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Abstract: This paper proposes a method of balanced model reduction for constrained linear
port Hamiltonian systems. Constrained linear port Hamiltonian systems are first written in a
canonical descriptor form such that the Hamiltonian structure is preserved. The computations
of the controllability and observability Gramians are then used to derive the balanced port
Hamiltonian representation of the system. The method of flow constraint is applied to reduce
the system. Finally, numerical simulations for the reduction of a micro mechanical actuator
model is given to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

Port Hamiltonian systems are an ideal frame for the
compositional modeling of finite- and infinite-dimensional
physical systems [Duindam et al. 2009, van der Schaft and
Maschke 2013] which might leads to high-order control
systems. Different structure preserving reduction methods
have been suggested for linear Port Hamiltonian systems
[Polyuga and van der Schaft 2010, Polyuga and van der
Schaft 2011, Polyuga and van der Schaft 2012, Gugercin
et al. 2012, Gentili et al. 2011]

In this paper we shall consider the structure preserving
reduction of linear constrained Hamiltonian systems with
ports. We give at first a coordinate transform for the
constrained port Hamiltonian system to a particular port
Hamiltonian descriptor system and we keep the constraint
of the system along the reduction procedure in contrast
to the other port Hamiltonian system reduction methods.
Secondly we shall suggest an alternative to the positive
real balancing methods, based on the the available storage
and the required supply, for the reduction of bounded real
and positive real systems [Antoulas 2005, Gugercin and
Antoulas 2004]; [Reis and Stykel 2010] or port Hamiltonian
systems [Polyuga and van der Schaft 2012]. This alterna-
tive consists in adapting the Lyapounov balancing method,
based on the controllability and observability Gramians,
of descriptor systems suggested by [Stykel 2004] by using,
instead of the truncation, the flow constraint method of
[Polyuga and van der Schaft 2012] for the reduction of
the balanced system which preserves the port Hamiltonian
structure.

? This work was supported by ANR sponsored project HAMEC-
MOPSYS under Reference Code ANR-11-BS03-0002.

This paper is organized as follows. First, we show how
to transform constrained port Hamiltonian systems into
a canonical descriptor form (Section 2) preserving its
structure. In Section 3 we give a balanced realization
of port Hamiltonian descriptor systems and then use
the flow-constraint method to reduce the order of the
balanced port Hamiltonian descriptor systems. In Section
4 we apply the reduction method to a micro-mechanical
manipulator, called nanotweezer.

2. PORT HAMILTONIAN SYSTEM AND
DESCRIPTOR FORM

In this section we shall consider constrained linear port
Hamiltonian systems and transform them into the de-
scriptor form [Dai 1989]. Port Hamiltonian systems with
constraints are a particular representation of implicit port
Hamiltonian systems defined on Dirac structures [van der
Schaft and Maschke 1995, Dalsmo and van der Schaft
1999, Duindam et al. 2009, chap.2] which makes explic-
itly appear constraint equations as well as the associated
Lagrangian multipliers.

A constrained linear port Hamiltonian system may be
defined as follows

ẋ = JQx+ gcλ+ gu+ gReR
0 = gTc Qx
y = gTQx
fR = gTRQx

(1)

where x ∈ Rn is the state vector, λ ∈ Rk is the vector
of Lagrangian multipliers, H(x) = 1

2x
TQx is the Hamil-

tonian function, Q ∈ Rn×n is a positive definite matrix
(i.e. Q = QT > 0) which will be called energy matrix
(as an allusion to models of physical systems), J ∈ Rn×n
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is the skew-symmetric the Poisson structure matrix, (i.e.
J = −JT ), the matrices gc ∈ Rn×k and g ∈ Rn×m,
gR ∈ Rn×mR describes the input relations of the control
ports and the resistive ports respectively. This constrained
Port Hamiltonian system will be completed with a linear
resistive relation between the port variables (eR, fR) such
as eR = −DfR, with D ∈ RmR×mR being a symmetric
positive matrix (i.e. D = DT ≥ 0).

In this way one obtains a dissipative linear Port Hamilto-
nian system with constraints. Note that the vector λ ∈ Rk
of Lagrangian multipliers is associated with the constraints
given by the second equation of (1) and that in a mechan-
ical context gcλ may be interpreted as the constraint force
associated with constraints in [van der Schaft and Maschke
1994].

