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Abstract: Building dynamic models is important in many applications including model-based
design, optimization, and control. When multiple hypothesized models have predictions that
are consistent with the measurements, experimental design is used to discriminate between the
models. This task is particularly challenging for nonlinear systems subject to uncertainties.
An optimal experimental design method for model discrimination for polynomial uncertain
systems is presented that can be used to discriminate models based on dissimilarity of the
probability densities of the model outputs. Generalized polynomial chaos theory in conjunction
with Galerkin projection is used to derive an extended set of ordinary differential equations.
Simulation of the extended system enables prediction of the propagation of probabilistic
uncertainties associated with the model parameters and initial conditions, and to obtain the
output probability densities. The simulation of the hypothetical models is embedded in a
nonlinear optimization problem to determine an optimal input sequence that maximizes model
dissimilarity. The experimental design method is demonstrated using a numerical example.

Keywords: Experimental design; nonlinear systems; probabilistic uncertainties; model
discrimination.

1. INTRODUCTION

Dynamical models are widely utilized in engineering ap-
plications for system design and control purposes. How-
ever, often several hypothesized models are available for
a given system and performing a large number of experi-
ments for (in)validation of the different model hypotheses
can be expensive. In addition, system nonlinearities as
well as uncertainties associated with initial conditions,
model parameters, and measurements make the model
(in)validation task challenging. For example, in chemical
and biological systems, the uncertainties that result from
variability of physiochemical phenomena or experimental
variations often lead to probabilistically distributed model
outputs. Therefore, methods are desired to systematically
design experiments that, with high probability, discrimi-
nate between competing nonlinear models subject to prob-
abilistic uncertainties.

Experimental design for model discrimination has been ex-
tensively investigated (e.g., see Fedorov (1972), Goodwin
and Payne (1977), Zarrop (1979), Walter and Pronzato
(1990), Pukelsheim and Rosenberger (1993), Chen and
Asprey (2003), Borchers et al. (2011), and the references
therein), where auxiliary input signals are designed to
facilitate the separation of multiple models. A traditional
approach to determine the discrimination criterion is based
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on Bayesian inference, in which prior probabilities are
associated with the competing models (Box and Hill,
1967). Input signal design for model discrimination is
then performed using the predicted posterior probabil-
ity computed from Bayes’ theorem. A more widely used
approach is based on the so-called alphabetic-optimality
criteria, where, assuming that one model is correct, the
difference between the predictions of the competing models
is maximized (Atkinson and Fedorov, 1975). Related work
on active fault diagnosis (e.g., Campbell and Nikoukhah
(2004), Blanke et al. (2006), Scott et al. (2013), Mesbah
et al. (2014a), Paulson et al. (2014)) deal with input signal
design for fault model invalidation.

To address the experimental design problem for uncertain
systems, a relaxation approach has been presented by
Georgiev and Klavins (2008) to derive disparity certifi-
cates for stochastic inputs that yield different outputs
for all possible disturbances; hence, enabling model dis-
crimination in the presence of uncertainties. Halder and
Bhattacharya (2012) proposed a probabilistic formulation
for model validation using the Wasserstein metric and
Liouville’s equation for uncertainty propagation.

This paper considers polynomial ordinary differen-
tial equations, which often arise in the modeling of
(bio)chemical reaction networks or can be obtained by
approximation or state immersion (Ohtsuka, 2005). An op-
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timal experimental design method is presented to discrim-
inate uncertain nonlinear models based on dissimilarity of
the probability density of the model outputs.

The problem of optimal experimental design is formally
stated in Sec. 2. In Sec. 3, the probabilistic uncertainties
associated with model parameters and initial conditions
are propagated using generalized Polynomial Chaos (PC)
theory (Wiener, 1938; Xiu and Karniadakis, 2002) in con-
junction with Galerkin projection. The resulting higher-
dimensional set of deterministic ordinary differential equa-
tions (ODEs) is used to construct the probability density
functions (PDFs) of the outputs. Different strategies to
construct the PDF of a stochastic variable needed for
probabilistic model discrimination are discussed and a
computationally efficient approach for the approximation
of unimodal PDF is proposed. Sec. 4 presents a measure
for dissimilarity of the PDFs of the model outputs. The
optimal input design for experimental design is posed in
form of a nonlinear optimization problem minimizing an
input norm, while at the same time enforcing an upper
bound on the overlap of the noise-corrupted output PDFs
as determined by PC. Sec. 5 contains a numerical illustra-
tion of the proposed method.

