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Abstract: This paper deals with actuator fault estimation for a class of discrete-time nonlinear
systems whose linear part is described by a Linear Parameter-Varying (LPV) form and nonlinear
term is Lipschitz. In this paper, an augmented system is constructed by considering the fault
as an auxiliary state vector. Then, a robust fault estimation observer is designed based on the
augmented system. The proposed fault estimation observer is able to attenuate the effect of the
fault variation and measurement noise and the observer design is formulated as a Linear Matrix
Inequality (LMI) feasibility problem, which can be easily solved. Finally, a missile model is used
to demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

With the growing complexity of modern engineering sys-
tems and ever increasing demand for safety and reliability,
fault diagnosis techniques have received great attention
during the past decades. Generally, fault diagnosis ap-
proaches can be classified into three categories, i.e., model-
based methods, signal-based methods, and knowledge-
based methods (Dai and Gao (2013)). Among these ap-
proaches, model-based fault diagnosis methods have been
most intensively studied and various methods have been
proposed in the literature, see e.g., Frank (1990), Chen
and Patton (1999), Isermann (2005), Hwang et al. (2010),
and the references therein.

As is known, most of the practical systems are nonlinear
in nature. Therefore, there has been a lot of interest
in fault diagnosis for nonlinear systems in the recent
years. For example, Jiang et al. (2006) and Zhang et
al. (2009) studied fault diagnosis for Lipschitz nonlinear
systems by using adaptive observer. In Polycarpou and
Helmicki (1995); Polycarpou and Trunov (2000), the on-
line approximators are used to develop fault diagnosis
methods for nonlinear systems. In addition, Proportional
Integral (PI) observer and descriptor observer are also
be used to develop fault diagnosis methods for nonlinear
systems in the recent years, see e.g., Zhang et al. (2010),
Astorga-Zaragoza et al. (2012), Gao and Ding (2007) etc.
However, most of these results are dedicated to a specific
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class of nonlinear systems, i.e. Lipschitz nonlinear systems.
In fact, fault diagnosis in nonlinear systems is still a
difficult problem because there does not exist a universal
methodology that can be applied to all nonlinear systems.

Since Linear parameter-varying (LPV) systems can be
used to approximate nonlinear systems, the LPV repre-
sentation provides a systematic and elegant way to deal
with fault diagnosis for nonlinear systems. In recent years,
a number of fault diagnosis methods have been proposed
based on LPV models, e.g., Bokor and Balas (2004); Alwi
et al. (2012); Rodrigues et al. (2013), etc. However, most
of these methods are presented for continuous-time sys-
tems. In contrast to the continuous-time case, few results
have been reported on fault diagnosis for discrete-time
nonlinear systems. Nowadays, most of control systems are
digitally implemented. Therefore, it is necessary to study
the fault diagnosis design for discrete-time LPV systems.

On the other hand, when a nonlinear system with complex
nonlinearity is considered, the corresponding LPV model
will consists of a large number of linear models, which
makes the fault diagnosis design complicated and also
brings computation burden. Therefore, it is important to
develop a more proper model to simplify the fault diagnosis
design. In Boulkroune et al. (2013), the authors considered
robust fault detection for a class of nonlinear descriptor
systems whose nonlinear term is globally Lipschitz and
linear term is described by a LPV form. However, the
methods in Boulkroune et al. (2013) only address the fault
detection problem but cannot be used to estimate the fault
magnitudes. Here in our paper, the aim is not only to
develop a fault detection method for discrete-time LPV
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systems with nonlinear terms but also to estimate actuator
fault for such systems.

In this paper, a class of discrete-time nonlinear systems
consists of a LPV term and Lipschitz nonlinearity are
considered. The basic idea of this paper is to construct
an augmented system by taking the fault as an auxiliary
state vector. Then, a robust fault estimation observer
is designed based on this augmented system. In this
paper, the proposed fault estimation observer design is
formulated as a set of Linear Matrix Inequalities (LMIs),
which can be efficiently solved. The main contribution
of this paper consists in the following aspects. First, a
new fault estimation method is proposed for a class of
discrete nonlinear systems which contains a LPV term and
a Lipschitz nonlinear term. To the best of our knowledge,
no work has been done on this subject. Moreover, fault
variation and measurement noise are considered in the
robust fault estimation observer design, which makes the
proposed approach practical for real systems.

2. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system


















x(k + 1) =

h
∑

i=1

ρi(θ(k))
[

Aix(k) +Biu(k) + Fif(k)
]

+GΦ(θ(k), x(k))
y(k) = Cx(k) +Hv(k)

(1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

p is the
input vector, f(k) ∈ R

q is the fault vector, y(k) ∈ R
m

denotes the measured output and v(k) ∈ R
m represents

the measurement noise. Φ(θ(k), x(k)) ∈ R
s is a known

nonlinear function. Ai ∈ R
n×n, Bi ∈ R

n×p, Fi ∈ R
n×q,

G ∈ R
n×s, C ∈ R

m×n and H ∈ R
m×n are known constant

matrices. θ(k) ∈ R
l is a bounded time-varying parameter

vector measurable online and not affected by fault, which
is a general assumption in the LPV framework, see e.g.
Boulkroune et al. (2013), Alwi et al. (2012) and Rodrigues
et al. (2013). ρi(θ(k)), i = 1, 2, . . . , h are the weighting
functions which satisfy the following properties for all k:

h
∑

i=1

ρi(θ(k)) = 1, 0 ≤ ρi(θ(k)) ≤ 1, i = 1, 2, . . . , h (2)

Herein, h is the total number of weighting functions.

Without loss of generality, it is assumed that rank(C) =
m, rank(Fi) = q, q ≤ m. Moreover, the nonlinear function
Φ(θ(k), x(k)) is assumed to satisfy the Lipschitz condition,
i.e.

||Φ(θ(k), x1(k))− Φ(θ(k), x2(k))|| ≤ Lg||x1(k)− x2(k)||(3)

where Lg > 0 denotes the Lipschitz constant.

The aim of this paper is to design an observer to obtain a
fault estimation for f(k).

To this end, the LPV system (1) is firstly formulated as
an augmented system representation by letting f(k) as a
part of the augmented state vector, i.e.

x̄(k) =

[

x(k)
f(k)

]

(4)

Then, an augmented system is constructed as follows


















x̄(k + 1) =

h
∑

i=1

ρi(θ(k))
[

Āix̄(k) + B̄iu(k)
]

+D̄f̃(k) + ḠΦ(θ(k), Cxx̄(k))
y(k) = C̄x̄(k) +Hv(k)

(5)

where

Āi =

[

Ai Fi

0 Iq

]

, B̄i =

[

Bi

0

]

, D̄ =

[

0
Iq

]

(6)

Ḡ =

[

G
0

]

, Cx = [ In 0 ] , C̄ = [C 0 ] (7)

and

f̃(k) = f(k + 1)− f(k) (8)

is the fault variation between two consecutive instants k
and k + 1.

According to the definition of x̄(k) in (4), the actuator
fault f(k) can be estimated if the estimation of the
augmented state x̄(k) is obtained. Based on this idea, this
paper proposes the following fault estimation observer

ˆ̄x(k + 1) =
h
∑

i=1

ρi(θ(k))
[

Āi ˆ̄x(k) + B̄iu(k)

+Li(y(k)− C̄ ˆ̄x(k))
]

+ ḠΦ(θ(k), Cx ˆ̄x(k))

(9)

where ˆ̄x(k) ∈ R
(n+q) is the estimate of the augmented

state x̄(k). Li ∈ R
(n+q)×m, i = 1, 2, . . . , h are matrices to

be synthesized.

After the augmented state estimation ˆ̄x(k) is obtained, the
fault estimation can be determined as follows

f̂(k) = Cf ˆ̄x(k) (10)

where

Cf = [ 0 Iq ] (11)

Now, the problem is to design observer (9) such that

the fault estimation f̂(k) is robust to the fault variation

f̃(k) and measurement noise v(k). This is an H∞ design
problem, which can be formulated as follows.

