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Abstract: Energy scheduling plays a critical role in the safe and economical operation of the
Microgrid. Several methods exist that can be leveraged to improve the cost efficiency of Microgrid
operation in grid-connected mode. However, existing works overemphasize the economic benefit
of Microgrid operation in grid-connected mode such that in case of sudden transition to islanded
mode, the operation reliability, an important performance index in practical operation can’t be
guaranteed. In this paper, a two-stage scheduling scheme is proposed that takes the reliability
issue into consideration by leveraging the upstream grid failure probability. Through real-world
data sets based simulation evaluation, we evaluate our proposed two-stage scheduling scheme
and validate its effectiveness.
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1. INTRODUCTION

To coordinate the contradiction between the macrogrids
strict standard for grid-connection and the massive deploy
requirements of intermittent and uncontrollable renewable
energy source, the concept of Microgrid is proposed in
Lasseter and Paigi (2004). Microgrid is actually part of
distribution network located downstream the distribution
substation through a point of common coupling. Different
from the macrogrid, a typical Microgrid is operated in one
of the two modes: islanded mode or interconnected mode.
With such design paradigm, the Microgrid is expected to
increase the cost-efficiency and reliability of distribution
networks, see Lasseter and Paigi (2004), Lu et al. (2013).

Effective energy scheduling schemes stay at the central of
safe and economical operation of the Microgrid. Actually,
there exists a large body of research work (Narayanaswamy
et al. (2012), Lu et al. (2013)), involving the optimal
scheduling of Microgrid or Macrogrid to achieve economi-
cal operation while guaranteeing the various physical con-
straints.

However, overemphasizing the importance of economic
benefit of Microgrid operation in grid-connected mode
may compromise the operation reliability once the up-
stream grid fails suddenly. Specifically, existing scheduling
methods may discharge too much during the periods the
electricity prices are relative “higher”. Once the upstream
grid fails, there may be no enough energy in the batteries
such that we have to resort to backup generators and
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load-shedding to maintain the balance between supply
and demand. This inevitably degrades the reliability of
Microgrid operation. In view of this, we advocate that
reserving enough energy for the possible Macrogrid fail-
ure/disturbance in grid-connected operation is especially
important, which can prevent the frequent starting of fast-
responding generators and/or massive load-shedding.

Actually, the implementation of such idea is hampered
by several difficulties: 1) the arrival processes of load
demand and renewable energy are all stochastic, can’t
be accurately known until their realization; 2) how much
energy to be reserved depends on the upstream grid failure
probability. The higher the probability is, the more energy
should be reserved to combate such uncertainty. That is
to say, the balance between cost-efficiency and reliability
should be considered prudently.

In this paper, in order to address the above challenges, we
propose an energy scheduling framework that takes into
account the cost-efficiency and reliability jointly. For cost-
efficiency, it consists of two points: firstly, to maximize the
economic gain of renewable energy. secondly, to leverage
the price diversity in electricity market. For reliability, it
is expected to minimize the load loss in islanded mode.
Specifically, the energy scheduling process consists of two
stages: day-ahead planning and real-time scheduling. At
the beginning of each day, the decision that how much
electricity to purchase from day-ahead market is made to
maximize the value of renewable generation, based on the
statistical information of the following day’s load demand,
renewable energy generation, day-ahead electricity prices
and expected real-time ones. It’s necessary to note that for
some simplifying assumptions, the original optimization
problem can be decoupled into single time slot. Then at the
beginning of each fine-grained time slot, renewable supply
and load demand have been realized, the information
of real-time prices and possibility that Microgrid loses
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Fig. 1. Illustration of the two timescale structure.

support from upstream grid have been obtained. The real-
time charging, discharging and purchasing decision have
to be established. Rather than just taking advantage of
the relative cheap electricity during certain fine-grained
time slot at this stage as usual works done, we define a
“risk cost” as the consequence of sudden supply shortage
caused by upstream grid failure and advocate that the
energy stored in the battery can be regarded as a reserve
for the islanded operation to reduce such financial loss,
thereby improving the power supply reliability. Based on
Lyapunov optimization technique, an online scheduling
scheme is proposed.

