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Abstract: This paper presents a method for formal verification of automotive collision
avoidance systems. Using viability theory and reachability analysis, we define when the system
should intervene, i.e. the unsafe set, and when the system should not intervene, i.e. the
safe set. Given these sets, we formulate the problem of verifying that a given system does
not make incorrect decisions as an optimization problem. The method is demonstrated on a
collision avoidance system example and, given the models used and absence of measurements
errors, we show that the system does not make incorrect decisions. Furthermore, we describe
and demonstrate how to evaluate the robustness to measurement errors, using the proposed
framework.

1. INTRODUCTION

Current and future active safety systems cooperate with
the driver to achieve the joint goal of safe driving. The re-
sulting system is semi-autonomous, meaning that human-
controlled operation may be disrupted by an autonomous
system intervention. The decision to intervene is based on
a Threat Assessment (TA) function, which at each time
instant quantify the risk of the host vehicle being involved
in an accident.

This paper addresses the problem of verifying that a
given TA function makes correct decisions. Specifically,
this means verifying that the system does not miss to
intervene in unsafe situations and also that the system
does not intervene unnecessarily, i.e. intervene in non-
critical situations during normal driving. Since the input
to the TA is based on sensors, the robustness to input
errors, e.g. measurement errors, is also treated.

Verification is usually performed by evaluating test cases in
the form of state trajectories, either using real vehicles, e.g.
Lee and Peng [2005], Distner et al. [2009], or in simulation
environments, e.g. Yang et al. [2003], Hillenbrand et al.
[2006], Coelingh et al. [2006]. The number of possible input
trajectories to the TA function is intractable, ruling out
exhaustive evaluation strategies.

In contrast to evaluating state trajectories, as done in
traditional simulation and real vehicle tests, we propose a
novel set-based framework for analyzing under what condi-
tions the absence of incorrect decisions may be guaranteed
for a given TA function. Reachability analysis and viability
theory are used to compute unsafe and safe sets, i.e. sets
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where an ideal system should or should not intervene
respectively. Incorrect decisions in these sets, for a given
TA function, are identified using optimization techniques.
By separating the dynamics of the input space from the
TA function, non-linear and ad-hoc TA functions are effi-
ciently handled in the proposed framework.

We demonstrate how the proposed framework may be
used for verification and sensitivity analysis on a TA
function for rear-end collision avoidance. Results from
this example show for what input errors, absence of
unnecessary intervention may be guaranteed and also
numerically describe the robustness to input errors over
the safe set.

This paper is organized as follows. Section 2 presents
related work and is followed by Section 3, where known
results from reachability analysis and viability theory are
presented. A problem formulation and a brief overview of
the proposed framework is given in Section 4. Section 5
describes models of vehicle and object motion, as well as
an example of a nonlinear TA function, while Section 6
demonstrates how to solve the verification and robustness
problems formulated in Section 4 given the models and TA
function in Section 5. Finally, Section 7 presents results
and Section 8 gives concluding remarks.

2. RELATED WORK

Reachability analysis has been applied to both au-
tonomous and semi-autonomous vehicle systems. The
safety verification problem investigate if the autonomous
system will enter a set of unsafe states. A similar analysis
for semi-autonomous systems is commonly referred to as
threat assessment. In this paper, we investigate if the TA
function output enters a state which yields an incorrect
decision.
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In Althoff et al. [2009], stochastic forward reachable sets
for the host vehicle and all other traffic participants are
computed to determine the collision probability at each
time step in a finite time horizon. This probability is
used to verify that the planned trajectory for the host
vehicle is safe. Safety verification of planned trajectories
for coordinated maneuvers is done in Althoff et al. [2010].
The safety of Adaptive Cruise Control (ACC) is verified
using reachability analysis in Kianfar et al. [2012] where a
set is computed describing allowed deviation from desired
position, relative speeds and accelerations which guarantee
the absence of collisions.

