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Abstract: In this paper, we propose an outlier-robust regularized kernel-based method for
linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian
process whose covariance (kernel) is given by the recently proposed stable spline kernel, which
encodes information on regularity and exponential stability. To build robustness to outliers, we
model the measurement noise as realizations of independent Laplacian random variables. The
identification problem is cast in a Bayesian framework, and solved by a new Markov Chain Monte
Carlo (MCMC) scheme. In particular, exploiting the representation of the Laplacian random
variables as scale mixtures of Gaussians, we design a Gibbs sampler which quickly converges to
the target distribution. Numerical simulations show a substantial improvement in the accuracy
of the estimates over state-of-the-art kernel-based methods.

1. INTRODUCTION

The classic approach to the problem of identifying a linear
time-invariant system assumes that its transfer function
belongs to a model class described by a small number of
parameters that determine important properties, such as
zeros and poles positions, time constant, etc. To identify
the system, these parameters are estimated by minimizing
a cost function related to the variance of the output
prediction error. This procedure, called prediction error
method (PEM), is motivated by the fact that, when the
number of available data tends to infinity, the parameter
estimates are consistent and their variance attains the
Cramer-Rao bound [Ljung, 1999], [Söderström and Stoica,
1989]. This optimality result is guaranteed only when
the “true” model lies in the chosen model class. Clearly,
in many situations choosing the appropriate model class
may be an issue, and one should rely on model selection
criteria such as AIC [Akaike, 1974] or cross validation
[Ljung, 1999]. However, these criteria are consistent only
asymptotically and may tend to overestimate the model
order or provide poor predictive capability [Pillonetto and
De Nicolao, 2012].

Motivated by these issues, new identification paradigms
have recently gained popularity. Rather than positing a
model class described by a small number of parameters
and then estimating these, newer methods try to estimate

? The research leading to these results has received funding from
the Swedish Research Council under contract 621-2009-4017 and the
European Union Seventh Framework Programme [FP7/2007-2013]
under grant agreement no. 257462 HYCON2 Network of excellence,
by the MIUR FIRB project RBFR12M3AC - Learning meets time:
a new computational approach to learning in dynamic systems

the entire impulse response. In order to overcome the ill-
posedness of this problem, these methods estimate hyper-
parameters in order to regularize the identification process.
Hyperparameters can be seen as the counterpart of the
parametric model order selection. Kernel-based regular-
ization methods are an important example of this kind
of approach, and have had a long history in regression
problems [Poggio and Girosi, 1990], [Wahba, 1990]. In
the system identification framework, kernel-based methods
have been introduced recently [Pillonetto and De Nicolao,
2010], [Pillonetto et al., 2011], [Pillonetto et al., 2014].
The unknown impulse response is modeled as a realiza-
tion of a Gaussian stochastic process, whose covariance
matrix belongs to the class of the so-called stable spline
kernels [Pillonetto and De Nicolao, 2011]. Introduced in
[Pillonetto and De Nicolao, 2010], kernels of this type
have been proven to effectively model the behavior of the
impulse response of stable systems [Chen et al., 2012],
exponential trends [Pillonetto et al., 2010] and correlation
functions [Bottegal and Pillonetto, 2013].

In the kernel-based approach, the estimate of the impulse
response is computed as the minimum variance Bayes es-
timate given the observed input/output data. Recall that
when the output is corrupted by white Gaussian noise,
the impulse response and the output are jointly Gaussian.
However, if the white Gaussian noise assumption is vio-
lated, then the estimated impulse response may be poor.
In particular, this approach fails in the presence of outliers
[Aravkin et al., 2011]; see the example below.

A motivating example Suppose we want to estimate the
impulse response of a linear system fed by white noise
using the kernel-based method proposed in [Pillonetto and
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Fig. 1. Introductory example. Left panel: the noiseless output and the measured outputs in the no-outliers situation
(measurements shown using green asterisks) and when outliers are present (shown using red circles). Right panel:
the true impulse response and its estimate in the no-outliers situation and when outliers are present.

De Nicolao, 2010]. We consider two different situations,
depicted in Figure 1. In the first one, 100 samples of the
output signal are measured with a low-variance Gaussian
additive noise; note that the estimated impulse response
is very close to the truth. In the second situation we
introduce 5 outliers in the measured output, obtaining
a much poorer estimate of the same impulse response.
This suggests that outliers may have a devastating effect
on the standard identification process that relies on the
assumption of Gaussianity.

