainly be satisfied with strict inequality, that is, it
will be inactive at the optimum. This means that it can
be safely eliminated from the dual optimization problem,
without changing the optimal objective value. Defining

F(λ)
.
= {i : ‖φi‖22 + σ2 ≥ λ2i , i = 1, . . . , n},

we thus have that

p∗ = max
u

−u>ỹ (11)

s.t.: ‖u‖2 ≤ 1

|φ̃>i u| ≤ λi, i ∈ F(λ),

which is the dual of the “reduced” primal problem

p∗ = min
ξ
‖Φ̃F(λ)ξ − ỹ‖2 + λ>|ξ|, (12)

where Φ̃F(λ) is a matrix containing by columns vectors

φ̃i, i ∈ F(λ), and ξ is a decision variable vector, having
dimension equal to the cardinality of F(λ). In other words,
the features xi in the primal problem (5) corresponding to
indexes i in the set E(λ) complementary to F(λ)

E(λ)
.
= {i : ‖φi‖22 + σ2 < λ2i , i = 1, . . . , n},

are certainly zero at the optimum, that is

‖φi‖22 + σ2 < λ2i ⇒ x∗i = 0. (13)

Similarly, we have that

p∗+ = max
u

−u>ỹ (14)

s.t.: ‖u‖2 ≤ 1

φ̃>i u+ λi ≥ 0, i ∈ F(λ),

is the dual of the “reduced” primal problem

p∗+ = min
ξ≥0
‖Φ̃F(λ)ξ − ỹ‖2 + λ>|ξ|. (15)

3.4 When is x = 0 optimal?

Point x = 0 is optimal for problem (5) if and only if p∗ =
‖ỹ‖2, which is equivalent to u = −ỹ/‖ỹ‖2 being optimal
(hence feasible) for the dual problem. This happens if and
only if

|φ̃>i ỹ| ≤ λi‖ỹ‖2, i = 1, . . . , n,

that is, since φ̃>i ỹ = φ>i y, ‖ỹ‖2 = ‖y‖2, if an only if

|φ>i y| ≤ λi‖y‖2, i = 1, . . . , n.

Similarly, point x = 0 is optimal for problem (6) if and
only if p∗+ = ‖ỹ‖2, which is equivalent to u = −ỹ/‖ỹ‖2
being optimal (hence feasible) for the dual problem, which
happens if and only if

φ̃>i ỹ ≤ λi‖ỹ‖2, i = 1, . . . , n,

or, equivalently,

φ>i y ≤ λi‖y‖2, i = 1, . . . , n.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3240



4. UNIVARIATE SOLUTION OF RSQRT-LASSO

Consider the following rsqrt-LASSO problem with a single
scalar variable x

min
x∈R

f(x)
.
=
∥∥∥[ φx− yσex− ξ

]∥∥∥
2

+ λ|x|,

where λ, σ ≥ 0, φ ∈ Rm, y ∈ Rm, ξ ∈ Rn are given, and
e is a vector of all zeros, except for an entry in generic
position i, which is equal to one, and correspondingly we
postulate that ξi = 0, thus it holds that e>ξ = 0. We set
for convenience

φ̃
.
=
[
φ
σe

]
, ỹ

.
=
[
y
ξ

]
, (16)

thus the problem rewrites to

min
x∈R

f(x)
.
= ‖φ̃x− ỹ‖2 + λ|x|, (17)

We assume that ỹ 6= 0 and φ̃ 6= 0, otherwise the optimal
solution is simply x = 0. Let us define

xls
.
=
φ̃>ỹ

‖φ̃‖22
=

φ>y

‖φ‖22 + σ2
,

which corresponds to the solution of the problem for λ = 0.
The following proposition holds, see Calafiore et al. [2014]
for a proof.

Proposition 1. Consider problem (17), with ỹ 6= 0, φ̃ 6= 0,
λ ≥ 0.

(1) x∗ = 0 is an optimal solution for (17) if and only if

|φ̃>ỹ| ≤ λ‖ỹ‖2
(notice, in particular, that if ‖φ̃‖2 ≤ λ, then the above
condition is certainly satisfied, hence x∗ = 0).