Notation. nz (zi) denotes the number of elements (resp.

the ith element) of a vector z. Φ
(m)
(i) represents a uni-

variate polynomial of order m of stochastic variables ξi,

i ∈ {1, . . . , nξ}. {Φ(m)
(i) }

P
m=0 denotes a finite sequence of

P+1 polynomials of order up to P , which are orthonormal
with respect to the probability measure µ(ξi). The Kro-
necker product is represented by ⊗, and

⊗n
i=1 vi denotes

the sequence of Kronecker products v1 ⊗ v2 ⊗ · · · ⊗ vn.
ν(m) (v) denotes the mth moment of a random variable or
stochastic variable v. 〈φ1(ξ), φ2(ξ)〉 denotes the inner prod-
uct

∫
spt ξ

φ1(ξ)φ2(ξ)µ(dξ) with respect to the probability

measure µ(ξ) with support spt ξ. The number of times that
element i appears in list A is denoted by #(A, i).

2. PROBLEM FORMULATION

This paper considers nonlinear dynamical models of the
form

m[j] :

{
ẋ[j](t) = f [j]

(
x[j](t), p[j], u[j](t)

)
y[j](t) = h[j]

(
x[j](t), p[j], u[j](t)

) j ∈ {1, 2}

(1)
where the superscript [j] denotes the model index and
the variables of the corresponding model; the variables
x[j] ∈ Rnx , u[j] ∈ Rnu , y[j] ∈ Rny , and p[j] ∈ Rnp denote
the states, inputs, outputs, and parameters, respectively;
and f [j] and h[j] denote polynomial functions. To shorten
the notation, the dimensions of the variable vectors are
assumed to be the same for all models. This paper for-
mulates the optimal experimental design problem for only
two models, both due to space limitations and because the
extension to multiple models is straightforward.

Probabilistic uncertainties associated with model pa-
rameters and initial conditions are considered. Denote
the vector of independent random variables by ξ[j] :=

[p
[j]
1 , . . . , p

[j]
np , x

[j]
1 (0), . . . , x

[j]
nx(0)]T ∈ Rnξ , nξ = np + nx.

To discriminate the two models, it is assumed that ex-
periments are performed over a finite time horizon [0, T ]
and my measurements are taken at discrete time points

ty,k ∈ [0, T ], k = 1, . . . ,my. The measurements ŷ
[j]
lk :=

ŷ
[j]
l (ty,k), l = 1, . . . , ny are expressed by noise-corrupted

model outputs as

ŷ
[j]
lk = y

[j]
lk

(
1 + w

[j]
lk

)
, l = 1, . . . , ny, j ∈ {1, 2}, (2)

where y
[j]
lk and w

[j]
lk are stochastically independent. The

measurement noise w
[j]
i (ty,k) ∈ R is assumed to be multi-

plicative with known PDF µ(w
[j]
lk ).

The probabilistic uncertainties of the parameters, initial
conditions, and measurement noise lead to probabilisti-

cally distributed outputs with the PDFs µ(ŷ
[j]
i (t)). Model

discrimination is largely hindered by the distributed char-

acter of the outputs. If the support of the PDFs µ(ŷ
[1]
i (t))

and µ(ŷ
[2]
i (t)) overlap and have non-negligible probabili-

ties on the support intersection, measurements may not
allow unambiguous invalidation of one of the models. The
model invalidation becomes even more difficult due to the
measurement noise.