A threat assessment approach for semi-autonomous vehi-
cles is found in Falcone et al. [2011], demonstrated on a
roadway departure application. A set of constraints de-
scribing ”safe” driving is defined and used to compute a
safe set at each time step over a finite prediction horizon
via backwards reachable sets. If the current state is not
a member of the corresponding safe set, the system will
intervene. This approach is extended to handle bounded
uncertainties in Ali [2012]. Two threat assessment strate-
gies are proposed where theoretical guarantees may be is-
sued that no unnecessary interventions or no missed inter-
ventions occur respectively, given bounded uncertainties
are known. For large uncertainties issuing these guarantees
will lead to either completely active or completely passive
TA. In Gerdts and Xausa [2013], reachable sets are used to
compute for what initial states a collision with a stationary
obstacle may be avoided.

Our computation of a safe set is similar to the one
proposed in Falcone et al. [2011], Ali [2012], but adapted
to a rear-end collision avoidance system, as opposed to
roadway departure avoidance. Also, instead of checking if
the current state is a member of the safe set, we investigate
whether or not an intervention may be initiated in the safe
set. Work presented in Althoff et al. [2009], Gerdts and
Xausa [2013], Falcone et al. [2011], Ali [2012] is primarily
intended for online applications and therefore employ finite
prediction horizons, whereas our work focus on asymptotic
sets.

3. PRELIMINARIES

In this section we introduce definitions and results from
reachabailty analysis and viability theory. For overviews on
these topics, we refer to Kolmanovsky and Gilbert [1998],
Mitchell [2007], Aubin et al. [2011]. First, we introduce
some basic definitions. Let N+ be the set of all positive
real numbers. Let A,B ⊆ Rn and define the complement
of A in Rn as Ac , Rn \ A, where the set difference

B \ A , {z ∈ B|z /∈ A}. The Minkowski sum is defined as

A⊕ B , {zA + zB |zA ∈ A, zB ∈ B}.
Consider the state update function f of a discrete-time
dynamical system

z(t+ 1) = f(z(t), u(t), w(t)), (1)

where z(t), u(t) and w(t) denote the state, input and dis-
turbance vectors with appropriate dimensions respectively.
The system in (1) is subject to constraints

z(t) ∈ Z ⊆ Rn, u(t) ∈ U ⊆ Rp, w(t) ∈ W ⊆ Rq, (2)

where each of the sets Z, U and W contains the origin in
its interior. The system in (1) is referred to as the nominal
system, if there are no disturbances, i.e. W = {0}.
Now, we introduce some definitions for the nominal sys-
tem:

Definition 1. For the nominal system f(z, u, 0), subject
to the constraints in (2), the one step minimal backwards
reachable set is defined as

Pre(T ) , {z ∈ Z|f(z, u, 0) ∈ T , ∀u ∈ U} . (3)

This set include all states which, given that u ∈ U , are
guaranteed to evolve into T in one time step. To describe
all backwards reachable states, over a finite horizon, we
introduce the reachable tube:

Definition 2. For the nominal system f(z, u, 0), subject to
the constraints in (2), the minimal backwards reachable
tube is defined recursively as

Pret(T ) ,
∪

t̃∈[0,t]

Ωt̃, (4)

Ωt = Pre(Ωt−1), t ∈ N+,Ω0 = T . (5)

Next, we introduce the viability kernel, describing the
initial states which remain in an admissible set T , over
the future horizon t, for some input u(·) ∈ U .
Definition 3. For the nominal system f(z, u, 0), subject to
the constraints in (2), the viability kernel is defined as

V iabt(T ) ,{
z(0) ∈ T |∃u(·) ∈ U : ∀t̃ ∈ [0, t], f(z(t̃), u(t̃), 0) ∈ T

}
,
(6)

where V iab∞(T ) are the initial states which respect the
set constraints T for all future time. This set, V iab∞(T ),
is also known as the maximal control invariant set.

It is straightforward to verify, see e.g. Cardaliaguet [1999],
that V iabt(T c) and Pret(T ) are each others complement:(

V iabt(T c)
)c

= Pret(T ), (7)

given that T is considered to be a target set, i.e. z(0) ∈ T
implies that z(t) ∈ T , ∀t ∈ N+.