H∞ fault estimation problem: Consider (5) and the
fault estimation observer (9), the objective is to design
that matrices Li, i = 1, 2, . . . , h such that the fault

estimation error ef (k) = f(k) − f̂(k) robustly converges
torwards zero, i.e.

‖ef‖2 ≤

√

γ2
1‖f̃‖

2
2 + γ2

2‖v‖
2
2 + V (0) (12)

where ‖ · ‖2 represents the L2 norm, γ1 and γ2 are
the disturbance attenuation levels: γ1 is related to the
robustness against the fault variation f̃(k), γ2 represents
the attenuation level of the measurement noise and V (0)
is a quadratic function which will be given latter.

3. FAULT ESTIMATION OBSERVER DESIGN

In this section, a solution to the H∞ fault estimation
problem is proposed.
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First, a sufficient condition of the criterion (12) is given in
the following Theorem.

Theorem 1. The criterion (12) is fulfilled if there exists a
Lyapunov function V (k) such that the following inequality
holds for all k:

∆V (k)+eTf (k)ef (k)−γ2
1 f̃

T (k)f̃(k)−γ2
2v

T (k)v(k)<0 (13)

where ∆V (k) = V (k + 1)− V (k).

Proof. Define the following function

J = V (∞)− V (0) + ‖ef‖
2
2 − γ2

1‖f̃‖
2
2 − γ2

2‖v‖
2
2 (14)

Note that V (∞) ≥ 0, it is obvious that the inequality
J < 0 implies

‖ef‖
2
2 − γ2

1‖f̃‖
2
2 − γ2

2‖v‖
2
2 − V (0) < 0 (15)

i.e., the criterion (12) is satisfied.

Using the fact that ∆V (k) = V (k + 1)− V (k), we obtain

J =

∞
∑

k=0

∆V (k) + ‖ef‖
2 − γ2

1‖f̃‖
2 − γ2

2‖v‖
2

=

∞
∑

k=0

[

∆V (k) + eTf (k)ef (k)− γ2
1 f̃

T (k)f̃(k)

−γ2
2v

T (k)v(k)
]

(16)

It can be seen that J < 0 holds if (13) is fulfilled for all
k. Then, it can be concluded that the criterion (12) is
satisfied if (13) holds for all k. ✷

Based on Theorem 1, the following Theorem is proposed
to design the matrices Li, i = 1, 2, . . . , h in observer (9).

Theorem 2. For given scalars γ1 > 0 and γ2 > 0, if
there exist a symmetric positive definite matrix P ∈
R

(n+q)×(n+q), a positive scalar η > 0 and matrices Wi ∈
R

(n+q)×m, i = 1, 2, . . . , h such that the following LMIs
hold for all i = 1, 2, . . . , h:











N11 0 0 0 N15

∗ −γ2
1Iq 0 0 D̄TP

∗ ∗ −γ2
2Im 0 N35

∗ ∗ ∗ −ηIs ḠTP
∗ ∗ ∗ ∗ −P











< 0 (17)

where

N11 = −P + CT
f Cf + ηL̄g, L̄g =

[

LgIn 0
0 0

]

(18)

N15 = ĀT
i P − C̄TWT

i , N35 = −HTWT
i (19)

Then the fault estimation observer (9) is robust against
the fault variation and measurement noise, i.e. satisfying
the criterion (12). Moreover, if the LMIs in (17) are solved,
the matrices Li, i = 1, 2, . . . , h are determined by

Li = P−1Wi, i = 1, 2, . . . , h (20)

Proof. Define the augmented state estimation error as

e(k) = x̄(k)− ˆ̄x(k) (21)

Using (1) and (9), the error dynamic is obtained as follows

e(k + 1) =

h
∑

i=1

ρi(θ(k))
[

(Āi − LiC̄)e(k)− LiHv(k)
]

+D̄f̃(k) + ḠΦ̃(k)

(22)

where Φ̃(k) is given by

Φ̃(k) = Φ
(

θ(k), Cxx̄(k)
)

− Φ
(

θ(k), Cx ˆ̄x(k)
)

