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Abstract: Model-based trajectory planning is addressed for the realization of desired tempera-
ture trajectories for a deep drawing tool. Based on the distributed-parameter system description
of the tool a finite element approximation is deduced which serves as basis for a systematic
flatness-based design of a feedforward control. Trajectory assignment is considered by taking into
account the minimization of a process-related objective function. Simulation and experimental
data obtained from a fully equipped forming tool are presented for pure feedforward control
and a two-degree-of-freedom control concept amending the feedforward part by an output error
feedback controller. These confirm the applicability of the design technique and the tracking
performance.
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1. INTRODUCTION

The production of car bodies is a challenging field for
control engineering due to the demand for zero failure pro-
duction at increased shape complexity, quality standards
and high throughput volumes. One essential production
step is deep drawing during which a metal sheet is drawn
into a die by a punch to achieve the forming process.
This process is significantly influenced by a great number
of varying process and material parameters. Moreover,
requirements on shape sharpness and quality reduce the
production window such that even small deviations from
the design state may lead to scrap.

The process-related temperature is a well-known influence
value depending primarily on the tribology system be-
tween the tool and the sheet, the plasticity of the sheet
material and the thermoelastic properties of the tool.
Typically, the temperature increases during the produc-
tion process caused by friction and plastic deformation of
the metal sheet, until an equilibrium is reached. Hence,
during interruptions of production the tool cools down.
Every deep drawing process is unique because of the
shape, the tool stiffness and the blank geometry. Until
now the complexity of the temperature influence and the
interactions significantly complicate the development of
an appropriate process simulation model. This presently
prevents a reliable forecast of the temperature evolution
and the interaction between the different influence and
exchange factors. However, experience shows that a devia-
tion of more than ±10 K of the tool temperature from the
operating point may already lead to defects. Experiments
show that if temperature related defects are detected in
the press shop, appropriate tool heating before production
start improves production quality. For further information
of the temperature effect on the deep drawing process, see
[Böhm et al., 2013] and the references therein.

In order to realize suitable tool heating, experiments at the
press shop with a tool equipped with heating cartridges
showed that standard industrialized PI or PID control
units are incapable of achieving the desired performance
and accuracy in a fixed time span. Thereby additional
constraints are imposed by a rather narrow realization
window for the desired temperature set point change
and the required temperature accuracy since excessively
high or low tool temperatures at the production start
can deteriorate the process [Böhm et al., 2013]. Hence,
a sophisticated trajectory planning and control strategy
is needed that takes into account the geometric extension
of the tool and the resulting spatial-temporal temperature
evolution in order to realize desired temperature profiles
in selected areas of the tool within a fixed time span.

Trajectory planning refers to the design of a (feedforward)
control such that the controlled variables of the system
follow prescribed desired (spatial-temporal) reference tra-
jectories. Given finite-dimensional nonlinear systems tra-
jectory planning can be systematically approached ex-
ploiting differential flatness [Fliess et al., 1995]. Since
the underlying idea, i.e. the existence of a one-to-one
correspondence between trajectories of systems can be
adapted to distributed-parameter systems (DPSs), various
approaches have been suggested with a major focus on
boundary actuation and DPSs in a single spatial variable,
see, e.g., Fliess et al. [1997], Laroche et al. [2000], Petit
and Rouchon [2001], Lynch and Rudolph [2002], Meurer
and Zeitz [2005] and the references therein. Extensions
to higher-dimensional spatial domains are, e.g., provided
in Rudolph [2003], Petit and Rouchon [2002], Rouchon
[2005], Meurer and Kugi [2009], Meurer [2011].

To address the complex shaped spatial domain of the con-
sidered deep drawing tool (cf. Fig. 1) as well as in-domain
actuation by means of heating cartridges subsequently
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Fig. 1. Base part of the deep drawing tool (exploded view).

the flatness-based spectral design technique introduced in
Meurer [2011] and further generalized in Meurer [2013]
is considered and combined with output error feedback
control. The underlying idea is based on the systematic
construction of flat output by exploiting the properties of
the spectral decomposition of so-called Riesz spectral oper-
ators (see, e.g., Curtain and Zwart [1995]). Their eigenval-
ues are isolated and the set of corresponding eigenvectors
and adjoint eigenvectors form an orthonormal Riesz basis.