This paper aims to design an input sequence to be applied
to the true system such that actual measurements can
be associated, with a high probability, either with the
noise-corrupted outputs of model m[1] or of model m[2].A
control vector parameterization with piecewise constant
input sequence, which is changed at mu different time-
points tu,k ∈ [0, T ], k = 1, . . . ,mu, is adopted,

u(t) =


ū(tu,1), t < tu,2
ū(tu,k), tu,k ≤ t < tu,k+1, k = 2, . . . ,mu − 1

ū(tu,mu), t ≥ tu,mu
where the input values are restricted to U ⊆ Rnu . The
input design problem is stated as follows.

Problem 1 (Experimental Design for Model
Discrimination): Find an optimal input sequence
{ū(tu,1), . . . , ū(tu,mu)} to both models m[1] and m[2] (i.e.,

u(t) = u[1](t) = u[2](t)) such that the output PDFs are
separated at least at one (measurement) time instant in
the presence of measurement noise.

To solve Problem 1, three subproblems should be ad-
dressed. First, the probability density functions of the
model outputs resulting from the probabilistic uncertain-
ties of model parameters and initial conditions should be
constructed, which requires propagation of the probabilis-
tic uncertainties through the nonlinear model (Sec. 3). Sec-
ond, a measure of the dissimilarity of the output PDFs is
required. Third, a nonlinear optimization problem should
be formulated to determine an optimal input sequence
that minimizes the overlap between the output PDFs. The
latter two subproblems are discussed in Sec. 4.

3. UNCERTAINTY PROPAGATION USING
POLYNOMIAL CHAOS

This section deals with the propagation of the probabilistic
uncertain parameters and initial conditions through the
nonlinear dynamical models. For this purpose, a Galerkin-
based Polynomial Chaos (PC) approach is employed (e.g.,
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see Kim et al. (2013)). In the Galerkin-based PC ap-
proach, the original nonlinear system (1) is transformed
into a nonlinear system of ordinary differential equations
of higher dimension, which is then solved to determine
the coefficients of the PC expansions. The moments of
the stochastic variables can be computed based on the
PC coefficients. Besides the Galerkin method, collocation
approaches can also be used to determine the coefficients
of the PC expansions (e.g., see Mesbah et al. (2014b) and
the citations therein). To simplify the notation in this
section, the superscripts [j], j ∈ {1, 2} on the variables
are dropped.

Consider the polynomial dynamics for the rth state,

ẋr = fr(x, p, u) =

or∑
i=1

pji

nx∏
l=1

xαrill

nu∏
q=1

uβriqq ,

∀r = 1, . . . , nx, (3)

where or denotes the number of monomials and the ith

monomial has total degree
∑nx
l=1 αril +

∑nu
q=1 βriq, where

αril and βriq denote the degree of variables xl and uq,
respectively. The polynomial output map h in (1) can be
represented similarly.

The PC approach is not limited to polynomial systems.
Polynomial dynamics, however, simplify the evaluation of
the multidimensional integrals arising due to the Galerkin
projection. In general it is not a limitation, as many non-
linear differentiable functions (e.g., rational, exponential,
and transcendental) can be approximated or exactly rep-
resented by polynomial dynamics using state immersion
(Ohtsuka, 2005).

3.1 Polynomial Chaos Expansion

All stochastic variables v affected by the probabilistic
uncertainties of the (stochastically independent) variables
ξi, i = 1, . . . , nξ (i.e., the initial conditions and the model
parameters, but not the input which is considered certain)
can be approximated using a PC expansion of order P
(Wiener, 1938; Xiu and Karniadakis, 2002)

v(ξ) ≈ v(0) +

nξ∑
i1=1

v(i1)Ψ
(1)
(i1) +

nξ∑
i1=1

i1∑
i2=1

v(i1,i2)Ψ
(2)
(i1,i2)+

· · ·+
nξ∑
i1=1

i1∑
i2=1

· · ·
iP−1∑
iP=1

v(i1,...,iP )Ψ
(P )
(i1,...,iP ), (4)

where v(i1,i2,...) denote the coefficients of the PC expansion
that describe the influence of the uncertainties of the
variables ξi1 , ξi2 , . . . on the stochastic variable v. Ψ

(m)
(i1,i2,...)

denotes the multivariate polynomial in the random vari-
ables ξi1 , ξi2 , . . . of total degree m. The multivariate poly-
nomials can be written in terms of univariate polynomi-

als: Ψ
(m)
(i1,i2,...)