2.1 Elimination of the Lagrangian multipliers

In this section we propose at first to reduce the system by
eliminating the Lagrange multipliers. Therefore we define
the following coordinate transformation

z =

[
s

(gTc gc)
−1gTc

]
x = Mx

where s is a Rn−k×n matrix such that

sgc = 0 and rank(s) = n− k
Note that this coordinate transformation is inspired from
[van der Schaft and Maschke 1994]) and differs by the
multiplication by (gTc gc)

−1. If, which is often the case
in network models, the matrix (gTc gc) is sparse then the
inverse may be computed efficiently. Else it is preferable
to use the transformation in [van der Schaft and Maschke
1994]; the results of this paper remain then unchanged
when replacing the matrix Ik by the matrix (gTc gc).

In the new coordinates the system (1) becomes
ż = J̄Q̄z + ḡcλ+ ḡu+ ḡReR
0 = ḡTc Q̄z
y = ḡT Q̄z
fR = ḡTRQ̄z

(2)

with: J̄ = MJMT = −J̄T , Q̄ = M−TQM−1 > 0,
ḡc = Mgc, ḡ = Mg, ḡR = MgR Note that

ḡc = Mgc =

[
s

(gTc gc)
−1gTc

]
gc =

[
0
Ik

]
which implies that, decomposing the state vector as fol-

lows: z = [z1, z2]
T

, z1 ∈ Rn−k and z2 ∈ Rk, the system
can be written as[

ż1
ż2

]
=

[
J̄11 J̄12

J̄21 J̄22

] [
Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
+

[
0
Ik

]
λ+

[
ḡ1

ḡ2

]
u+

[
ḡR1

ḡR2

]
eR (3)

0 =
[

0 Ik
] [ Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
(4)

y =
[
ḡT1 ḡT2

] [ Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
(5)

fR =
[
ḡTR1

ḡTR2

] [ Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
(6)

decomposing the energy matrix into blocks accordingly
with the decomposition of the state vector into vectors of
size (n− k) and k

Q̄ =

[
Q̄11 Q̄12

Q̄21 Q̄22

]
(7)

One may observe by considering the first line of (3), that
ż1 is independent of λ and that the constraint equations
(4) reduce to

Q̄21z1 + Q̄22z2 =
∂H̄

∂z2
= 0 (8)

with H̄(z) = 1
2z
T Q̄z.

Since Q̄ is positive definite, Q̄22 is invertible and then one
eliminate the z2 component of the state vector and obtain
an explicit port Hamiltonian system. The second line of
(3) may be used to compute, if needed, the Lagrangian
multipliers λ can be computed by λ = ż2 − J̄2Q̄z − ḡ2u−
ḡR2eR [van der Schaft and Maschke 1994].

However we shall not follow this route which might lead
to cumbersome calculations and destroying the sparcity
of the systems’ matrices. In the sequel we shall eliminate
the Lagrangian multipler but retain the full state z ∈ Rn
with the contraint (8) and treat it as a descriptor system.
The procedure is the same as suggested in [Dalsmo and
van der Schaft 1999, p.66] for implicit Hamiltonian systems
but detailed for systems with ports and expressed in the
coordinates z adapted to the constraints.

2.2 Descriptor form of the port Hamiltonian system with
constraints

In the system written in the new coordinates, we shall
eliminate the second line of equation (3) and combine the
first line of equation (3) with the second line of equation
(4). Doing so we eliminate the Lagrangian multiplier λ,
and the system will be written in the following descriptor
form [Dai 1989, chap.1]

[
In−k 0

0 0

] [
ż1
ż2

]
=

[
J̄11 J̄12

0 Ik

] [
Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
+

[
ḡ1

0

]
u+

[
ḡR1

0

]
eR

y =
[
ḡT1 ḡT2

] [ Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
fR =

[
ḡTR1

ḡTR2

] [ Q̄11 Q̄12

Q̄21 Q̄22

] [
z1
z2

]
(9)

Note that with the assumption that Q̄ is positive definite,
the constraint (8) is of index 1 and hence the diagonal
block multiplying ż2 is 0 with nilpotency index 1 .

Now let us prove that the descriptor system (9) is a
port Hamiltonian system defined with respect to a Dirac
structure according to [van der Schaft and Maschke 1995,
Dalsmo and van der Schaft 1999, Duindam et al. 2009,
chap.2] . By taking the following notations fz = −ż,
ez = Q̄z, y = fp, u = ep, the system can be formulated as: In−k 0 0 0

0 0 0 0
0 0 −Im 0
0 0 0 −ImR


︸ ︷︷ ︸

F

 fz1fz2
fp
fR

+

 J̄11 J̄12 ḡ1 ḡR1

0 Ik 0 0

ḡT1 ḡT2 0 0

ḡTR1
ḡTR2

0 0


︸ ︷︷ ︸

E

 ez1ez2
ep
eR

 = 0

(10)

where F,E ∈ R(n+mmR)×(n+m+mR).