In this contribution, the spectral approach is combined
with a finite element approximation of the partial dif-
ferential equation (PDE) describing the spatial-temporal
temperature evolution in the deep drawing tool with em-
bedded heating cartridges. Based on the finite-dimensional
representation an efficient semi-numeric trajectory plan-
ning approach is developed taking into account optimal
trajectory assignment for the flat output in view of ac-
tuator constraints. Simulation and experimental results
for both flatness-based feedforward control and its com-
bination with output error feedback control are presented
which illustrate the achievable tracking performance for
the deep drawing tool. To the best knowledge of the
authors, this presents the first implementation and experi-
mental validation of flatness-based trajectory planning for
thermal DPSs with 3-dimensional spatial domain.

2. PROBLEM FORMULATION

A deep drawing tool basically consists of the three parts,
namely the blankholder, die and punch. This paper only
considers the die. Fig. 1 shows the base part of the deep
drawing tool of a inner backdoor with a weight of about
11.5 tons.

2.1 Continuous distributed-parameter setting

Assuming linear conditions, the spatial-temporal evolution
of the (relative) temperature x(z, t) in the die with 3-
dimensional domain Ω is determined by the heat equation

ρcp∂tx = ∇ · (κ∇x) +
∑m
j=1bjuj , (1)

with (z, t) ∈ Ω × R+. Here, x(z, t) = ϑ(z, t) − ϑu,
where ϑ(z, t) describes the temperature distribution in
the die and ϑu is the ambient temperature, assumed
to be constant and uniform. The terms ρ(z), cp(z) and
κ(z) refer to density, specific heat capacity and thermal
conductivity. The coefficient bj(z) represents the j-th

spatial actuator characteristics with uj(t) denoting the
power of the heating cartridges. Since only heating but
not cooling is possible, constraints

uj(t) ∈ [0, ū], j = 1, . . . ,m (2)

apply. Dirichlet and Robin (mixed) boundary conditions
are imposed, i.e.

x = 0, (z, t) ∈ R+ × ∂Ωd (3)

−κ∇x ·n = hx, (z, t) ∈ R+ × ∂Ωm (4)

with ∂Ω = ∂Ωd ∪ ∂Ωm the boundary of Ω. Here, h(z)
is the heat transfer coefficient and (κ∇x) ·n refers to the
weighted derivative of x(z, t) in the direction of the outer
normal of the boundary surface ∂Ω. The system is assumed
to be initially in steady state

x = x0 = ϑ0 − ϑu, z ∈ Ω, t = 0, (5)

where x0(z) = xs(z) is a solution to

0 = ∇ · (κ∇xs) +
∑m
j=1bju

s
j , z ∈ Ω (6)

with the boundary conditions xs = 0, z ∈ ∂Ωd and
−κ∇xs ·n = hxs, z ∈ ∂Ωm, given constant input values
usj = usj,0, j = 1, . . . ,m.

2.2 Finite element approximation

The weak form of (1)-(5) permits to deduce a finite
element (FE) approximation depending on the chosen set
of spatial ansatz functions. Let δx(z) ∈ H1

d(Ω) = {f(z) ∈
H1(Ω) | f(z) = 0, z ∈ ∂Ωd} denote a test function.
Multiplication of (1) with δx(z) and integration over Ω
taking into account the divergence theorem yields∫

Ω
ρcp∂txδxdΩ +

∫
Ω
κ∇x · ∇δxdΩ

−
∫
∂Ω

δx(κ∇x ·n)d∂Ω =
∑m
j=1 uj(t)

∫
Ω
bjδxdΩ.

With (3), (4) and δx(z) = 0 for z ∈ ∂Ωd this expression
simplifies to∫

Ω
ρcp∂txδxdΩ +

∫
Ω
κ∇x · ∇δxdΩ

+
∫
∂Ωm

δxhxd∂Ωm =
∑m
j=1 uj(t)

∫
Ω
bjδxdΩ (7)

for every test function δx(z) ∈ H1
d(Ω). Let e(z) : Ωe ⊂

Ω → Rn be the vector of element shape functions satisfy-
ing e(z) = 0, z ∈ ∂Ωd and let qe(t) : R+ → Rn denote the
nodal temperature vector of the element. Hence, the sep-
aration ansatz x(z, t) = eT (z)qe(t) and δx(z) = eT (z)δq
for arbitrary variations δq provides

δqT
{∫

Ω
ρcpee

TdΩ︸ ︷︷ ︸
=:Ce

∂tqe −
∑m
j=1 uj(t)