2. MODEL AND PROBLEM FORMULATION

2.1 System Model

In this paper, we consider the Microgrid energy schedul-
ing problem under the framework of discrete-time model.
From a long-term perspective, we divide the time in-
to coarse-grained time slots, say days, and each coarse-
grained time slot is further divided into T fine-grained time
slots. The fine-grained time slot set of day k is denoted by
Tk. Each fine-grained time slot t ∈ Tk may represent 10-
minutes or 5-minutes. Thus, the day k can be represented
by t ∈ [(k − 1)T + 1, kT ], k ∈ N+, as illustrated by Fig. 1.

1) Energy Storage Model In this paper, we only con-
sider a set of battery energy storage system like advanced
lead acid batteries, and make the following assumptions:
(i) energy loss only happens during the charging process,
(ii) the operating cost of a Microgrid is dominated by
the cost incurred by purchasing electricity from electricity
market rather than by operating and maintenance cost of
batteries. We denote S(t) as the state of the battery energy
storage system at the beginning of the t th period or at
the end of t − 1 th period. Thus the state of the battery
energy storage system evolves as:

S(t+ 1) = S(t) + ηC(t)−D(t), (1)

where η < 1 is the efficiency factor of charging process.
Besides that, the charging and discharging process are also
constrained by rate limits, expressed as:

0 ≤ C(t) ≤ Cmax, 0 ≤ D(t) ≤ Dmax, (2)

where Cmax andDmax are the maximum energy the energy
storage system can charge and discharge during each time
slot respectively. Noting that the charging and discharging
process can’t be performed simultaneously during the
same time slot for reliability consideration, it can be
modeled as follows:

{
C(t) > 0 ⇒ D(t) = 0
D (t) > 0 ⇒ C (t) = 0.

(3)

We denote the capacity of the energy storage system as
Smax. At last, to prevent the situation that the battery
is overdischarged to the extent that it brings about irre-
versible destruction to the battery, we define a threshold
Smin based on the specification of the actual system, for
example the Depth of Discharge (DoD) which determines
the maximum fraction of power that can be withdrawn. It
determines Smin according to the following equation:

Smin = (1−DoD)× Smax. (4)

Thus we have:

Smin ≤ S(t) ≤ Smax. (5)

2) Renewable Energy Model Here, we assume the
renewable energy generated by renewable energy source
(RES) like wind and/or solar energy, depending upon the
actual composition of the Microgrid. During each time slot
t, it is a random variable denoted as Er(t). Additionally,
we represent the probability density function (p.d.f.) of
such random variable as fEr (er, t). Actually there exists
a maximum value for Er(t), denoted as Emax

r . So this
constraint can be expressed as:

0 ≤ Er(t) ≤ Emax
r . (6)

3) Load Demand Model In this paper, we will make
the following assumptions for the load demands L(t). (i)
the load demand must be served right in time slot t;
(ii) we may have the exact knowledge of the probability
distribution of load demands L(t), the p.d.f. of which can
be denoted as f

L
(l, t); (iii) L(t) is i.i.d over time slots,

end-user’s electricity consumption decision is not affected
by the amount of electricity generated by RES, real-time
and day-ahead electricity prices; (iv) there exits a finite
constant Lmax such that L(t) ≤ Lmax, ∀t.

4) Reliability Index For the reliability modelling, we
denote the possibility that the upstream grid experiences
a failure for each fine-grained time period as pl(t), i.e.,
the possibility that Microgrid loses the support of external
power source. The exact value of this possibility can be
calculated by the Microgrid control center (MGCC) based
on measurement of various physical quantities or obtained
from historical data.