This paper considers the case when the system in (1)
is subject to disturbances, meaning that two alternative
definitions are introduced for Pre(T ).

Definition 4. For the system in (1), subject to the con-
straints in (2), the one step robust minimal backwards
reachable set is defined as

PreR(T ) , {z ∈ Z|f(z, u, w) ∈ T , ∀u ∈ U , ∀w ∈ W} .
(8)

Definition 5. For the system in (1), subject to the con-
straints in (2), the one step uncertain minimal backwards
reachable set is defined as

PreU (T ) , {z ∈ Z|∃w ∈ W : f(z, u, w) ∈ T , ∀u ∈ U} .
(9)

The robust minimal backwards reachable set definition
guarantees that T is reached from PreR(T ) for all dis-
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Fig. 1. The complementary properties of viability kernels
and minimal backwards reachable tubes, see (10), are
illustrated in (a) and (b). How these concepts are used
to define safe, unsafe an conflict sets, see Definitions 6-
8, is shown in (c).

turbances, while the uncertain minimal backwards reach-
able set definition only state that T may be reached
from PreU (T ), for some disturbance. Robust and uncer-
tain minimal backwards reachable tubes, PretR(T ) and
PretU (T ) respectively, as well as robust and uncertain
viability kernels, V iabtR(T ) and V iabtU (T ) respectively, are
defined in analogy with Definitions 2 and 3.

The corresponding properties to (7) are(
V iabtR(T c)

)c
= PretU (T ) (10a)(

V iabtU (T c)
)c

= PretR(T ), (10b)

which is visualized in Figure 1.

4. PROBLEM FORMULATION AND PROPOSED
APPROACH

Denote by F (θ(t)) the threat assessment function where
F (θ(t)) ≥ 1 represent a decision to intervene at time t and

θ(t) ,
[
z(t)
u(t)
w(t)

]
∈ Θ = Z × U ×W. (11)

Furthermore, let Zadm ⊆ Z denote the admissible set,
which contains all non-collision states in Z.

To verify that F makes correct decisions on when to
intervene, the correct decision should ideally be defined,
∀θ. The TA function F is designed to intervene when @u(·)
such that z(·) may be contained in the non-collision admis-
sible set Zadm, for all future times. Thus, complete knowl-
edge of the future disturbance w is needed to uniquely
define a correct decision.

For the nominal system, not subject to disturbances, the
system is guaranteed to evolve into a collision state z ∈
Zc

adm if and only if z ∈ Pre∞(Zc
adm), see Definition 2.

Similarly, if z ∈ V iab∞(Zadm), it is always possible to find
a control signal such that collision is avoided, i.e. z ∈ Zadm,
for all future time. The complement property from (7)
means that Pre∞(Zc

adm) and V iab∞(Zadm) partition Z

into two sets, one where interventions are needed and one
where they are not.

In the presence of disturbances, the future safety of the
system will depend on said future disturbances and it is
not possible to partition Z into two sets which clearly
discriminate between the correct system decisions. To
describe correct decisions in the presence of disturbances,
we introduce the following definitions:

Definition 6. For the system in (1), subject to the con-
straints in (2), the safe set, Zsafe, is defined as

Zsafe , V iab∞R (Zadm). (12)

Definition 7. For the system in (1), subject to the con-
straints in (2), the unsafe set, Zunsafe, is defined as

Zunsafe , Pre∞R (Zc
adm). (13)

This means that, given a proper choice of control input,
the system will with certainty not collide if z ∈ Zsafe,
regardless of the future disturbance. Similarly, the system
will with certainty collide if z ∈ Zunsafe, regardless of the
future control and disturbance inputs. For the remaining
states, whether or not the system collides will depend on
the disturbance.