(23)

Take the following Lyapunov function

V (k) = eT (k)Pe(k), P > 0 (24)

Substituting (22) into the difference of V (k) gives

∆V (k) = eT (k)A T (k)PA (k)e(k)− eT (k)Pe(k)

+2eT (k)A T (k)P
[

D̄f̃(k)− L (k)Hv(k) + ḠΦ̃(k)
]

+2f̃T (k)D̄TP
[

−L (k)Hv(k) + ḠΦ̃(k)
]

+f̃T (k)D̄TPD̄f̃(k)− 2vT (k)HT
L

T (k)PḠΦ̃(k)

+vT (k)HT
L

T (k)PL (k)Hv(k)+Φ̃T (k)ḠTPḠΦ̃(k)

(25)

where

A (k) =

h
∑

i=1

ρi(θ(k))(T Āi − LiC̄) (26)

L (k) =

h
∑

i=1

ρi(θ(k))Li (27)

Since Φ(θ(k), x(k)) satisfies the Lipschitz condition (3), it
is easy to show that

ηΦ̃T (k)Φ̃(k) ≤ ηeT (k)L̄ge(k) (28)

where η > 0 is a positive scalar and L̄g is given by

L̄g =

[

LgIn 0
0 0

]

(29)

Using (25) and (28), we obtain

∆V (k) + eTf (k)ef (k)− γ2
1 f̃

T (k)f̃(k)− γ2
2v

T (k)v(k)

≤ eT (k)
[

A
T (k)PA (k)e(k)− P + CT

f Cf

]

e(k)

+2eT (k)A T (k)P
[

G (k)f̃(k)− L (k)v(k) + H̄Φ̃(k)
]

+f̃T (k)
[

G
T (k)PG (k)− γ2

1

]

f̃(k)

+2f̃T (k)G T (k)P
[

H̄Φ̃(k)− L (k)v(k)
]

+vT (k)
[

L
T (k)PL (k)− γ2

2v
T (k)v(k)

]

v(k)

−2vT (k)L T (k)PH̄Φ̃(k) + Φ̃T (k)H̄TPH̄Φ̃(k)

+ηeT (k)L̄ge(k)− ηΦ̃T (k)Φ̃(k)
= ξT (k)Ψξ(k)

(30)

where

ξ(k) =









e(k)

f̃(k)
v(k)

Φ̃(k)









, Ψ =







Ψ11 Ψ12 Ψ13 Ψ14

∗ Ψ22 Ψ23 Ψ24

∗ ∗ Ψ33 Ψ34

∗ ∗ ∗ Ψ44






(31)

where

Ψ11 = A
T (k)PA (k)− P + CT

f Cf + ηL̄g

Ψ12 = A
T (k)PG (k), Ψ22 = G

T (k)PG (k)− γ2
1Id

Ψ13 = −A
T (k)PL (k), Ψ23 = −G

T (k)PL (k)

Ψ33 = L
T (k)PL (k)− γ2

2Iq, Ψ14 = A
T (k)PH̄

Ψ24 = G
T (k)PH̄, Ψ34 = −L

T (k)PH̄

Ψ44 = H̄TPH̄ − ηIs

From (30), it can be seen that (13) holds if Ψ < 0. From
Theorem 1, it is obtained that the criterion (12) is fulfilled
if Ψ < 0 is satisfied.
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By using Schur complement Lemma (Boyd et al. (1994)),
Ψ < 0 is equivalent to the following inequality













Ψ′

11 0 0 0 A
T (k)P

∗ −γ2
1Iq 0 0 ḠTP

∗ ∗ −γ2
2Im 0 −L

T (k)P
∗ ∗ ∗ −ηIs H̄TP
∗ ∗ ∗ ∗ −P













< 0 (32)

where Ψ′

11 = −P + CT
f Cf + ηL̄g.