:= Φ
(m1)
(1) Φ

(m2)
(2) · · ·Φ

(mnξ )

(nξ)
, with m = m1 +

· · · + mnξ , and mi = #({i1, i2, . . .}, i), i = 1, . . . , nξ. The

polynomial bases
{

Φ
(m̃)
(i)

}P
m̃=0

, i = 1, . . . , nξ are orthogo-

nal with respect to the corresponding PDFs µ(ξi) of the
random variable ξi. For standard distributions such as
Normal or Beta distributions, orthogonal bases are readily
available (Xiu and Karniadakis, 2002) or, in general, the
orthogonal bases can be constructed based on moments

(Oladyshkin and Nowak, 2012) or using Gram-Schmidt
orthogonalization (Gerritsma et al., 2010).

Eq. (4) corresponds to a weighted sum of polynomials

with P̃ :=
(nξ+P )!
nξ!P ! terms in total and can be written in

a compact form as

v(ξ) ≈ ṽTΦ̃,

with

ṽ := [v(0), v(1), v(2), . . . , v(nξ), v(1,1), v(1,2), . . . ,

v(1,1,1), v(1,1,2), . . . , v(nξ,nξ,··· ,nξ)]
T ∈ RP̃ (5)

being the vector of coefficients of the PC expansion and

Φ̃ := [1,Φ
(1)
(1),Φ

(1)
(2), . . . ,Φ

(1)
(nξ)

,Φ
(2)
(1),Φ

(1)
(1)Φ

(1)
(2), . . . ,

Φ
(3)
(1),Φ

(2)
(1)Φ

(1)
(2), . . . ,Φ

(P )
(nξ)

]T ∈ RP̃

being a P̃ -dimensional vector of the multivariate polyno-
mials.

3.2 Galerkin Projection

To obtain the coefficients of the PC expansions, an ex-
tended system of ordinary differential equations is de-
rived using Galerkin projection (Wiener, 1938; Xiu and
Karniadakis, 2002). The system of ODEs describes the
dynamics of the coefficients. Inserting the PC expansion
of the stochastic variables (4) into the system dynamics
(3) results in

˙̃xr = f̃r(x̃, p̃, u, Φ̃)

=

or∑
i=1

Eα̃ri

(
p̃ri ⊗

(
nx⊗
l=1

αril⊗
a=1

x̃l

)
nu∏
q=1

uβriqq

)
∀r = 1, . . . , nx, (6)

where x̃r and p̃ri are the vectors of coefficients of the
PC expansions (cf. (5)) of the states and parameters,
respectively. The system (6) has extended state space

dimension P̃ nx and describes the dynamics of the PC

expansion coefficients. The outputs ỹr = h̃r(x̃, p̃, u, Φ̃),
r = 1, . . . , ny can be represented similarly.

The projection matrix Eα̃ri in (6) accounts for the
Galerkin projections of the products of the different mul-
tivariate orthogonal polynomials due to the polynomial

terms appearing in (6). The kth row, k = 1, . . . , P̃ of Eα̃ji
is given by

[ek,11···1, ek,21···1, . . . , ek,P̃1···1, ek,12···1, . . . ,

e
k,1P̃ ···1, . . . , ek,P̃ P̃ ···P̃ ]T ∈ RP̃

α̃ri+1

,

with α̃ri :=
∑nx
l=1 αril and

ek,i1i2···ip =
〈Φ̃k, Φ̃i1 · · · Φ̃ip〉
〈Φ̃k, Φ̃k〉

,

k, i1, . . . , ip ∈ {1, . . . , nP̃ }. (7)

The majority of eij ,i1i2···ip are zero, independent of the
chosen basis, due to the properties of (power) orthogonal
polynomials (Gautschi et al., 2004; Milovanović, 2001).
These properties, as well as symmetries such as eij ,12 =
eij ,21, can be exploited to reduce the large computational
burden of building (6). The projection integrals can be
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evaluated using Gauss Quadrature, which is exact for the
considered polynomial dynamics.