∫
Ω
bjedΩ︸ ︷︷ ︸

=:Beu

+
(∫

Ω
κJeJ

T
e dΩ +

∫
∂Ωm

heeTd∂Ωm
)︸ ︷︷ ︸

=:Ke

qe(t)
}

= 0,

where Je(z) = ∂ze(z) denotes the Jacobian matrix. Since
the latter equation has to hold for any variation δq the
equations for a single element follow as Ce∂tqe +Keqe =
Beu. Taking into account the connectivity information and
eliminating the nodal constraints including the Dirichlet
condition, (3) permits to assemble the global equations in
the form

C∂tq +Kq = Bu. (8)

Here, q(t) ∈ Rn summarizes nodal temperatures, C ∈
Rn×n is the thermal damping or thermal capacity ma-
trix, K ∈ Rn×n denotes the heat transfer matrix,
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Θ

Fig. 2. FE mesh of the die with about 20.000 nodes. Part Θ
of the blankholder area describes the target variables.

B ∈ Rn×m represents the input matrix, and u(t) =
[u1(t), . . . , um(t)]T ∈ Rm is the input vector. The initial
condition x0(z) by assumption corresponds to a steady
state solution which translates into q(0) = qs0 with qs0
satisfying

Kqs = Bus (9)

for us = us0 = [us1,0, . . . , u
s
m,0]T .

In this setting, trajectory planning for the deep drawing
tool refers to the determination of the input trajectory
t 7→ u∗(t) to realize the transition from the initial (sta-
tionary) temperature profile q(0) = qs0 to a desired final
(stationary) temperature profile q(T ) = qsT within a pre-
scribed finite time interval t ∈ [0, T ] along a predefined
transition path q∗(t). In particular, a desired transient
temperature profile is requested for a subpart Θ in the
blankholder area shown in Fig. 2. These target variables
are subsequently summarized in the vector

ytarg = Htargq (10)

with the matrix Htarg ∈ Rp×n extracting the respective
nodal temperatures from q(t). For the mesh of Fig. 2
p is 362. Temperature measurements are available at 12
locations inside the die, i.e.

y = Hmeasq (11)

with Hmeas ∈ R12×n. These are used for the feedback
control design and to validate the control performance.

3. FLATNESS-BASED TRAJECTORY PLANNING

Modal or spectral analysis serves as the basis for the deter-
mination of a flatness-based state and input parametriza-
tion for the FE approximation (8) with (10) and (11). With
this, a particularly intuitive solution to the trajectory
planning problem is obtained.

3.1 Spectral system representation

Let V denote the matrix of eigenvectors {vk}k=1,...,n

arsing from the solution of the generalized eigenproblem
CV = −KV Λ with Λ = diag{λk}nk=1 the diagonal matrix
of eigenvalues λk. Then the similarity transformation
q(t) = V η(t) applied to (8) results in the modal or spectral
system representation

∂tη = Λη + Υu (12)

with Υ = (CV )−1B. Herein it is assumed that the eigen-
values are mutually disjoint. This assumption is supported

by numerical results. For the general situation of eigenval-
ues with algebraic multiplicity larger than one, the reader
is referred to Meurer [2013].

3.2 Differential state and input parametrization

Application of the Laplace transform to (12) yields

η̂ = (sI − Λ)−1Υû(s)

= −
(
I − sΛ−1

)−1
Λ−1Υû = −D

x(s)

Du(s)
Λ−1Υû

Herein, s is the Laplace operator, I is the n × n identity
matrix and ·̂ refers to the Laplace transformed variables.
Recalling that Λ is a diagonal matrix with disjoint entries,
the terms Dx(s) and Du(s) can be reformulated to obtain

Dx(s) = adj(I − sΛ−1
)

= diag

{ n∏
j=1
j 6=k

(
1− s

λj

)}n
k=1

(13)

Du(s) = det(I − sΛ−1
)

=

n∏
j=1

(
1− s

λj

)
, (14)

where adj( · ) refers to the adjugate matrix. The introduc-

tion of the new variable ζ̂(s) = û(s)/Du(s) provides a
parametrization of states and inputs in the operational
domain according to

η̂ = −Dx(s)Λ−1Υζ̂, û = Du(s)ζ̂.