Proposition 1. Define the vector of flow variables:

fT := (fz, fp, fR)T

and the vector of effort variables

eT := (ez, ep, eR)T

in the bond space F ×E = RN ×RN , where N = n+m+
mR, and the structure matrices F and E as in (10). Then
the linear subspace D of F × E defined by:
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D = {f ∈ F , e ∈ E|Ff + Ee = 0} (11)

is a Dirac structure.

Proof. The proof is given in two steps. First; we have to
show that FET +EFT = 0 and then that rank[F |E] = n+
m+mR.

(1) From (10) and the expressions of F and E one can
compute:

FET =

 J̄T11 0 ḡ1 ḡR1

0 0 0 0

−ḡT1 0 0 0

−ḡTR1
0 0 0

 (12)

Since J̄ is a skew-symmetric matrix, that is J̄T11 =
−J̄11, the matrix FET is skew-symmetric, hence the
condition FET + EFT = 0 is verified.

(2) One can define a sub-matrix of [F |E] by the first,
third and fourth columns of the matrix F , and the
second column of the matrix E. This sub-matrix is
rank n+m+mR, consequently the rank of the matrix
[F |E] is n+m+mR.

As a conclusion the system (9) defines a port Hamiltonian
system defined with respect to the Dirac structure D in
(10) and generated by the Hamiltonian function H̄(z) =
1
2z
T Q̄z . In the sequel we shall call this system a port

Hamiltonian descriptor system.

2.3 Descriptor form of the dissipative port Hamiltonian
system with constraints

Consider the port Hamiltonian descriptor system (9) to-
gether with the resistive relation eR = −DfR, where D ∈
RmR×mR is a symmetric positive matrix. However as only
the dynamics ż1 is retained in the descriptor formulation,
the dissipative relation is restriced to eR = −DfR

D̄ =

[
ḡR1

0

]
D
[
ḡTR1

ḡTR2

]
=

[
D̄11 D̄12

0 0

]
system (9) can be written under its descriptor form:{

Sż = Ē Q̄ z +

[
ḡ1

0

]
u

y = ḡT Q̄ z

(13)

with the energy matrix Q̄ ∈ Rn×n defined in (7) ,
ḡ ∈ Rn×m and S =

[
In−k 0

0 0

]
;

[
ḡ1

0

]
= S ḡ

Ē =

[
J̄11 − D̄11 J̄12 − D̄12

0 Ik

]
=

[
Ē11 Ē12

0 Ik

]
;

(14)

For an easy interpretation as a descriptor system [Dai
1989] we shall also use the following notations defining
input matrix B , the output matrix C as well as the state
matrix A

B =

[
ḡ1

0

]
; C = ḡT Q̄ =

[
ḡT1 ḡT2

] [ Q̄11 Q̄12

Q̄21 Q̄22

]
A = ĒQ̄ =

[
Ē11Q̄11 + Ē12Q̄21 Ē11Q̄12 + Ē12Q̄22

Q̄21 Q̄22

]
=

[
α β
Q̄21 Q̄22

]
where α = Ē11Q̄11 + Ē12Q̄21 and β = Ē11Q̄12 + Ē12Q̄22.

2.4 Canonical form for port Hamiltonian descriptor system

As a complement we shall give the transformation of the
descriptor dissipative port Hamiltonian system (13) into

the canonical Weierstrass form where the state matrix take
a canonical form [Dai 1989].