Once the projection coefficients (7) have been determined,
the initial conditions x̃(0) as well as the coefficients of the
PC expansions corresponding to the parameters p̃j have
to be determined, which can be obtained by projection
of the corresponding PC expansion (4) onto the different

orthogonal polynomials Φ̃k. For v = ξi, this projection is

ṽk =
〈ξi, Φ̃k〉
〈Φ̃k, Φ̃k〉

, k = 1, . . . , P̃ , (8)

which is zero in most cases due to orthogonality.

3.3 Computation of the Moments

The system (6) and the initial conditions obtained from (8)
can be simulated to obtain the moments of the PDFs of
the model outputs, as required for formulating the optimal
experimental design problem. The moments of a stochastic
variable v can be derived based on the coefficients ṽ of its
respective PC expansion (Fisher and Bhattacharya, 2009)

ν(1)(v) :=

∫
spt ξ

v(ξ)µ(dξ) =

P̃∑
i1=1

(
ṽi1〈1, Φ̃i1〉

)
= v(0)

ν(2)(v) :=

∫
spt ξ

v(ξ)2µ(dξ) =

P̃∑
i1=1

P̃∑
i2=1

(
ṽi1̃vi2〈Φ̃i1 , Φ̃i2〉

)

=

P̃∑
i=1

(
ṽ2
i 〈Φ̃i, Φ̃i〉

)
and generally for all m ≥ 0

ν(m)(v) :=

∫
spt ξ

v(ξ)mµ(dξ) (9)

=
P̃∑

i1=1

· · ·
P̃∑

im=1

(
ṽi1 · · · ṽim〈Φ̃i1 , · · · Φ̃im〉

)
.

The integrals can be evaluated using Gauss Quadrature.
The calculation of the higher moments (m > 2) can be a
computationally formidable task due to the large number
of integrals that need to be evaluated. However, the
majority of integrals are zero due to (power) orthogonality.

4. EXPERIMENTAL DESIGN FOR MODEL
DISCRIMINATION

Optimal experimental design for the discrimination of two
models aims to determine an input sequence that enables
associating the actual system measurements ŷ with the
outputs of either model m[1] or model m[2], which requires
that the PDFs of the outputs of the two models be sep-
arated in the presence of probabilistic uncertainties. The
probability of misclassification (i.e., choosing the wrong
model) is directly related to the similarity of two PDFs
(Anderson, 2003): the more similar the distributions are,
the larger the error. Hence, the probability of misclassifica-
tion (i.e., the Bayes error) should be minimized to reduce
the overlap of the output PDFs of the two models.

Next, a measure for the dissimilarity of two PDFs is
presented and its relationship to the Bayes error is estab-
lished. PC will then be used to propagate the probabilistic

uncertainties of the initial conditions and parameters to
approximate the PDFs of the outputs. One of the chal-
lenges is to include the measurement noise into the analy-
sis. Finally, a nonlinear optimization problem is formulated
to design the input sequence for model discrimination.

4.1 Measure for Dissimilarity of Probability Densities

A measure closely related to the Bayes error is the Bhat-
tacharyya coefficient Bhattacharya and Toussaint (1982);
Kailath (1967). The Bhattacharyya coefficient is defined
for a two-hypotheses (see (Bhattacharya and Toussaint,
1982) for multiple hypotheses) problem by