Using the property of ρi(θ(k)) in (2), the above inequality
(32) holds if the following matrix inequalities hold for all
i = 1, 2, . . . , h:











M11 0 0 0 M15

∗ −γ2
1Iq 0 0 ḠTP

∗ ∗ −γ2
2Im 0 M35

∗ ∗ ∗ −ηIs H̄TP
∗ ∗ ∗ ∗ −P











< 0 (33)

where

M11 = −P + CT
f Cf + ηL̄g,

M15 = (Āi − LiC̄)TP, M35 = −LT
i P

By letting Wi = PLi, the inequalities in (33) become
the LMIs in (17). Consequently, if the LMIs in (17) are
solved, the matrices Li, i = 1, 2, . . . , h are determined by
(20). ✷

Remark 1. In fact, the index γ1 is related to the robustness
against the fault variation f̃(k) while γ2 represents the
attenuation level of the measurement noise. However, it
should be noted that the robustness against fault variation
and the insensitiveness to the measurement noise are
conflicted. Therefore, it is necessary to take trade-off when
choose γ1 and γ2 in fault estimation observer design.

4. SIMULATIONS

In this section, a simulation example is used to show the
effectiveness of the proposed method. The system under
consideration is a dynamic model of a missile from Lendek
et al. (2010). The continuous-time model of the considered
missile is given as follows

α̇ = KαMCn(α, δ,M)cos(α) + q (34)

q̇ = KqM
2Cm(α, δ,M) (35)

whereM denotes the Mach number, which is an exogenous
scheduling variable, α is the angle of attack, q is the pitch
rate and δ is the action of the tail fin actuator. It is
assumed that α and q can be measured. The coefficients
in (34)-(35) are expressed as

Kα = (π/180)0.7P0S/(mvs),Kq = (π/180)0.7P0Sd/Iy

Cn(α, δ,M) = anα
3 + bn|α|α + cn(2−M/3)α+ dnδ

Cm(α, δ,M) = amα3 + bm|α|α+ cn(−7 + 8M/3)α+ dmδ

where P0 = 973.3 lbs/ft2 is the static pressure at 20000 ft,
S = 0.44 ft2 is the surface area, vs = 1036.4 ft/s is the
speed of sound at 20000 ft, d = 0.75 ft is the diameter,
Iy = 182.5 slug · ft2 is the pitch moment of inertia andm =

13.98 slugs is the mass of the missile. Other parameters in
Cn(α, δ,M) and Cm(α, δ,M) are given as follows.

an = 0.000103 deg−3, bn = −0.00945 deg−2

cn = 0.1696 deg−1, dn = −0.034 deg−1

am = 0.000215 deg−3, bm = −0.0195 deg−2

cm = 0.051 deg−1, dm = −0.206 deg−1

Denote x = [ α q ]
T
, u = δ, the dynamic equations (34)-

(35) are written as

ẋ = Ac(M,α)x+ Bc(M,α)u +Φc(M,α) (36)

where

Ac(M,α) =

[

KαMcos(α)cn(2−M/3) 1
KqM

2cm(−7 + 8M/3) 0

]

Bc(M,α) =

[

KαMcos(α)dn
KqM

2dm

]

Φc(M,α) =

[

KαM(anα
3 + bn|α|α)cos(α)

KqM
3(amα3 + bm|α|α)

]

Notice that Kα is very small, then the above system (36)
can be approximated by

x(k + 1) = Ãc(M)x(k) + B̃c(M)u(k) + Φc(M,α) (37)

where

Ãc(M) =

[

0 1
KqM

2cm(−7 + 8M/3) 0

]

B̃c(M) =

[

0
KqM

2dm

]

By using the Euler approximation method (Arcak and
Nešić (2003); Mao et al. (2010)), the continuous system
(37) is discretized as

x(k + 1) = A(M)x(k) + B(M)u(k) + Φ(M,α) (38)

where

A(M) = tsÃc(M) + I3

B(M) = tsB̃c(M)

Φ(M,α) = tsΦc(M,α)

and ts = 0.2 is the sampling period. In this paper, the
range of M is given by

M ∈
[

2, 4
]

Moreover, it is assumed α is bounded as α ∈
[

−15, 15
]

.
Then, it can be derived that the nonlinear function
Φ(M,α) satisfies the Lipschitz condition (3) with Lg =
0.04.