Definition 8. For the system in (1), subject to the con-
straints in (2), the conflict set, Zconflict, is defined as

Zconflict , Z \
(
Zsafe

∪
Zunsafe

)
= V iab∞U (Zadm) \ V iab∞R (Zadm)

= Pre∞U (Zc
adm) \ Pre∞R (Zc

adm). (14)

The three sets Zsafe, Zunsafe and Zconflict now form a
partition of Z, see Figure 1, where the correct decision is
unique in Zsafe, Zunsafe while in Zconflict it cannot be
uniquely determined.

Definition 9. For the threat function F , subject to the
constraints in (11), a decision to intervene, i.e. F (θ) ≥ 1,
is said to be unnecessary if z ∈ Zsafe.

Definition 10. For the threat function F , subject to the
constraints in (11), a decision not to intervene, i.e. F (θ) <
1, is said to be missed if z ∈ Zunsafe.

The verification problem is now equivalent to checking if
there are any missed or unnecessary interventions in Z. For
e.g. unnecessary interventions this means verifying that it
is not possible to initiate an intervention from the safe set,
i.e. that

max
θ∈Zsafe×U×W

F (θ) < 1 (15)

Note that to solve the verification problem, it is sufficient
to acquire a bound on the constrained optimization prob-
lem on the left hand side.

Above, the verification problem has been formulated given
that θ is known to the system. In practice, the system tries

to measure and estimate θ̂ which may exhibit errors. The
robustness to such errors will also be addressed in this
paper.
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Fig. 2. Global and relative coordinate systems. The thick
arrows indicate possible avoidance maneuvers consid-
ered by the threat assessment.

5. MODELING

This section describes models used to demonstrate the
proposed method. We consider a host vehicle, equipped
with a collision avoidance system, designed to avoid rear-
end collisions. The relative motion between the host ve-
hicle and the object is modeled as purely translational.
This model is a satisfactory approximation, given that the
relative rotation between the host vehicle and the object
is limited. In practice, this means the model is valid when
driving at high speeds, e.g. in motorways.

5.1 Coordinate Systems

Denote by Pg = [xg yg]
T

a point in a fixed global
reference frame and by Ph̃ and Põ the corresponding point
in the moving reference frames of the host vehicle and
object respectively. Furthermore, denote by h and o the
reference frames corresponding to reference frames h̃ and
õ respectively, but considered fixed at each time instant.

The origins of the reference frames for the host vehicle and
object are defined according to Figure 2. Furthermore, the
extension of the host vehicle and object in the 2D position
space are defined by the polytopes, Rh ⊂ R2 and Ro ⊂ R2

respectively, both depicted in Figure 2.

5.2 Relative Motion

For the relative motion of an object in the host vehicle
reference frame, we define the state, input and disturbance
as

z ,
[
Ch̃õ

Ċh̃õ

]
, u , C̈hh̃, w , C̈oõ. (16)

Thus, the host acceleration input, C̈hh̃, is treated as an

input u, and the object acceleration input, C̈oõ, is treated
as a disturbance w.

Assuming that the motion is pure translation yields

ż = Az −Bu+Bw, (17)

where

A =

[
0 I
0 0

]
, B =

[
0
I

]
. (18)

The state space of interest, Z, for the system in (17), is
chosen as a hypercube. Figure 3 displays the boundaries in
the position domain. The input constraints, U and W, are
chosen to reflect acceleration levels from normal driving.

5.3 Threat Assessment

This section presents an example of a threat assessment
function, F , which in this paper is used as a test subject
in the presented framework. The TA below is designed for
avoiding rear-end collisions. The position of the object rel-

ative the host vehicle Ch̃õ = [xh̃õ yh̃õ]
T
, is denoted [x y]

T

for reasons of readability. For more detailed derivations on
the threat function below, see Jansson [2005] and Nilsson

and Ödblom [2010].