ρ[1,2] :=

∫ ∞
−∞

√
µ[1](ξ)µ[2](ξ)dξ, (10)

where µ[1] and µ[2] are two continuous PDFs corresponding
to the two hypotheses. The Bhattacharyya coefficient ρ[1,2]

will be larger if the similarity of the PDFs is larger. The
coefficient is one for identical distributions and is zero if
the distributions do not overlap. The advantage of the
Bhattacharyya coefficient is its validity for any distribution
and, therefore, its suitability as a generic model discrimi-
nation criterion. In addition, the Bhattacharyya coefficient
gives an upper bound on the Bayes probability of mis-

classification P
[1,2]
e . When the prior probabilities of the

two model hypotheses are equal, the Bayes probability of
misclassification is given by (Bhattacharya and Toussaint,
1982)

P [1,2]
e ≤ 1

2
ρ[1,2]. (11)

In this work, the Bhattacharyya coefficient is used for
characterizing the similarity of the output PDFs of the two
models. Expression (10) merely allows the comparison of
univariate PDFs (i.e., one output at one measurement time
point). However, the formulation of the model discrimina-
tion problem requires taking into account multiple outputs
and multiple measurement time points, which motivates
the use of the criterion

Λ[1,2] :=

my∏
k=1

ny∏
l=1

ρ
[1,2]
lk , (12)

where ρ
[1,2]
lk denotes the Bhattacharyya coefficient of the

lth output at time instant k of models m[1] and m[2]. Λ[1,2]

corresponds to the product of the different Bhattacharyya
coefficients for all outputs and at all measurement time
points. If Λ[1,2] = 0, then the PDFs do not overlap at
least at one time point and, therefore, the misclassification
probability is zero if the corresponding output is measured
at the corresponding time point. When Λ[1,2] > 0, however,
the PDFs overlap at all time points. In this case, the
upper bound on the misclassification error for the different
outputs at the different time points can be determined
using (11).

4.2 Moment-Based Approximation of Output Probability
Densities Corrupted by Noise

According to (2), the measurement noise affects the model
outputs multiplicatively. The PDF of the noise-free part
y[j] = h[j](x[j], p[j], u) of the model output can be deter-
mined using PC-based Monte Carlo simulations (Mesbah
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et al., 2014a), or by approximating the PDFs using the mo-
ments (see (9)). This paper employs the latter approach.

Provided that the measurement noise w
[j]
lk is independent

from y
[j]
lk in (2), the known moments ν(i)(w

[j]
lk ) and the

moments ν(i)(ỹ
[j]
lk ) obtained using PC expansions can be

utilized to determine the mth moments of the PDF of the
noisy outputs µ(ŷlk):

ν(m)(ŷ
[j]
lk ) =

m∑
i=0

(m
i

)
ν(i)(ỹ

[j]
lk )ν(m−i)(ỹ[j]

lk )ν(m−i)(w
[j]
lk ).

(13)

Expression (13) follows directly from the definition of the
expectation and (raw) moments, as well as the property

that y
[j]
lk and w

[j]
lk are stochastically independent.

To compute Λ[1,2], an approximation of the PDF in form
of an analytic expression is derived using the moments.
Different approaches to determine the PDFs based on
moments have been proposed in the literature. One ap-
proximation is given by the product of a PDF of a chosen
base density function (such as the Normal or Uniform
distributions) and a polynomial (Provost, 2005). The co-
efficients of the polynomial can be explicitly determined
from the moments of the base density and the PDF that
is to be approximated. This approach results in a closed-
form solution that is easy to implement. However, a large
number of moments is required to obtain a good approx-
imation and the approximation accuracy depends on the
congruence of the tails of the base density and the to-
be-approximated PDF. Another approach to approximate
the PDF is maximum entropy estimation using a Gaussian
Mixture Model, along with constraints on the moments
(Dutta and Bhattacharya, 2010). This approach is very
flexible and is suitable to approximate multimodal dis-
tributions. However, besides an appropriate choice of the
number of Gaussian bases, the approach requires solution
of a nonlinear optimization problem, which would further
complicate the experimental design problem.