In this paper, a strong assumption that whether upstream
grid fails is independent across time slots is made for sim-
plicity, although it is not the case in practice. According to
the actual operating conditions, the transition from grid-
connected mode to islanded mode which is triggered by
upstream grid fault events happens rarely. Thus, we can
assume that 0 ≤ pl(t) ≤ pmax

l ≪ 1 and the time duration
in each islanded mode would be no longer than one time
slot. In islanded mode, the backup generators will start.
Due to its fast-responding characteristics (1–5 minutes),
compared with the time duration of each time slot, we can
assume that these generators can always reach its rated
power and the total amount of electricity generated is
Edg. Hence, the system reliability metrics, time-average
expected energy not served (EENS) can be expressed as:
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lim
t→∞

inf
1

t

t−1∑
τ=0

E
{
pl(τ)[L(τ)− Er(τ)−D(τ)− Edg]

+
}
.

(7)
We define the “risk cost” as the penalty paid by Microgrid
management entity for all the unserved load or the cost
incurred by operating diesel generators (DG) as backup
power supply when upstream grid failure occurs, mathe-
matically expressed as:

Cps[L(t)− Er(t)−D(t)− Edg]
+ + CpgEdg. (8)

In the above formula, we assume the MGCC should pay
Cps for per unit load loss (load shedding) and Cpg for per
unit electricity generated by DG.

5) Day-ahead Planning and Real-time Scheduling Here,
we consider both the day-ahead planning and real-time
scheduling according to the two-stage property of electric-
ity market.

In this paper, we will denote the per-unit-cost of electricity
from day-ahead electricity market as P dh(t) and real-time
electricity market as P rt(t) ∈ [P rt,min, P rt,max], t ∈ Tk.
For the day-ahead planning, MGCC decides how much
electricity to buy from the day-ahead electricity market,
denoted as Edh

g (t).

For the real-time scheduling, we should decide how much
electricity to buy from real-time electricity market at the
beginning of each fine-grained time slot, denoted by Ert

g (t),
t ∈ Tk, the action of charging and discharging after the
renewable energy, demand load has been realized. Thus,
in real-time period, to balance the demand and supply for
the sake of Microgrid stability, we have:

Edh
g (t)+Ert

g (t) +D(t)− C(t) + Er(t) = L(t). (9)

As a matter of fact, constrained by the limited power
exchange rate at the point of common coupling (PCC),
the electricity provided by electricity market is bounded
by Emax

g , expressed as

Ert
g (t) + Edh

g (t) ≤ Emax
g . (10)

Finally, we assume the following conditions on system
parameters:

Emax
g − Lmax ≥ Cmax. (11)

It can be interpreted as the fact that the energy supply can
always be abundant to accommodate both load demand
and battery. According to assumption (11), we can get
the inequality Emax

g + Er(t) − L(t) ≥ 0, ∀t , which means
the load demand can be supplied by renewable energy and
Macrogrid without resorting to battery.

2.2 Problem Formulation

Given the model described above, we define the expected
operating cost which is composed of the cost of electricity
procurement and risk cost for a single fine-grained time
slot t as follows:

E[Cost(t)] = E{[1− pl(t)][E
rt
g (t)P rt(t) + Edh

g (t)P dh(t)]

+ pl(t){Cps[L(t)− Er(t)−D(t)− Edg]
+

+ CpgEdg}}.
(12)

Then, we define the time average expected operating cost
of a Microgrid as

Cav = lim
t→∞

inf
1

t

t−1∑
τ=0

E[Cost(τ)]. (13)

Thus, the objective of our problem to find a policy π that
determine the amount of electricity purchased from day-
ahead market, i.e., Edh

g (t), t ∈ Tk; the action of charging
and discharging for battery energy storage system, i.e.,
C(t) and D(t); and the amount of electricity purchased
from real-time market Ert

g (t), t ∈ Tk, if necessary every
fine-grained time slot, to minimize the long-term operating
cost of Microgrid, subject to the constraints described
above.

Our problem can be formulated as the following stochastic
control problem, called Problem One:

minimize:
Edh

g (t),Ert
g (t),C(t),D(t)

Cav = lim
t→∞

inf
1

t

t−1∑
τ=0

E[Cost(τ)]

subject to: (2), (3), (5), (9), (10).