Statement of contribution and organization of the paper
In this paper we introduce an outlier-robust system

identification algorithm. We model the measurement noise
as realizations of independent Laplacian random variables,
which are better suited to modeling outliers because they
have heavier tails than the Gaussian distribution. Then,
using stable spline kernels, we set a proper prior to the
impulse response of the system, which allows us to cast
the problem into a Bayesian framework and to solve it
using Markov Chain Monte Carlo (MCMC) approach [An-
drieu et al., 2010]. Note that MCMC-based approaches are
standard in system identification [Ninness and Henriksen,
2010], [Lindsten et al., 2012]. A fundamental point of this
work is exploiting the representation of Laplacian random
variables as scale mixtures of Gaussians, that is, Gaussian
variables whose variance has a prior exponential distri-
bution. This representation allows us to design a Gibbs
sampler [Gilks et al., 1996], which does not require any
rejection criterion of the generated samples and quickly
converges to the target distribution. We evaluate the per-
formance of the proposed algorithm using numerical simu-
lations, and show that in the presence of outliers, there is a
substantial improvement of the accuracy of the estimated
impulse response compared to the kernel-based method
proposed in [Pillonetto and De Nicolao, 2010].

The paper is organized as follows. In Section 2, we for-
mulate our system identification problem. In Section 3 we
cast this problem in a Bayesian framework. In Section 4,
we describe the proposed algorithm for impulse response
estimation, and test it using numerical simulations in Sec-
tion 5. Some conclusions end the paper.

2. PROBLEM STATEMENT

We consider a SISO linear time-invariant discrete-time
dynamic system (see Figure 2)

y(t) = G(z)u(t) + v(t) , (1)

where G(z) is a strictly causal transfer function represent-
ing the dynamics of the system, driven by the input u(t).
The measurements of the output y(t) are corrupted by the
process v(t), which is zero-mean white noise with variance
σ2. In the typical system identification framework, the dis-
tribution of the noise samples is assumed to be Gaussian.
Here, instead, we consider a Laplacian probability density
for the noise, i.e.

p(v(t)) =
1√
2σ
e−
√

2|v(t)|
σ . (2)

We assume that N samples of the input and out-
put measurements are collected, and denote them by
u(1), . . . , u(N), y(1), . . . , y(N). Our system identification
problem is to obtain an estimate of the impulse response
g(t) (or, equivalently, the transfer function) for n time
instants, namely ĝ(1), . . . , ĝ(n). Recall that by choosing
n sufficiently large, these samples can be used to approx-
imate g(t) with arbitrary accuracy [Ljung and Wahlberg,
1992].

u(t)
G(z)

v(t)
y(t)

+

Fig. 2. Block scheme of the system identification scenario.

Introducing the vector notation

y :=

 y(1)
...

y(N)

 , g :=


0
g(1)

...
g(n)

 , v :=

 v(1)
...

v(N)



U =


u(1) 0 . . . 0
u(2) u(1) 0 . . . 0

...
...

. . .
. . .

u(N) u(N − 1) . . . u(1) 0

 ∈ RN×(n+1) ,

the input-output relation for the available samples can be
written

y = Ug + v , (3)
so that our estimation problem can be cast as a linear
regression problem.

3. A BAYESIAN FRAMEWORK

In this section we describe probabilistic models used for
the quantities of interest in the problem.
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3.1 The stable spline kernel

We first focus on setting a proper prior on g. Following a
Gaussian regression approach [Rasmussen and Williams,
2006], we model g as a zero-mean Gaussian random vector,
i.e.

p(g) ∼ N (0, λKβ) , (4)
where Kβ is a covariance matrix whose structure depend
on the value of the parameter β and λ ≥ 0 is a scaling
factor. In this context, Kβ is usually called a kernel and
determines the properties of the realizations of g. In this
paper, we draw Kβ from the class of the stable spline
kernels [Pillonetto and De Nicolao, 2010], [Pillonetto et al.,
2011]. In particular we shall make use of the so-called first-
order stable spline kernel (or TC kernel in [Chen et al.,
2012]), defined as

{Kβ}i,j := βmax(i,j) , 0 ≤ β < 1 . (5)

Such a kernel is parameterized by β, which regulates
the decaying velocity of the generated impulse responses.
Then, once the hyperparameters are fixed, the probability
distribution of g is

p(g|λ, β) =
1√

(2π)n det(λKβ)
e−

1
2 g
T (λKβ)

−1g . (6)

Clearly, knowing the values of hyperparameters is of
paramount importance to the design of an impulse re-
sponse estimator. The following result, drawn from [Magni
et al., 1998], shows the marginal distribution of the inverse
of the hyperparameter λ given g and β.

Lemma 1. The posterior probability distribution of λ−1

given g and β is

p(λ−1|g, β) ∼ Γ
(n

2
+ 1, gTK−1β g

)
(7)

Remark 2. To obtain the result of the above Lemma, we
have implicitly set an improper prior on λ with non-
negative support.

3.2 Modeling noise as a scale mixture of Gaussians

The assumption on the noise distribution poses a challenge
in expressing the conditional probability of g given the
input-output data, since it is non-Gaussian. Here, we show
how to deal with this problem. The key is to represent the
noise samples v(t) as a scale mixture of normals [Andrews
and Mallows, 1974]. Specifically, denoting by vi the i-th
entry of the noise vector v, for i = 1, . . . , N , the pdf of vi
can always be expressed as

p(vi|σ2) =
1√
2σ
e−
√

2|vi|
σ =

∫ +∞

0

1√
2πτi

e
−
v2
i

2τi
1

σ2
e−

τi
σ2 dτi .