(2) If |φ̃>ỹ| > λ‖ỹ‖2 (hence ‖φ̃‖2 > λ), then the optimal
solution of (17) is given by

x∗ = xls− sgn (xls)
λ

‖φ̃‖22

√
‖φ̃‖22‖ỹ‖22 − (φ̃>ỹ)2

‖φ̃‖22 − λ2
. (18)

4.1 Univariate solution of nnrsqrt-LASSO

The solution of the univariate nnrsqrt-LASSO problem in
scalar variable x

min
x≥0

f(x)
.
= ‖φ̃x− ỹ‖2 + λ|x|, (19)

can be readily obtained from the solution of the corre-
sponding unconstrained problem (17), by the following
reasoning. Since (19) is a convex optimization problem
in one variable and one linear inequality constraint, its
optimal solution is either on the boundary of the feasible
set (in this case, at x = 0), or it coincides with the solution
of the unconstrained version of the problem. Thus, we
solve the unconstrained problem (17): if this solution is
nonnegative, then it is also the optimal solution to (19); if
it is negative, then the optimal solution to (19) is x = 0.
Since the sign of the solution of (17) is simply the sign of

φ̃>ỹ, we can state the following proposition.

Proposition 2. Consider problem (19), with ỹ 6= 0, φ̃ 6= 0,
λ ≥ 0.

(1) x∗ = 0 is an optimal solution for (19) if and only if

φ̃>ỹ ≤ λ‖ỹ‖2.
(2) Otherwise, the optimal solution of (19) is given by

x∗ = xls −
λ

‖φ̃‖22

√
‖φ̃‖22‖ỹ‖22 − (φ̃>ỹ)2

‖φ̃‖22 − λ2
. (20)

Remark 2. For the specific structure of φ̃, ỹ in (16), we
have that

‖φ̃‖22 = ‖φ‖22 + σ2, φ̃>ỹ = φ>y, ‖ỹ‖22 = ‖y‖22 + ‖ξ‖22,
and the solutions in Proposition 1 and Proposition 2 can be
expressed accordingly in terms of φ>y, ‖φ‖2, ‖y‖2, ‖ξ‖2,
and σ, λ. In particular, the condition for x = 0 being
optimal becomes

|φ>y| ≤ λ
√
‖y‖22 + ‖ξ‖22,

which, in particular, is satisfied if ‖φ‖22 + σ2 ≤ λ2.

Notice further that φ̃x− ỹ 6= 0 for x = 0, since we assumed
ỹ 6= 0, and that, for σ > 0, φ̃x − ỹ 6= 0 also for x 6= 0,
since the i-th entry of ξ is zero by definition. Therefore,
for σ > 0, the `2-norm part of the objective is always
nonzero, and hence differentiable.

5. SEQUENTIAL COORDINATE DESCENT SCHEME

We next outline a sequential coordinate-descent scheme
for the rsqrt-LASSO problem (5). Suppose all variables
xj , j ∈ {1, . . . , n} \ i, are fixed to some numerical values,
and we wish to minimize the objective in (5) with respect
to the scalar variable xi. We have that

fi(xi)
.
= ‖

n∑
j=1

φ̃jxj − ỹ‖2 +

n∑
j=1

λj |xj |

= ‖φ̃ixi − ỹ(i)‖2 + λi|xi|+
∑
j 6=i

λj |xj |,

where we defined ỹ(i)
.
= ỹ−

∑
j 6=i φ̃jxj . We thus have that

x∗i
.
= arg min

xi

fi(xi) = arg min
xi

‖φ̃ixi − ỹ(i)‖2 + λi|xi|,

where the minimizer x∗i is readily computed by applying
Proposition 1.

A sequential coordinate-descent scheme works by updat-
ing the variables xi sequentially, according to the above
univariate minimization criterion. The scheme of the algo-
rithm is as follows.

(1) Initialize x(0) = 0 (an n-vector of zeros), k = 1;
(2) For i = 1, . . . , n, let

x
(k)
i = arg min

xi

f(x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)n );

(3) If stopping criterion is met, finish and return x(k),
else set k ← k + 1, and goto 2.

Remark 3. As a stopping criterion, one may use a stan-
dard check on sufficient progress in objective reduction,
or the approach described in Section 5.1, based on the
evaluation of a lower bound on the duality gap.