The corresponding expressions in the time domain follow
by taking into account that s is equivalent to time differ-
entiation, which implies

η = −Dx(∂t) ◦ Λ−1Υζ (15a)

u = Du(∂t) ◦ ζ (15b)

with Dx(∂t) and Du(∂t) being interpreted as differential
operators of order n− 1 or n, respectively. Thus, ζ(t) can
be called a flat or basic output differentially parametrizing
state and input. Similarly, the parametrization of the
target variables (10) is given by

ytarg = HtargV η = −HtargV D
x(∂t) ◦ Λ−1Υζ. (15c)

It is obvious that any desired trajectory t 7→ ζ∗(t) for
the flat output has to be at least n-times continuously
differentiable. With this, the feedforward control u∗(t)
which is necessary to realize η∗(t) determined in (15a)
and equivalently y∗targ(t) from (15c) follows directly from

the evaluation of (15b) for ζ(t) replaced by ζ∗(t).

3.3 Trajectory assignment

The stationary temperature qs of the die is determined
from (9), i.e., Kqs = Bus for constant input us. Now
let qs0 and qsT denote the initial and the desired final
stationary temperature profile. Taking into account the
input parametrization (15b) with Du(s) from (14) under
steady state conditions, i.e. us = ζs, an alternative
formulation of the steady state equations is given by
Kqs = Bζs such that

KqsT = BζsT . (16)

Since dim qsT = n and dim ζsT = dimu = m � n is
given, qsT a solution to (16) cannot be obtained exactly but
as the solution to a least-squares minimization problem
minζs

T

1
2‖Kq

s
T − BζsT ‖22 subject to ζsT ∈ [0, ū]. This
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formulation can be extended by taking into account the
weighted heat flux, subsequently referred to as ∇qsT , to
limit temperature gradients inside the tool, i.e.

min
ζs
T

(
a0‖KqsT −Bζ

s
T ‖22 + ‖a1 · ∇qsT ‖22

)
s.t. ζsT ∈ [0, ū].

(17)

Thereby, a0 and a1 = [a11, a12, a13]T denote weighting
factors.

In view of (15c) it follows in steady state that ystarg =

−HtargV Λ−1Υζs. Hence, instead of prescribing a steady
state temperature profile for the whole die it is reasonable
to prescribe desired final temperatures ystarg,T for the

target variables only. In this case, (17) can rewritten as

min
ζs
T

(
a0‖ystarg,T+HtargV Λ−1ΥζsT ‖22+‖a1·∇ystarg,T‖22

)
s.t. ζsT ∈ [0, ū] (18)

with∇ystarg,T referring to the corresponding heat flux. It is

obvious that optimization criteria differing from (18) can
be defined to compute ζsT i.e. depending on the considered
task.

Numerical results are shown in Fig. 3(a), presenting the
approximation ȳstarg,T = −HtargV Λ−1ΥζsT according to

(18) of the desired temperature profile ystarg,T = 35 ×
1 at the blankholder with the unit vector 1 and the
coefficients a0 = 12, a1 = [1.75, 1.75, 0]T for a specific
heating cartridge configuration.

Once ζsT is computed, a desired path ζ∗(t) for the flat
output ζ(t) has to be determined connecting the initial
and the desired final steady state. For this, consider

ζ∗ = ζs0 + (ζsT − ζ
s
0)Φ (19)

with the function ΦT (t) ∈ Cn(R) satisfying Φ(t ≤ 0) = 0,

Φ(t ≥ T ) = 1 and ∂jtΦ(t) = 0, j ≥ 1 for t ∈ {0, T}.
Typically smooth but locally non-analytic Gevrey-class
functions are imposed for Φ(t). For further details and
particular functions Φ(t) the reader is referred to Fliess
et al. [1997], Lynch and Rudolph [2002], Meurer [2013].

3.4 Convergence in the continuous limit and divergent
parametrizations

Convergence of the parametrizations (15) crucially de-
pends on the distribution of the eigenvalues λk, k =
1, . . . , n. For the convergence analysis the entire function
theory can be utilized in order to address the continuous
limit as n → ∞, i.e. when the FE approximation ap-
proaches the distributed-parameter system description. In
this case, both Dx(s) and Du(s) have to be interpreted as
Hadamard factorizations of entire functions in the complex
domain s ∈ C. The analysis makes use of the so-called
counting function n(r) = #{λk, k ∈ N : |λk| ≤ r} of the
sequence of eigenvalues (λk)k∈N with # referring to the
number of elements in the set. Taking into account the
Weyl asymptotic formula for the eigenvalues of the heat
equation allows to deduce an asymptotic expression for the
growth property of n(r) in the coefficient r. The remaining
analysis then relies on the utilization of these results for
the determination of the order of growth and type of the
entire function Du(s) and can be found in Meurer [2013].