Now, consider the constant acceleration maneuvers which
successfully avoid a collision at the last possible time in-
stant using steering-only or braking-only inputs, according
to Figure 2. The amount of needed acceleration required
by the host vehicle to avoid a collision is for these ma-
neuvers described by the Steer Left/Right Threat Number
(SLTN/SRTN) and the Brake Threat Number (BTN),
where a threat number> 1 indicate that the corresponding
maneuver cannot avoid a collision. F is chosen such that
F > 1 if none of the considered maneuvers successfully
avoid a collision:

F (θ) ,
{
min {BTN,SRTN, SLTN} if θ ∈ ΘF

−∞ otherwise
,

ΘF = {θ ∈ R8|x ≥ 0, ẋ ≤ 0}. (19)

Note that the state and inputs from the system in (17) are
the arguments to F .

Definition 11. The STN is defined as

STN =
ÿhh̃,req
ÿhh̃,max

=
ÿhh̃ + ÿ + 2

t2tc(

(
y ± wh+wo

2 + ẏttc
)

±ay,max

(20)
where ÿhh̃,req is the lateral acceleration required for the
host to avoid the collision, ay,max > 0 is the maxi-
mum available lateral acceleration and ttc is the time-to-
collision, obtained from solving

x+ ẋttc + ẍ
t2tc
2

= 0 (21)

The avoidance maneuvers by steering to the left and right
are evaluated by two separate threat numbers, SLTN and
SRTN . The expression for these two are both given by
(20) by choosing plus for SLTN or minus for SRTN , in
the two ±.

Definition 12. The BTN is defined as

BTN =
ẍhh̃,req

ẍhh̃,max

=
ẍhh̃ + ẍ− ẋ2

2x

−ax,max
(22)

where ẍhh̃,req is the longitudinal acceleration required for
the host to avoid the collision and −ax,max < 0 represents
the maximum available longitudinal deceleration.

6. VERIFICATION

This section demonstrates how to solve the verification
and robustness problems formulated in Section 4 using
the motion, threat assessment and error models from
Section 5. First, the admissible set, i.e. the non-collision
set, is defined followed by methods for computing safe and
unsafe sets. Next, an approach for verifying the absence
of incorrect decisions, in these sets, is presented. Finally,
methods for estimating robustness to errors are described.
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6.1 Admissible Set

The host vehicle and object are modelled as 2D-polytopes,
more specifically rectangles, as defined by Figure 2. Colli-
sion between the two is equivalent to the two sets having a
non-zero intersection. Under normal operating conditions,
it is assumed that the driver of the host vehicle maintains
a margin of at least [xm ym]

T
. In terms of relative coordi-

nates, this is expressed as

− (lh + lo + xm) ≤ xh̃õ ≤ xm (23a)

−
(
wh + wo

2
+ ym

)
≤ yh̃õ ≤ wh + wo

2
+ ym. (23b)

These position constraints, describing a collision, define
the polytope Rcol ⊂ R2.

The set of non-admissible states is given by

Zc
adm = Rcol × R2. (24)

Consequently, the admissible set Zadm now describe all
non-collision states z ∈ R4.

6.2 Computing the Safe and Unsafe Sets

The safe, Zsafe, and unsafe, Zunsafe, sets from Defini-
tions 6 and 7 may be computed in different ways, by
utilizing the complement properties in (10). Both Zsafe

and Zunsafe may be computed either through the minimal
reach tube of the non-admissible set, Pre∞(Zc

adm), or the
viability kernel of the admissible set V iab∞(Zadm).

We choose to compute the minimal reach tubes since the
non-admissible set Zc

adm in (24) is convex, meaning that
there exist efficient methods to compute Pre∞(Zc

adm). De-
tails on such methods are presented in e.g. Kolmanovsky
and Gilbert [1998].

6.3 Verification

Consider the optimization problem in (15), given that
the inputs are not subjected to measurement errors. A
safe set expressed as a union of polytopes, Zsafe =∪n

i=1 Zsafe,i, means that (15) may be decomposed into
n optimization problems subject to polytopic, and thus
convex, constraints. Depending on the properties of F , a
suitable method can be chosen to solve each subproblem.

We briefly outline how to solve (15) for choice of F defined
by (19). For details, we refer to Boyd and Vandenberghe
[2004]. In (19), F is a minimum of three threat numbers
which individually are monotonic when F ≥ 0, and thus
quasilinear. This means that F is quasiconcave and (15)
may be formulated as quasiconvex optimization problem.
This is solved using bisection, where a convex feasibility
problem is solved in each iteration.