Remark 4. Observe that, due to Proposition 1, all vari-
ables xi for which ‖φ̃i‖2 ≤ λi are never updated by the
algorithm, i.e., they remain fixed at their initial zero value.
The inner loop on i can thus be sped up by considering
only the indices i such that ‖φ̃i‖2 > λi, which can be
determined a priori (feature elimination).

Remark 5. The same coordinate-descent scheme can be
used also for solving the nnrsqrt-LASSO problem (6), by
using the result in Proposition 2 for updating the i-th
coordinate.

Remark 6. The function f(x) in (4) that we minimize
using coordinate descent is convex and composite:

f(x) = f0(x) +

n∑
i=1

ψi(xi),
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where ψi are convex and nonsmooth. In the unconstrained
case, we have ψi(xi) = λi|xi|. The constrained case, where
xi ≥ 0, can also be tackled as an unconstrained one, by
considering ψi(xi) = λi|xi|+ I+(xi), where I+(xi) is equal
to zero if xi ≥ 0 and it is +∞ otherwise.

Further, function f0(x) = ‖Φ̃x − ỹ‖2 is convex and, for
σ > 0 and y 6= 0, it is differentiable over all x ∈ Rn. In
this situation, the sequential coordinate descent algorithm
is guaranteed to converge to an optimal point on both the
rsqrt-LASSO and the nnrsqrt-LASSO problems; see, e.g.,
Theorem 5.1 in Tseng [2001].

5.1 Dual-bound based stopping criterion

Inspecting the primal and dual problems (5), (7), we see
that if x∗ is primal optimal, then the dual-optimal variable
u must be

u∗ =
Φ̃x∗ − ỹ
‖Φ̃x∗ − ỹ‖2

.

This suggests considering, for the candidate solution x(k)

at iteration k of the algorithm, an associated vector

u(k)
.
= α(k)ũ(k), ũ(k)

.
=

Φ̃x(k) − ỹ
‖Φ̃x(k) − ỹ‖2

,

where

α(k) =

 1 if |Φ̃>ũ(k)| ≤ λ
min
i

λi

|φ̃>i ũ(k)|
otherwise.

Such u(k) is, by construction, feasible for the dual problem
(7), hence

d(k)
.
= −ỹ>u(k) = α(k) ‖ỹ‖22 − ỹ>Φ̃x(k)

‖Φ̃x(k) − ỹ‖2
is a lower bound on the primal optimal value p∗, that
is d(k) ≤ p∗ ≤ p(k), where p(k)

.
= f(x(k)). Hence, if at

iteration k it holds that p(k) − d(k) ≤ ε, we can terminate
the algorithm with a solution x(k) that guarantees ε-
suboptimality.

An analogous approach can be followed for determining a
dual lower bound for the nnrsqrt-LASSO problem (6). The
only difference is in the choice of α(k), which is now given
by

α(k) =

 1 if Φ̃>ũ(k) ≥ −λ
min

{i: φ̃>
i
ũ(k)<−λi}

λi

|φ̃>i ũ(k)|
otherwise.

6. A NUMERICAL TEST

As a numerical experiment, we considered the problem of
identifying a posynomial model for the drag force (per unit
length) of a NACA 4412 airfoil. This force is evaluated as
a function of the air flow density ρ, the wing chord η, the
incidence angle θ and the flow velocity v, that is

FD = ψo(w)

where w = [ρ η θ v]>. The values ψo(w) are obtained
via simulations based on CFD (computational fluid dy-
namics), by integration of the Navier-Stokes equations.
Each evaluation is numerically very costly, thus it is of
interest to obtain a simple model for FD, to be used, for
instance, in a later stage of system evaluation or design.
In this example, we identified a posynomial model for
the drag force of the airfoil, from data obtained from
the CFD simulations. The posynomial form is of interest
since it allows the application of geometric programming

PARAM. Minimum Maximum Dimension
ρ 0.039 1.2250 [kg/m3]
η 0.1 1 [m]
θ -5 10 [deg]
v 0 40 [m/s]

Table 1. Parameter intervals considered in the
CFD simulations.
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Figure 1. Pareto trade-off curve.

algorithms, which in turn allow for efficient optimization
of the airfoil characteristics, see, e.g., Hoburg and Abbeel
[2012].