In particular, it can be shown for the 3D heat equation
with finite-dimensional in-domain actuation that conver-
gence of the parametrizations (15) cannot be guaranteed in
general in the continuous limit. This is, however, a rather
common outcome in DPS control and has already been
analyzed, e.g., for the boundary controlled linear wave
equation [Rouchon, 2005] or diffusion-reaction systems
[Meurer, 2011].

Nevertheless, the divergent behavior does not limit the
applicability of the presented flatness-based trajectory
planning approach. To address this, suitable re-summation
techniques are integrated into the design which accelerate
convergence and even allow to determine a meaningful
limit from the divergent parametrizations. For this, ob-
serve that (15b) admits a polynomial representation in the
form

u =

n∑
j=0

pj∂
j
t ζ, p0 = 1. (20)

In the subsequent simulation and experimental results the

so-called (N, ξ)-approximate k-summation SN,ξk is used to
determine the feedforward control by evaluating

u 7→
(
SN,ξk u

)
=

∑N
j=0 sj

ξj

Γ(1+j/k)∑N
j=0

ξj

Γ(1+j/k)

. (21)

Herein, sj(t) =
∑j
i=0 pi∂

i
tζ(t) is the partial sum and

N ∈ N, N ≤ n. The parameters ξ and k in SN,ξk can
be considered as degrees-of-freedom which have to be
appropriately determined depending on the behavior of
the coefficients in (20). A similar setting can be introduced
to evaluate the state parametrization (15a) and hence
q(t) = V η(t). For further details the reader is referred
to Meurer and Zeitz [2005].

4. RESULTS

In the following, simulation and measurement results are
provided which underline the applicability of the proposed
design technique for the deep drawing tool. The transition
time is assigned as T = 7200 s, motivated by the practial
implementation where the start of production is timed and
the duration of the pre-heating is limited by the set-up
time of the tool. The die is equipped with m = 18 heating
cartridges. The ambient temperature for simulation and
measurement is approx. ϑu = 25 ◦C and equals the initial
temperature ϑ0(z) of the tool. The target temperature for
ytarg(t) defined in (10) is 35 ◦C. The desired trajectory

ζ∗(t) for the flat output ζ(t) is assigned using (19) for
ζs0 = 0 (since ϑu = ϑ0) and ζsT determined by solving
(18). The control performance is evaluated by considering
the measured temperatures (11) and their deviation from
the reference y∗(t) = Hmeasq

∗(t) = HmeasV η
∗(t). The

die consists of cast material EN-JS 2070. The armor ring
is made of wear-resistant cast iron 1.2382. The material
parameters and contact conditions are gathered from lit-
erature.

4.1 Simulation results

Simulation results for feedforward control u∗(t) ∈ [0, ū]
obtained from the evaluation of (21) with ζ∗(t) from (19)
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(a) Comparison of target profile ys
targ,T =

35×1 and approximation ȳs
targ,T using (18).
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(b) Error ∆ytarg(t) = ytarg(t) − ȳs
targ,T for

t = 7200 s (simulation).
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(c) Error ∆ytarg(t) = ytarg(t) − ȳs
targ,T for

t = 14400 s (simulation).

Fig. 3. Temperature profiles and temperature evolution for the blankholder area Θ (cf. also Fig. 2).

are shown in Fig. 5(a). Since flatness does not allow to
explicitly take into account input constraints, the input
trajectory is cut-off whenever u∗(t) is outside the interval
[0, ū] with ū = 0.8umax. The utilization of only 80% of the
maximal heating power of the cartridges is motivated by
the practical implementation, where an additional output
error feedback controller is added to the feedforward
control. Here, the simulated time evolution of the output
variables yi, the tracking error ∆yi = yi − y∗i = 0 and the
applied open-loop input trajectory u∗(t) are depicted.

As expected and illustrated in Fig. 3(b), the cut-off results
in a delayed convergence to the desired final steady state
profile. However, Fig. 3(c) showing the temperature profile
at twice the prescribed transition time t = 14400 s confirms
the homogenization of the temperature evolution in the
blankholder area Θ (cf. Fig. 2) to the desired temperature
level.