Let us denote the optimal policy as πopt that chooses
actions A∗(t) = {Ert,∗

g (t), C∗(t), D∗(t), Edh,∗
g (t)}, t ∈ Tk,

k ∈ N+ to minimize the time average operating cost while
guaranteeing all the constraints listed above. The optimal
value under such policy can be denoted as C∗

av.

Actually, it’s not an easy work to reach such an aggressive
goal. The main reason for such difficulty can be collected
as follows:

(1) The information we can get depends on the time
instants at which we make decision.

(2) Time-coupling property brought about by the limited
capacity constraint (5) in real-time scheduling period.

(3) The tight coupling between two stage decision vari-
ables, which means that the day-ahead energy pro-
curement decisions impact the real-time scheduling
policy and vice versa.

As a matter of fact, both the electricity tariff structure and
time-dependent information prompt us to adopt a two-
stage decision-making framework, i.e., day-ahead planning
and real-time scheduling.

3. DAY-AHEAD PLANNING

In this section, we first present the construction of day-
ahead planning algorithm to utilize the renewable energy
as much as possible. Besides the distribution knowledge
of renewable energy and load demand, at the day-ahead
planning stage we can also obtain the day-ahead elec-
tricity prices P dh(t) for day k and expected real-time
ones E{P rt(t)} through historical data. Based on these
information, we should determine the quantities Edh

g (t),
t ∈ Tk.
The decision making at this stage relies on the following
fact and assumption: 1) the real-time decision would not
affect the day-ahead decision reversely. 2) both variable
Er(t), L(t) are i.i.d. across the fine-grained time slots,
which means there is no correlation between two successive
time slots. According to 1), we do not have the necessity
to consider the action of batteries at this stage, meaning
that the term C(t), D(t) can be ignored in Eq. (9).
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Thus, the original problem can be simplified as follows:

min:
Edh

g ,Ert
g

lim
t→∞

inf
1

t

t−1∑
τ=0

E
[
Ert

g (τ)P rt (τ)+Edh
g (τ)P dh (τ)

]
,

s.t. 0 ≤ Edh
g (t) ≤ Emax

g ,

Edh
g (t)+Ert

g (t) + Er(t) = L(t).

Note that there exists no temporal correlation in the afore-
mentioned optimization problem, thus such optimization
problem can be further simplified as follows, denoted as
Problem Two.

minimize:
Edh

g (t)
E{Edh

g (t)P dh(t)+

[L(t)− Er(t)− Edh
g (t)]+P rt(t)}

subject to: 0 ≤ Edh
g (t) ≤ Emax

g , ∀t.
Here, we define an auxiliary random variable A(t) = L(t)−
Er(t), with its p.d.f. denoted as fA(a, t), which measures
the difference between load demand and renewable energy.
In addition, we denote E{P rt(t)} as P̄ rt(t) for convenience.
The following lemma gives the optimal decision for the
MGCC regarding to the decision variable Edh

g (t).

Lemma 1: The optimal objective value for the above
optimization problem is presented as:

Edh,∗
g (t) =

 0 P dh(t) > P̄ rt(t),

min(F−1
A (1− P dh(t)

P̄ rt(t)
, t), Emax

g ) otherwise.

(14)

Proof. The proof is omitted due to space limitation.

The detail of the day-ahead planning process is presented
in Algorithm 1.

Algorithm 1: Day-ahead electricity purchasing algorithm

Input:
Day-ahead electricity price P dh(t); Expected real-time electri-
city prices P̄ rt(t), t ∈ Tk.

Output:
The electricity purchased day-ahead Edh

g (t).

1: for t := (k − 1)T + 1 to kT do
2: calculate how much electricity to purchase from day-ahead

market, i.e., Edh
g (t) according to Eq. (14).

3: end for

4. REAL-TIME SCHEDULING

At real-time scheduling period, renewable supply and
load demand have been realized, the information of real-
time electricity prices and possibility that Microgrid loses
support from upstream grid have also been obtained. The
main optimization objective for this stage is to improve
system reliability and economic benefits.