In this work, a simple method is used to approximate
the output PDFs by employing the four-parameter Beta
distribution (Hanson, 1991). The four-parameter Beta dis-
tribution is a family of continuous probability distributions
parameterized by two shape parameters (α > 0, β > 0)
and two parameters defining the bounded support (lb and
ub for lower and upper bound). The distribution can be
defined in terms of the gamma function Γ by

βPDF(ζ, α, β, lb, ub) :=
(ζ − lb)α−1(ub− ζ)β−1

(ub− lb)α+β−1

Γ(α+ β)

Γ(α)Γ(β)
.

All four parameters in this expression can be estimated
based on the method of moments (Hanson, 1991) using
the first four central moments (mean, variance, skewness,
and excess kurtosis). The advantage of this approach
is that it is flexible and an analytic form of the PDF
can be easily obtained. In addition, the resulting βPDF

distributions possess the same first four moments as the
noisy output PDFs as given by (13) if these are used to
determine the four parameters. Since the calculation of the
moments based on the coefficients of the PC expansions
is computationally demanding for higher order moments
(see Eqs. (9)), having an analytic form of a distribution

with a small number of moments provides a reasonable
tradeoff between the accuracy of PDF construction from
moments and the computational efficiency. Furthermore,
a closed-form solution for the Bhattacharyya coefficient
(10) is available for the Beta distribution, which means
that (12) can be easily obtained.

In the sequel, Λ̂
[1,2]
β denotes the approximation of the

model discrimination criterion in (12), which is obtained
using the four-parameter Beta distribution βPDF.

4.3 Least-costly Input Design for Model Discrimination

In the so-called least-costly experimental design frame-
work (Gevers, 2005), some norm of the input signal is
often minimized. In this work, the input design prob-
lem for model discrimination is formulated to minimize
the function J

(
ū(tu,1), . . . , ū(tu,mu)

)
:=
∑mu
k=1 ‖ū(tu,k)‖2,

while ensuring that the outputs of competing models are
separated in the presence of uncertainties. Based on the
above results, the input design problem can be cast as

infimum
ū(tu,1),...,ū(tu,mu )

J
(
ū(tu,1), . . . , ū(tu,mu)

)
subject to: ˙̃x

[1]
= f̃ [1](x̃[1], p̃[1], u, Φ̃[1]), x̃[1](0)

ỹ[1] = h̃[1](x̃[1], p̃[1], u, Φ̃[1])

˙̃x
[2]

= f̃ [2](x̃[2], p̃[2], u, Φ̃[2]), x̃[2](0)

ỹ[2] = h̃[2](x̃[2], p̃[2], u, Φ̃[2])

Λ̂
[1,2]
β ≤ Λ

ū(tu,k) ∈ Uk, ∀k = 1, . . . ,mu,
(14)

where Λ is some nonnegative threshold that provides an
upper bound on the worst-case misclassification error.
With (11) and (12), Λ can be defined by

Λ
1

myny ≤ 2Pe,max, (15)

where Pe,max is the maximum admissible misclassification
error for a measured output at a certain time instant.

5. NUMERICAL ILLUSTRATION

This section demonstrates the proposed optimal input
design approach for model discrimination.

5.1 Model Descriptions

Consider the Michaelis-Menten and Henri mechanisms as
two model hypotheses for an enzyme-catalyzed reaction
(see Henri (2006); Rumschinski et al. (2010)). In both
biochemical reaction models, an enzyme E and a substrate
S form an enzyme-substrate complex C, which is converted
to a final product P . The models have two conservation
relations in which the total enzyme and substrate con-
centrations are assumed to be one. The dynamic models
are described according to the law of mass action, where
x1 and x2 denote the substrate and complex, respectively.
The model for the Henri-mechanism is described by

m[1] :

{
ẋ

[1]
1 = (p

[1]
1 + p

[1]
3 )(x

[1]
2 − 1)x

[1]
1 + (p

[1]
2 + u)x

[1]
2

ẋ
[1]
2 = p

[1]
1 (1− x[1]

2 )x
[1]
1 − (p

[1]
2 + u)x

[1]
2 .