6.4 Error Robustness

This section shows how the verification problem in (15)
may be solved when the input to the threat function F is
subject to errors. As an example, we consider a bounded
polytopic error on the state, Ze ⊂ Rn. If Zsafe describes
possible safe states, then

Z̃safe = Zsafe ⊕Ze, (25)

describes all the corresponding states which may be prop-
agated through F when z ∈ Zsafe.

2D cut of safe and unsafe sets

x[m]

y
[m

]

Zsafe

Zunsafe

Zconflict

Rh

Z
c
adm

-20 -10 0 10 20 30 40

-5

0

5

Fig. 3. Computed safe, Zsafe, and unsafe, Zunsafe, sets,
cut through ẋh̃õ = −15m/s and ẏh̃õ = 3m/s.

Solving (15) for Z̃safe now answers the question if F is
robust to the error Ze in the set Zsafe. Note that given a
partition of Zsafe, this method can be applied individually
on each subset.

7. RESULTS

Computational results have been generated using the
Model Parametric Toolbox (MPT), Herceg et al. [2013].
The system in (17) is discretized with a sampling time
Ts = 0.1 s and the TA example from Section 5.3 is
analyzed using the methods in Section 6. All computations
are performed in the full dimensional space for a scenario
when the host vehicle is approaching an object. For clarity,
all sets are orthogonally cut and visualized only in the
position domain.

Figure 3 exemplifies the computed safe and unsafe sets.
Note how this implicitly shows the conflict set, which is
the set where the future behaviour of the disturbance, i.e.
the object, will decide if there will be a collision or not.

The verification problem in (15) is solved for different
magnitudes on the error bound, |ex|. This may be inter-
preted as a varying sensor measurement error, added on
the longitudinal position xh̃õ, and bounded in magnitude
by |ex|. Figure 4 shows the maximum |ex| for which it
can be guaranteed that no unnecessary interventions are
initiated in the safe set, i.e. the robustness to these errors.

2D cut of robustness to longitudinal measurement errors
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Fig. 4. The robustness to additive errors on longitudinal
position, xh̃õ, is shown for a cut of Zsafe through
ẋh̃õ = −15m/s and ẏh̃õ = 3m/s. The color of each
subset indicates the maximum error which does not
lead to an incorrect decision to intervene.
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2D cut of refined robustness to longitudinal measurement errors
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Fig. 5. A refined partition of the robustness to additive
errors on longitudinal position, xh̃õ, shown for a cut
of Zsafe through ẋh̃õ = −15m/s and ẏh̃õ = 3m/s.
The color of each subset indicates the maximum
error which does not lead to an incorrect decision to
intervene.

The minimum robustness for the cut of Zsafe shown in
Figure 4, as well as the complete set Zsafe, is 0.25m.

The partition of Zsafe in Figure 4 is quite coarse, which is
beneficial from a computational point of view but does not
clearly pinpoint parts of state space with low robustness.
To address this, Figure 5 demonstrates a refined partition,
obtained by sequentially splitting the subsets of Zsafe

using a heuristic algorithm.

8. CONCLUDING REMARKS

We have presented a framework for formally verifying
that a given TA function for collision avoidance makes
correct decisions. The method uses reachability analysis
and viability theory to define safe and unsafe sets. In
these sets, the correctness of decisions and the robustness
to errors, for a given TA function, is assessed using
optimization techniques.

The method may provide guarantees that no incorrect
decisions are made, at any point in the state space of
interest. By separating the evaluated TA function from
the dynamics of the input state space, it is possible
to evaluate non-linear and ad-hoc TA functions. The
computed robustness may be used to direct other types
of testing towards relevant scenarios.

We remark that the simple dynamical model used in this
paper is not valid in all operating conditions. Extending
the proposed framework to more complex vehicle dynamics
models is part of future work. Also, incorporating a wider
variety of error models is an interesting topic.
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