Actually, the optimization problem at this stage has the
same form with that defined in Problem One, despite
that Edh

g (t) has been determined for each time period of
the following day.

Traditionally, this issue can be settled by the well known
dynamic programming or Markov decision process. How-
ever, both of them require statistics of all system input
process, besides that it also suffers from the notorious
“curse of dimensionality” problem. However, the recently
developed Lyapunov optimization method, (Neely et al.

(2010), Yao et al. (2012), Guo et al. (2012)) shows that
it perfectly fits the scheduling problem for time-varying
system, without the need for any future knowledge of input
process, in spite of the fact that it is originally designed
for dynamic control of queueing system in wireless system
(Neely et al. (2005)).

Our real-time scheduling algorithm design is based on
the Lyapunov drift method. By taking into account the
operating cost term, we can obtain a stable control policy
which can get a tradeoff between battery capacity and
operating cost. Before going on to construct the Lyapunov
function, we first define

F (D(t), t) = pl(t)Cps[L(t)− Er(t)−D(t)− Edg]
+. (15)

Denote its maximum and minimum derivative with respect
to D(t) as βmax, βmin. Then we introduce a virtual queue
as

X(t) = S(t)− V (P rt,max + βmax)−Dmax − Smin, (16)

which tracks the state of battery energy storage system. In
Eq. (16), the parameter V is defined as positive. Moreover,
by selecting the maximum value of V properly, denoted as
V max, we can always ensure the constraint (5), i.e., the
battery capacity constraint. Note that S(t) is the actual
state of battery energy storage system, whose dynamics
evolves according to Eq. (1). Thus, it can be easy to derive
the dynamics of X(t) as follows:

X(t+ 1) = X(t) + ηC(t)−D(t). (17)

With the virtual queue introduced, we now define our
Lyapunov function, which is the scalar measure of “system
congestion” as follows:

W (t) =
1

2
X2(t). (18)

The Lyapunov drift ∆(t) is defined as the conditional
expected change of Lyapunov function between two neigh-
boring time slots, mathematically represented as follows:

∆(t) = E[W (t+ 1)−W (t) |X(t) ]. (19)

Thus, the “drift-plus-penalty” term can be obtained by
adding a penalty term to the above equation with a
parameter V defined earlier to adjust the emphasis given
to either battery capacity (system congestion) or operating
cost. Here the penalty term is defined as the expected
operating cost during a fine-grained time slot conditioned
on X (t), i.e., E {Cost (t) |X (t)}. So we can write the
“drift-plus-penalty” term as:

∆(t) + V ∗ E {Cost (t) |X (t)} . (20)

Next, we will show that the “drift-plus-penalty” term has
an upper bound in Lemma 2, which is critical for our
control algorithm design.

Lemma 2: Define V > 0, under all feasible control
decisions, which satisfy the constraints of Problem One,
the “drift-plus-penalty” term is bounded as follows:

∆(t) + V ∗ E{Cost(t) |X(t)}
≤ B1 + E{X(t)[ηC(t)−D(t)] |X(t)}
+ V ∗ E{Cost(t) |X(t)}.

(21)

where B1 = 1
2 max[(ηCmax)

2
, (Dmax)

2
].

Proof. The proof is omitted due to space limitation.

Based on the result delivered by lemma 2 and the frame-
work of Lyapunov optimization method, we will always
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choose control actions that minimize the R.H.S. of inequal-
ity (21), i.e., the upper bound of the “drift-plus-penalty”
term. To be specific, It’s the term

E{X(t)[ηC(t)−D(t)] |X(t)}+ V ∗ E{Cost(t) |X(t)}.

Thus, at the beginning of each fine-grained time slot, the
following Problem Three should be solved:

min: E{X(t)[ηC(t)−D(t)] + V ∗ {[1− pl(t)]E
rt
g (t)P rt(t)

+pl(t)Cps[L(t)− Er(t)−D(t)− Edg]
+} |X(t)}

s.t. (2), (3), (9), (10).