Proposition 2. Considering the equivalency transforma-
tion defined by the a (right) transform corresponding to
the change of coordinates z = Rẑ and the left transform
defined by the matrix L as a (left) multiplier or combina-
tion matrix with

L =

[
In−k −βQ̄−1

22

0 L−1
2

]
, R =

[
In−k 0

−Q̄−1
22 Q̄21 L−T

2

]
where L2 is a invertible triangular matrix corresponding

to the Cholesky factorization of Q̄22

Q̄22 = L2L
T
2 (15)

the port Hamiltonian descriptor system (13) is equivalent
to the following descriptor Hamiltonian system :{

Ŝż = Ê Q̂ z +

[
ĝ1

0

]
u

y = ĝT Q̂ z

(16)

where

Ŝ = S; Ê =

[
J̄11 − D̄11 0

0 Ik

]
; Q̂ =

[
Q̄s 0
0 Ik

]
(17)

Q̄s = Q̄11 − Q̄12Q̄
−1
22 Q̄21 is the Schur complement of the

matrix Q̄ and

ĝT = [ḡT1 ḡT1 Q̄12L
−T
2 + ḡT2 L2]

The descriptor port Hamiltonian system (16) is a canon-
ical Weierstrass form of the system (13).

The expression of the equivalent descriptor system (16)
may be checked by direct computation. The fact that it
is a canonical Weierstrass form of the descriptor system
may be proven by noticing firstly that the matrix S is
in canonical form and secondly by computing the state
matrix of the equivalent system (16)

Â = Ê Q̂

=

[
J̄11 − D̄11 0

0 Ik

] [
Q̄s 0
0 Ik

]
=

[ (
J̄11 − D̄11

)
Q̄s 0

0 Ik

]
which is indeed the canonical form of the state matrix.

3. GEOMETRIC MODEL REDUCTION

In this section we suggest a procedure for a structure
preserving reduction of the constrained port Hamiltonian
system (1) using the procedure to compute a balanced
realization of descriptor systems suggested in [Stykel 2004]
and then instead of reduction by truncation, adapt the
flow constraint method suggested in [Polyuga and van der
Schaft 2012] for the effective calculation of a reduced Port
Hamiltonian system in descriptor form (9).

3.1 Controllability and observability

Let us first characterize the observability and controllabil-
ity properties of the system according to [Stykel 2004, Dai
1989]. Observe by inspection of the Weierstrass canonical
form (16) of the system, that it is not Completely control-

lable as rank

[
S

...

[
ĝ1
0

]]
= n−k < n, it is Impulse control-

lable as rank

[
S

...Â

[
0
Ik

]
...

[
ĝ1
0

]]
= n and R-controllable
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if and only if rank

[
λIn−k −

(
J̄11 − D̄11

)
Q̄s

...ĝ1Q̄s

]
= n.

In the sequel, for the sake of simplicity we shall as-
sume that the system is R-controllable. Concerning the
observability, it is seen immediately that the system is

Impulse observable as rank

 S

K ′Â

Ĉ

 = n by choosing

the left kernel of S as K ′ =

[
0
Ik

]
. The Complete ob-

servability condition rank

[
S

Ĉ

]
= n is equivalent with

rank
(
ḡT1 Q̄12L

−T
2 + ḡT2 L2

)
= k. The R-observability condi-

tion rank

[
λS − Â
Ĉ

]
= n reduces to the same condition as

R-controllability. Note that as by hypothesis the matrix Q̄s
is positive definite, then the assumption of controllability
of the proper subsystem implies also the observability
using the port conjugated variable defined by the output
matrix Cc = ḡ>1 Q̄s [van der Schaft and Maschke 1995],
hence the system is also R-observable and R-minimal.

3.2 Balanced realization

The descriptor system is balanced if and only if:

G1c = G1o = Σ with Σ = diag(ς1, ς2, . . . , ςn−k) (18)

where G1c and G1o are the proper controllability and
observability Gramians [Stykel 2004], ςi are the Hankel sin-
gular values. One can define two transformation matrices
Wb and Tb where (Tb)

TWb = I such that by transforming
the coordinate by ẑ = Tbxb, and premultiply by matrix
Wb on the two sides of the system, we obtain a balanced
system from the system (16) with these new matrices:

Ēb = WT
b ÊT

−T
b = WT

b ÊWb, Qb = TTb Q̂Tb > 0 and

gTb = ĝTT−Tb = ĝTWb.

Then the balanced system can also be written as the
same port-Hamiltonian descriptor with (16) and (17) in
which the sub-matrices of the balanced system are Jb =
WT
b1J̄11Wb1, Db = WT

b1D̄11Wb1, Qb1 = TTb1Q̂Tb1 > 0.