A set D = {y(k) = ψo(w(k)), w(k)}mk=1 of m = 50 input-
output data points has been obtained, for randomly chosen
values of ρ, η, θ and v in the intervals shown in Table 1.
The exponent sets

Qj = {−2,−1, 0, 1, 2}, j = 1, . . . , 4. (21)

have been assumed, following the approach described in
Section 2. This choice has been made after a preliminary
trial and error process. Sets Qj with exponents ranging
from −3 to 3 taking non integer values have been also
considered in this process but no significant improvements
in terms of model accuracy have been observed. For m =
50 and for the exponent sets (21), Φ results to be a 50×625
matrix.

We set for simplicity λ = γ1, σ = γ/10, and we considered
several values of γ, logarithmically spaced in the interval
[1, 105]. For each value of γ, the optimization problem (6)
has been solved using the approach described in Sections 3-
5. For each value of γ, the following quantities have been
recorded:

• the cardinality (i.e., the number of nonzero entries)
of the solution x of the optimization problem (6);
• the relative error RE = ‖Φx− y‖2 / ‖y‖2.

Figure 1 shows the Pareto trade-off curve, reporting the
RE values versus the solution cardinality. Based on this
curve, the parameter value γ = 785 has been chosen,
since providing the best trade-off between the model
complexity (measured by the cardinality of x) and its
accuracy (measured by the relative error RE).

In order to verify the reliability of an identified model, we
carried out a leave-one-out (LOO) cross validation, on a
subset of the available data. In particular, we used for cross
validation data points w(j) that lie within 0.75% from the
boundary of the the hyperrectangle defining the minimum
and maximum deviation for each parameter (as defined in
Table 1). This was done to avoid points near the boundary
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of the w domain, which are too close to the non-explored
region.

For each pair (y(j), w(j)) in the LOO validation set, a
posynomial model has been identified from the data set
D \ (y(j), w(j)). This model has then been tested on the
single datum (y(j), w(j)), and the relative error νj =
|y(j) − ŷ(j)|/‖yLOO‖2 has been evaluated, where ŷ(j) is
the output provided by the model, and ‖yLOO‖2 is the
Euclidean norm of the vector with entries y(j), for j in
the validation set. The accumulated relative error is given

by AE =
√∑

j ν
2
j . In our experiment, with γ = 785, we

obtained AE = 0.25. This value appears to be quite low:
a model identified using the proposed approach is able
to approximate the unknown function quite accurately,
even if only 50 points are used to explore its 4-dimensional
domain.

The same LOO validation has been performed considering
γ = 1438 and γ = 127, obtaining AE = 0.38 and AE =
0.25, respectively. The model identified using γ = 785 has
thus the most advantageous trade-off between complexity
and accuracy. This model is given by

ψ(w) = x340ηv
2 + x440ρv

2 + x465ρηv
2 + x565ρ

2v2

where x340 = 1.2746 × 10−4, x440 = 3.5469 × 10−3,
x465 = 2.8703×10−4, and x565 = 5.0722×10−4 (the units
of these coefficient can be inferred from Table 1). It is
interesting to note that a dependence of the drag force on
the square velocity has been found by the algorithm and
this result is consistent with the well-known drag equation.
No significant dependence on the incidence angle θ has
been observed. A possible interpretation for this latter
result is that the range considered for θ is not sufficiently
large compared to the ranges considered for ρ, η and v (see
Table 1) and, consequently, the force variations due to θ
are negligible with respect to those produced by the other
three parameters.

We next discuss a few relevant aspects related to the iden-
tification process. The safe feature elimination discussed
in Section 3.3, reduced the number of columns of Φ from
625 to 222 (this latter is the average value obtained in the
LOO validation), suggesting that this elimination phase
can be quite useful in practical large-scale problems. The
time taken for applying the safe elimination and solving
the optimization problem (6) with the approach described
in Sections 3-5 is about 0.35 seconds on a PC with a Core
i7 processor and a RAM memory of 8GB (average time
obtained in the LOO validation).

Acknowledgments: We thank Valentina Dolci (Politec-
nico di Torino) for providing us with the fluid dynamic
simulation data used in the example.
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