Actually, the solution of the above-mentioned optimization
problem can be presented in a analytical form. The main
principle can be elaborated as follows: first we should
decompose Problem Three into two optimization sub-
problems since only one of C(t) and D(t) can be nonzero.
Then the two sub-problems are solved separately. Finally,
the solution with lower optimal objective value is selected
as the control policy.

Define
G(C(t), D(t)) = X(t)[ηC(t)−D(t)]

+ V ∗ {[1− pl(t)]P
rt(t)[L(t)

− Er(t) + C(t)−D(t)− Edh,∗
g (t)]

+ pl(t)Cps[L(t)− Er(t)−D(t)− Edg]
+}.

For the sub-problem that sets C(t) = 0, we can obtain
D(t)’s constraint as

0 ≤ D(t) ≤ Dmax
t := min{L(t)− Er(t)− Edh,∗

g (t), Dmax}.
In this sub-problem, the optimal value for D(t) depends
on D(t)’s coefficient in the objective function. Specifically,
when

X(t) < −V [1− pl(t)]P
rt(t)− V pl(t)Cps.

satisfies, defined as Condition I, we should choose the
minimum value for D(t). Conversely, when

X(t) > −V [1− pl(t)]P
rt(t)− V pl(t)Cps.

satisfies, defined as Condition II, we should choose the
maximum value for D(t).

Similarly, for sub-problem that sets D(t) = 0, C(t)’s
constraint can be presented as

Cmin
t := max{0, Er(t)− L(t) + Edh,∗

g (t)} ≤ C(t) ≤ Cmax.

In this sub-problem, the optimal value for C(t) depends
on C(t)’s coefficient in the objective function. Specifically,
when

X(t) <
−V [1− pl(t)]P

rt(t)

η
.

satisfies, defined as Condition III, we should choose the
maximum value for C(t). Conversely, when

X(t) >
−V [1− pl(t)]P

rt(t)

η
.

satisfies, defined as Condition IV, we should choose the
minimum value for C(t).

According to the combination of above conditions, we can
separate the feasible range of X(t) into several parts. For
each part, the optimal objective values of the two sub-
problems can be easily compared, thus providing the opti-
mal control policy. The detail of the real-time scheduling
rule is elaborated in Algorithm 2.

5. PERFORMANCE ANALYSIS

After presenting the above two algorithms, in this section
we will present the performance bound.

Theorem 1: Define the maximum value of V , i.e., V max

as Smax−Smin−Dmax−ηCmax

βmax−βmin+P rt,max−P rt,min , and suppose the initial bat-

tery energy level S(0) satisfies Smin ≤ S(0) ≤ Smax. Then
the algorithms 1 and 2 can provide the following property
regarding to the time-average cost.

(1) The battery energy level S(t), ∀t ∈ Z+, satisfies the
condition: Smin ≤ S(t) ≤ Smax.

(2) All control decisions of the above algorithms are fea-
sible.

(3) The time-average cost incurred by our algorithms is
within bound B2/V of the optimal objective value C∗

av.

Proof. The proof is omitted due to space limitation.

6. SIMULATION EVALUATION

6.1 Experiments Setup

For the simulation scene considered here, real-world traces
and system configuration can be stated as follows: for the
renewable energy supply, we obtain the related data of a
wind farm with the rated capacity 30MW, from the West-
ern Wind Resource Dataset, then rescale it to the order of
a typical Microgrid. The power demand for each time pe-
riod is assumed to be uniformly distributed in [5.00MWh,
5.33MWh] during time period [8AM, 10PM], uniformly
distributed in [4.66MWh, 5.00MWh] during time period
[10PM, 8AM]. In real time, the electricity prices is selected
from the interval of [67$/MWh, 124$/MWh] in a uniform
way. In day-ahead time, the electricity prices are set to
be constant, namely 80$/MWh. For the variable pl(t), it’s
assumed to be a constant 1/1000 for most of the time