3.3 Reduction by the flow constraint method

In this section we shall reduce the initial system of order
n to a system of order r < n by using the flow constraint
method proposed by [Polyuga and van der Schaft 2012]
instead of the truncation method which proposed by
[Stykel 2004]. Using the flow constraint method ensures
the conservation of the port Hamiltonian structure of the
reduced system. The Dirac structure associated with the
balanced descriptor Hamiltonian system is given by:

Ir 0 0 0 0
0 In−k−r 0 0 0
0 0 0 0 0
0 0 0 −Im 0
0 0 0 0 −ImR



fxb11
fxb12
fxb2
fp
fR



+


Jb11 Jb12 0 gb11 gRb1

Jb21 Jb22 0 gb12 gRb2

0 0 Ik 0 0

gTb11 gTb12 gTb2 0 0

gTRb1
gTRb2

0 0 0



exb11
exb12
exb2
ep
eR

 = 0

(19)

where fxb
=

 fxb11

fxb12

fxb2

 = ẋb and exb
=

 exb11

exb12

exb2

 = Qbxb.

The variables we want to reduce are fxb12
and exb12

.

By using the flow constraint method (see more details
in [Polyuga and van der Schaft 2012]), one obtains the
following reduced Dirac structure

Frfr + Erer = 0 (20)

where:

Fr =

 Ir 0 0 0
0 0 0 0
0 0 −Im 0
0 0 0 −ImR

 , Er =

 Jbs 0 α β
0 Ik 0 0

αT gTb2 γ µ

βT 0 −µT ζ

 (21)

and:

Jbs = Jb11 − Jb12J
−1
b22
Jb21 α = gb11 − Jb12J

−1
b22
gb12

β = gRb1
− Jb12J

−1
b22
gRb2

γ = −gTb12J
−1
b22
gb12

µ = −gTb12J
−1
b22
gRb2

ζ = −gTRb2
J−1
b22
gRb2

(22)

Fr, Er ∈ Rr+k+m×r+k+m are square matrices where
γ = −γT and ζ = −ζT . With the reduced Hamiltonian
is Hr = 1

2x
T
r Qrxr, where

Qr =

[
Qb11 0

0 Ik

]
(23)

one can formulate the reduced Dirac structure in a explicit
descriptor Hamiltonian system.

4. APPLICATION TO A NANOTWEEZER

In this section, we shall apply the proposed model re-
duction method to a Port Hamiltonian model of the
nanotweezer of the FEMTO-ST laboratory [Boudaoud
et al. 2013]. Consider the simplified model of a silicon
nanotweezer used for DNA manipulation given in Figure
(1). The tweezers is made up with a flexible arm that
can be modeled as a Timoshenko beam clamped to a
transverse suspension system. The trapped DNA bundle
is approximated by a spring/damper-mass-spring/damper
system attached at the tip of Timoshenko beam.

Fig. 1. Suspension-Nanotweezers-DNA

The Timoshenko beam model may be expressed as an
infinite dimensional Port Hamiltonian system [Le Gorrec
et al. 2005]:

∂x

∂t
= J ∂H

∂x
(24)

where J = P1
∂
∂z + P0 and

P1 =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P0 =

 0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 (25)
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The matrices P1 and P0 define the skew-symmetric dif-
ferential operator of order 1 acting on the state space
X = L2(a; b;R4). The energy of the beam is expressed
in terms of the energy variables,

H =
1

2

∫ b

a

(Kx21 +
1

ρ
x22 + EIx23 +

1

Iρ
x24)dz (26)

where the state (energy) variables are: the shear displace-
ment x1 , the transverse momentum distribution x2, the
angular displacement x3 and the angular momentum dis-
tribution x4. The coefficients ρ, Iρ, E, I and K are the
mass per unit length, the rotary moment of inertia of a
cross section, Young’s modulus of elasticity, the moment
of inertia of a cross section, and the shear modulus respec-
tively.

Using the mixed finite element semi-discretization method
suggested in [Golo et al. 2004], one obtains a finite dimen-
sional explicit Port Hamiltonian system such as:

ẋ = (J −R)
∂H

∂x
+Bu

y = BT
∂H

∂x

(27)

where J = −JT , R = RT > 0, H is the Hamiltonian
function. According to [Macchelli 2011],[Ramirez and Le
Gorrec 2013] the discretization of the Timoshenko beam
model, leads to the following structure matrices:

Jd =

 0 M 0 0

MT 0 0 0
0 0 0 M

0 0 MT 0


︸ ︷︷ ︸

P̄1

+

 0 0 0 −Φ
0 0 0 0
0 0 0 0

ΦT 0 0 0


︸ ︷︷ ︸

P̄2

Bd =

 0 0 B1 0
B2 0 0 0
0 0 0 B1

0 B2 0 0


(28)

where the sub-matrices are:

M =


−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 1
0 · · · 0 0 −1

 with M ∈ RN×N (29)

Φ = diag(β, · · · , β) with Φ ∈ RN×N (30)

B1 =

[
0

0N−2
1

]
and B2 =

[ −1
0N−2

0

]
(31)

where β is the distance of the infinitesimal section.