4.2 Measurement results

The controller implementation is PC-based including a
commercial MIMO PID heating controller. The PC and
the controller are connected by an RS485 interface us-
ing the protocol of the heating controller. The heating
controller is only used to adjust the output power. The
temperatures in the blankholder area are measured with
commercial temperature sensors. The feedforward and the
subsequently addressed feedback controller are realized
using LabView including Mathscript. The sampling time
is Ts = 60 s.

Measurement results for the pure feedforward control u∗(t)
according to (21) with ζ∗(t) from (19) are shown in Fig.
5(b). As can be seen, rather accurate temperature tracking
is achieved. However, model uncertainties (especially the
heat transfer between tool and heating cartridges) and
disturbances lead to a steady state error, motivating the
combination of the feedforward part with a suitable output
error feedback control.

For the feedback part a decentralized PID controller is
used in a two-degrees-of-freedom (2DOF) control structure
according Fig. 4. In this set-up, the setpoint change and
the desired trajectory are realized by the feedforward
controller u∗(t) while the feedback controller ∆u(t) only
stabilizes the tracking error. The coupling of the outputs

Σ∗
−

y∗

Σff
u∗

Σfb
∆u u

Tool
y

Fig. 4. Block diagram of the two-degree-of-freedom control
scheme for the deep drawing tool with feedforward
control Σff , feedback control Σfb, and trajectory
generator Σ∗ for output tracking y(t) → y∗(t) or
ytarg(t)→ y∗targ(t), respectively.

and inputs for the decentralized MIMO control design is
addressed by the stationary relative gain array (RGA)
analysis to properly relate the 12 temperature sensors and
the 18 heating cartridges by individual PID controllers.
The parameters of the PID control are determined using
the H∞-loop-shaping method by Glover-MacFarlane to
achieve robust performance.

Measurement results for the flatness-based two-degree-
of-freedom control are depicted in Fig. 5(c). Obviously,
the arising deviations are reduced by the feedback part
so that accurate tracking can be achieved for the deep
drawing tool. Moreover, the characteristic behavior of the
2DOF control concept becomes visible, where, as pointed
out above, the desired path is mainly realized by the
feedforward term with the feedback part addressing only
the tracking error. When comparing the two lower pictures
in Figs. 5(b) and 5(c), only minor distortions of the control
signal emerge due to the feedback controller.

5. CONCLUSIONS

In this contribution, a flatness-based approach for tra-
jectory planning for a deep drawing tool is presented
to realize setpoint changes and desired temperature tra-
jectories. A finite element approximation of the govern-
ing heat equation is considered to address the complex
tool geometry. Based on the finite-dimensional approxi-
mation, a spectral design technique is developed, solely
making use of the eigenvalues and eigenvectors of the
system matrices. With this, a flat output parameterizing
system states, inputs and outputs is systematically con-
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(a) Feedforward control (simulation).
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(b) Feedforward control (measurement).
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(c) 2DOF control (measurement).

Fig. 5. Simulation and measurement results for feedforward control and its combination with decentralized PID-control
with a two-degrees-of-freedom (2DOF) control approach.

structed. To achieve the desired spatial-temporal temper-
ature paths, suitable trajectory assignment is addressed
in terms of a minimization problem to determine the final
value of the flat output depending on the prescribed tem-
perature level in the tool interior. The convergence analysis
in the limit as the finite element approximation approaches
the distributed-parameter system reveals that the flatness-
based parametrizations may diverge in general. To over-
come this appropriate re-summation technique are inte-
grated into the design. Simulation and measurement re-
sults confirm the applicability of the design approach and
illustrate the tracking performance which can be obtained
by applying only the feedforward controller as well as by
considering a 2DOF approach combining feedforward and
output error feedback control. With this, a first experi-
mental validation of flatness-based trajectory planning for
distributed-parameter thermal systems with 3-dimensional
domain and in-domain actuation is achieved.

Ongoing research addresses the reconstruction of the un-
measured temperatures in the tool from the available mea-
surements as well as suitable techniques for the optimal
actuator and sensor placement. Moreover, the presented
feedforward control design shows great potential for partial
or variothermal heating in warm deep drawing to increase
the accuracy and velocity of the heating processes. Em-
pirical testing is needed for a successful implementation in
these areas.
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