Algorithm 2: Real-time electricity scheduling algorithm

Input:
Real-time electricity price P rt(t); The probability that
Macrogrid fails pl(t); Load demand L(t); Renewable energy
generation Er(t);

Output:
Charging decision C(t); Discharging decision D(t); Real-
time electricity purchasing Ert

g (t);

1: if Condition I & Condition III hold then
2: {C(t), D(t)} = {Cmax, 0}
3: else if Condition II & Condition III hold then
4: {C(t), D(t)} = argmin{G(0, Dmax

t ), G(Cmax, 0)}
5: else if Condition I & Condition IV hold then
6: {C(t), D(t)} = {0, 0}
7: else
8: {C(t), D(t)} = {0, Dmax

t }
9: end if

10: Purchase real-time balancing electricity Ert
g (t) according

to Eq. (9);
11: Update the queues using Eq. (1) and (17).

Table 1. The comparison among time average
operating cost of different schemes.

Scheme Time average operating cost ($)

Scheme I 481.832
Scheme II 408.142
Scheme III 408.146
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slot, with the others 9/10. For system configuration, the
capacity of the battery system is set to be 5MWh, which
is a typical size for a campus-wide Microgrid. At the same
time, we set Cmax and Dmax as 666kWh/slot. For the
parameterDoD and η, we set it as 0.8 and 0.9 respectively,
thus Smin = 1MWh. The parameter Emax

g is set to be
8MWh/slot. At last, the parameters Cps and Cpg are set
as 0.3$/kWh.

6.2 Scheduling Schemes for Comparison

We compare three schemes in our simulation. (i) Scheme
I: the scheme that doesn’t schedule the charging and
discharging actions at the real-time period; (ii) Scheme
II: the scheme that doesn’t consider the reliability issue;
(iii) Scheme III: the two-stage scheme proposed in our
paper.

6.3 Results and Analysis

Note that the time period we consider is a whole season.
Generally speaking, this time duration consists of 90 days.
For the situation that every fine-grained time slot denotes
10 minutes, the total number of slots is 12960.

First, we compare time average operating cost achieved
by Scheme I with that achieved by Scheme II and III.
For Scheme II and III, we set the parameter V to be
10000. As depicted by Tab. 1, a significant cost reduction,
nearly 73$ can be achieved by scheduling charging and
discharging actions.

Second, how the performance of scheme II and III
depends upon different setting of control parameter V is
investigated. For different V = {1, 10, 100, 1000, 10000},
how time average operating cost changes is plotted in
Fig. 2. As it can be seen, the time average procurement
cost decreases with time. The larger V is, the more cost
reduction we can obtain. This finding just confirms the
fact that whether more emphasis is put on cost depends
upon control parameter V . Moreover, under the condition
that Smax and V are fixed, the time average procurement
cost of Scheme II is slightly lower than that of scheme III,
for the reason that enhancing the reliability of Microgrid
sacrifices the economic performance.

Third, for the reliability issue, we examine how much
performance improvement can be achieved by Scheme
III compared with Scheme II. From Fig. 3, we can

observe that as V increases, EENS of Scheme III is
much smaller than that of Scheme II, which is one of the
performance metrics that characterizes the reliability of
Microgrid operation. With the results provided by Fig.
2 and Fig. 3 together, we can conclude that Scheme
III obtain a much greater performance improvement
in reliability at the cost of a much less performance
degradation in economy.

7. CONCLUSION

In this paper, we propose an energy scheduling framework
for Microgrids that jointly considers the reliability and e-
conomy issue. The framework incorporates two parts: day-
ahead planning and real-time scheduling. For day-ahead
planning, we aim to exploit renewable energy potential;
for real-time scheduling, we aim to promote the reliability
of Microgrid operation while taking advantage of the price
diversity in electricity market. Through simulation evalu-
ation, we demonstrate the effectiveness of our approach.
In the future work, we shall investigate how the flexible
loads can be utilized to further improve the performance.
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