In order to use the proposed method, the discretized
system (38) should be written as an LPV representation
with a nonlinear term. Using the methodology in Hamdi
et al. (2012), the following polytopic system is constructed
to approximate system (38):

x(k + 1) =

2
∑

i=1

ρi(θ(k))
[

Aix(k) +Biu(k) + Fif(k)
]

+GΦ(θ(k), x(k))

(39)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8021



where the parameter vector is θ(k) = M and the weighting
functions ρi(θ(k)), i = 1, 2 are described as follows

ρ1(θ(k)) =
M −M

M −M

ρ2(θ(k)) =
M −M

M −M

Herein, M and M are the extreme values of the parameter
M , i.e.

M = 2, M = 4

The matrices in system (39) are given by

A1 =

[

1.0000 0.2000
0.0033 1.0000

]

, A2 =

[

1.0000 0.2000
−0.0292 1.0000

]

B1 =

[

0.0000
−0.0081

]

, B2 =

[

0.0000
−0.0322

]

G =

[

1 0
0 1

]

, Fi = Bi, i = 1, 2

In addition, it is assumed that the measurement equation
is described by

y(k) = Cx(k) +Hv(k) (40)

where

C =

[

1 0
0 1

]

, H =

[

0.01 0
0 0.01

]

Now, a nonlinear system in the form of (1) is obtained by
combining (39) and (40). Then, the proposed method can
be applied to design a fault estimation observer.

Remark 2. Note that the fault distribution matrices Fi,
which are the same as Bi, are very small. From the per-
spective of inverse problem, the fault estimation problem is
not well-posed. This implies that the fault estimation will
be severely effected by the measurement noise. Therefore,
it is necessary to consider the influence of measurement
noise and design a robust fault estimation method.

By choosing γ1 = 7, γ2 = 1.4 and solving the LMIs in (17),
we obtain the following matrices in the fault estimation
observer (9)

L1 =

[

0.6195 0.2218
0.0253 1.2218
0.0295 −28.1344

]

, L2 =

[

0.6194 0.2219
0.0025 1.9049
0.0507 −28.2126

]

In the simulation, the initial condition of the nonlinear
system is x(0) = [ 10 2 ]T . The time-varying variable M is
shown in Fig. 1 and the weighting functions are depicted
in Fig . 2. In addition, the measurement noise used in the
simulation is zero-mean Gaussian sequences with standard
deviation σ = 0.01.

First, consider an abrupt fault which is represented by

f(k) =

{

0 k < 150
15 k ≥ 150

(41)

The fault estimation result of the robust fault estimation
observer is depicted in Fig. 3. Therein, the actual fault is
depicted by solid line and the fault estimation is repre-
sented by the dash one. As shown in Fig. 3, the proposed
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Fig. 1. The Mach number M in the simulation
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Fig. 2. The weighting functions ρ1(θ(k)) and ρ2(θ(k))
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Fig. 3. The fault estimation result in an abrupt fault
situation
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fault estimation observer provides accurate fault estima-
tion in the presence of measurement noise. To illustrate
the performance of robust fault estimation observer in
dealing with time-varying fault, the following fault is also
simulated

f(k) =

{

0 k < 100
10sin(0.05(k − 100)) k ≥ 100

(42)

In this situation, the fault estimation result is depicted in
Fig. 4. As shown in Fig. 4, the proposed fault estimation
observer also exhibits satisfactory performance in the time-
varying fault scenario.
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Fig. 4. The fault estimation result in a time-varying fault
situation

5. CONCLUSION

A new actuator fault diagnosis technique capable of es-
timating actuator faults for a class of nonlinear systems
has been proposed in this paper. The considered nonlinear
system consists of an LPV part and a Lipschtiz nonlinear
term. By considering the fault as an auxiliary state vector,
an augmented system is first constructed. Based on the
augmented system, a robust fault estimation observer is
designed to attenuate the effect of the fault variation
and measurement noise. The effectiveness of the proposed
method is demonstrated by a missile model.
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