The model for the Michaelis-Menten mechanism is

m[2] :

{
ẋ

[2]
1 = p

[2]
1 (x

[2]
2 − 1)x

[2]
1 + (p

[2]
2 + u)x

[2]
2

ẋ
[2]
2 = p

[2]
1 (1− x[2]

2 )x
[2]
1 − ((p

[2]
2 + u) + p

[2]
3 )x

[2]
2 .
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the discrimination of models m[1] (blue) and m[2] (red) by input design. (a) The support of the output PDFs for
an initial input sequence. (b) The support of the output PDFs when the designed input sequence is applied. (c) The designed input
sequence. (d) Output PDFs at time instant t = 2.5 as obtained for the applied input and comparison with Monte-Carlo simulations
(black thin lines show the histogram for the Monte-Carlo simulations). (e) and (f) show the comparison of minimal/maximal values
from the Monte-Carlo simulations (black lines) with the support predicted by the Beta distribution fits for models m[1] and m[2].

The initial conditions x1(0) and x2(0) are uniformly dis-
tributed on the intervals [0.93, 0.98] and [0.01, 0.06], re-
spectively. The parameters p1, p2, p3 are uniformly dis-
tributed on [0.9, 1.1]. The input u is assumed to affect the
reaction parameter p2 in an additive manner.

PC expansions of order P = 2 were used to approximate
the two models. Fig. 1(a) shows the measured output
y = x2. As can be seen, the support of the probability
densities overlap, which indicates that the models cannot
be discriminated adequately even when the output was not
corrupted by measurement noise. Thus, an input sequence
is designed to discriminate the models.

5.2 Input Design

The experimental design was performed for a time horizon
of 2.5 min, which was split into 10 equidistant time inter-
vals. The input sequence was discretized in a piecewise
manner. The input was constrained by 0 ≤ uk ≤ 5,
k = 1, . . . , 10. Output measurements were taken at ty,1 =
0, ty,2 = 0.25, . . . , ty,11 = 2.5 min. The measurements were
corrupted by a white noise sequence, which has a nor-
mal distribution with zero mean and standard deviation
0.0326.

The nonlinear optimization problem (14) with Pe,max =
0.174 was solved using the Matlab routine fmincon, in
which the initial input profile was defined as u0 =
[0, 1, 1, 0, . . . , 0]. The optimization was terminated after 15
iterations, which took all together about 60 min. Fig. 1(b)
indicates that the designed input sequence (shown in
Fig. 1(c)) enabled an adequate separation of the noisy
outputs of the two models and, therefore, facilitates the
task of model discrimination.

In Figs. 1(d)–(f), 10,000 Monte-Carlo simulations are com-
pared with the PC simulation and subsequent Beta distri-
bution fit. Fig. 1(d) shows the PDF of the noisy model
outputs at time instant 2.5 min, which demonstrates that
the output PDFs are separated and that the proposed PC
approach agrees very well with Monte-Carlo simulations.
Figs. 1(e)–(f) compare Monte-Carlo simulations with PCE
simulation, which indicate a satisfactory prediction of the
support of the output PDFs at different time instants by
the PC expansions.

6. CONCLUSION

This paper presents a method for input design for optimal
model discrimination. Uncertainties of the parameters and
initial conditions are taken into account using a Poly-
nomial Chaos approach to approximate the PDF of the
outputs. An empirical measure for model discrimination
based on the Bhattacharyya coefficient is proposed that is
especially suited for the proposed nonlinear optimization
problem. The measure requires the knowledge of the prob-
ability densities of the noisy output. A simple moment-
based approximation of the PDF of the noisy output was
employed using the four-parameter Beta distribution.

The four-parameter Beta-distribution is a very versatile
distribution that can approximate many other distribu-
tions including the Normal, Uniform, or Log-normal dis-
tributions. However, the approximation can be unsatisfac-
tory, e.g., for multimodal distributions. The approximation
quality can be tested by PCE simulation and evaluating
the fits visually or quantitatively. In case of low approxi-
mation quality, other approximation techniques should be
used as described in the text.
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