The inputs and outputs of the system are the velocities in
translation v and rotation ω as well as the forces F and
torques T at the boundaries a and b:

u = [ v(b) ω(b) F (a) T (a) ]
T

= [ u1 u2 u3 u4 ]
T

y = [ F (b) T (b) −v(a) −ω(a) ]
T

= [ y1 y2 y3 y4 ]
T (32)

The DNA bundle and the suspension system can be
modeled as two simple finite dimensional port Hamiltonian
systems like (27). The matrices of DNA bundle are defined
as follow:

Jb = −JTb =

[
0 0 1
0 0 1
−1 −1 0

]
, Rb = RTb =

 1

f1
0 0

0 0 0
0 0 f2


gTb =

[
1

f1
0 0

0 0 fθ

]
, Sb =

[
1

f1
0

0 fθ

] (33)

with the energy of the DNA bundle is given as:

Hb =
1

2

(
k1(xc2 − xc1)2 + k2x

2
c2 +

1

M
(pc2)2

)
(34)

where M is the mass of DNA bundle, xc1 and xc2 are the
relative positions of point b and mass M and pc2 = Mẋc2
is its momentum. k1, k2, f1 and f2 represent the constants
of the springs and the viscous dampers of the DNA bundle
respectively. fθ is the rotation damper of the DNA bundle
in point b. The suspension system is also modeled as
system (27), in which the matrices are given as:

Ja =

[
0 1
−1 0

]
, Ra =

[
0 0
0 f

]
, gTa = [ 1 0 ] (35)

with the energy of the suspension system is given as:

Ha =
1

2
(kx2a +

1

M2
(pa)2) (36)

where xa is the relative position of point a, M2 is the
mass of point a, pa = M2ẋa is its momentum, k and
f represent the constant of the springs and the viscous
damper of suspension system respectively.

The interconnection relations of the tweezers arm and the
suspension system are:

ua = y3 and u3 = −ya (37)

where [
u1
u2

]
= yb and ub = −

[
y1
y2

]
Since the arm of the tweezers is clamped to the suspension
system, we consider the additional constraint:

y4 = ω(a) = 0 (38)

With the above interconnections, one can express the total
system with the constraint as (1) with the dissipation port
is closed and the total energy of the system Ht = H+Hb+
Ha.

We have chosen the order of the discrete Timoshenko beam
model nT = 200, the orders of the DNA bundle and the
suspension system are nD = 3 and nS = 2 respectively.
The total system order is n = 205. The parameters of
tweezers arm is given in table (1).

Table 1. The parameters of tweezers arm
[Boudaoud et al. 2013]

L Length 5150µm
l Width 150µm
e Thickness 50µm
E Young’s modulus 190 GPa
I Area moment of inertia 1.4×10−17m4

G Shear modulus 80 GPa
ρ Mass density 2330 KG/m3

Figure (2) gives the relativeH∞ norms of the input/output
systems for the dimensions of the reduced order models r
from 0 to 190.

Figure (3) gives the comparative bode plots of discretized
systems with 200 or 100 elements, and the reduced system
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Fig. 3. Bode diagram of discretized systems with 200 or
100 elements and the reduced system with 100 states
from 200 elements

with 100 states which is reduced from the discretized
system with 200 elements. It shows the intrinsic advantage
of balanced reduction method comparing to size equivalent
discretization method.

5. CONCLUSION
In this paper, we proposed a model reduction method for
constrained port Hamiltonian systems that preserves the
Hamiltonian structure and the passivity properties. First
of all, we propose a coordinate transformation to express
the constrained port Hamiltonian system in its descriptor
form [van der Schaft and Maschke 1994]. We then eliminate
the Lagrangian multipliers. The balanced realization of
this system is achieved by computing the controllability
and observability Gramians, and the port Hamiltonian
system is reduced by using the flow-constraint reduction
method [Polyuga and van der Schaft 2012]. Finally we
illustrate the effectiveness of the proposed model reduction
method for the constrained port Hamiltonian systems on
example of nanotweezers.
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