(8)
The above expression highlights the fact that each noise
sample can be thought of as a realization of a Gaussian
random variable, whose variance τi is in turn the realiza-
tion of an exponential random variable, i.e.

p(τi|σ2) =
1

σ2
e−

τi
σ2 , τi ≥ 0 . (9)

Thus,

p(vi|τi, σ2) =
1√
2πτi

e
−
v2
i

2τi (10)

The following result establishes a closed-form expression
for the conditional probability density p(τi|vi).

Lemma 3. For any i = 1, . . . , N , the posterior of τi given
vi is

p(τi|vi, σ2) ∼ GIG
(

2

σ2
, v2i ,

1

2

)
, (11)

i.e., a generalized inverse Gaussian random variable.

Using the above result, we have that the posterior prob-
ability density of τi given vi, i = 1, . . . , N , is available in
closed-form. The probability density (11) also depends on
σ2. Instead of establishing a prior for such a parameter, a
consistent estimate of its value can be obtained with the
following steps:

(1) compute the least-squares estimate of g, i.e.

ĝLS = (UTU)−1UT y , (12)

in order to obtain an unbiased estimate of g;
(2) compute the empirical estimate of σ2

σ̂2 =
(y − UĝLS)

T
(y − UĝLS)

N − n . (13)

In the following section, we shall assume that σ2 is known.

4. SYSTEM IDENTIFICATION UNDER GAUSSIAN
AND LAPLACIAN NOISE ASSUMPTIONS

4.1 The Gaussian noise case

In this section, we make use of prior (4) for modeling g,
assuming that the noise v(t) is Gaussian. Then, the joint
distribution of the vectors y and g, given values of λ, β
and σ2, is jointly Gaussian, namely

p

([
y
g

]∣∣∣∣λ, β) ∼ N ([00
]
,

[
Σy Σyg
Σgy λKβ

])
, (14)

where
Σy = λUKβU

T + σ2IN (15)

and Σyg = ΣTgy = λUKβ . In this case, the minimum mean
square error (MSE) estimation of g is given by its Bayesian
linear estimate, namely

Ê[g|y, λ, β] = ΣgyΣ−1y y . (16)

The above equation depends on unknown values of hy-
perparameters λ and β. The estimate of such parameters,

denoted λ̂ and β̂, can be performed by exploiting the
Bayesian framework of the problem. More precisely, since

y and g are jointly Gaussian, we can obtain λ̂ and β̂ by
maximizing the marginal likelihood, obtained by integrat-
ing out g from the joint probability density of (y, g). Then
we have

(λ̂, β̂) = arg min
λ,β

log det(Σy) + yTΣ−1y y . (17)

In this paper, we always use this approach to estimate
β. Hence, below we shall consider such parameter to be
known.

4.2 The Laplacian noise case

We now consider the proposed model, where g has prior (4)
and the noise is modeled using the Laplacian distribution.
Then, the joint description of y and g given σ2, λ and β
does not admit a Gaussian distribution, since the vector
y is itself not Gaussian distributed. However, as shown
in Section 3.2, we can cast the problem in the Gaussian
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regression framework by introducing variables τi, i =
1, . . . , N . In fact, it can be seen that, redefining Σy as

Σy = λUKβU
T +D , D := diag{τ1, . . . , τN} (18)

the joint posterior of y and g given λ, β, σ2 and all τi is
again Gaussian:

p

([
y
g

]∣∣∣∣λ, {τi}Ni=1

)
∼ N

([
0
0

]
,

[
Σy Σyg
Σgy λKβ

])
, (19)

and the best estimator for g is given by

Ê[g|y, λ, {τi}Ni=1] = ΣgyΣ−1y y . (20)

Unfortunately, the above estimator requires the knowledge
of the values of the τi’s. In principle these parameters
could be estimated by adopting a marginal likelihood
function analogous to (17). However, the resulting mini-
mization problem is extremely complicated and ill-posed.
The number of variables of the same order of the number
of measurements and subject to multiple minima. Below,
we describe our approach to solve the system identification
problem.

The proposed MCMC scheme The Bayesian solution to
the problem here presented accounts also for uncertainty
of λ and {τi}Ni=1. It returns the impulse response estimate
as the following integral

ĝ =

∫
g p(g, λ, {τi}Ni=1|y) dg dλ

N∏
i=1

dτi , (21)

which can be computed by Monte Carlo integration. In
particular, it is sufficient to draw a large number of samples
from the distribution p(g, λ, {τi}Ni=1|y) and compute the
average value

ĝ = lim
M→∞

1

M

M∑
k=1

gk , (22)

where the gk are realizations from the posterior. Drawing
samples from a distribution is a hard problem in general.
However, when all the conditional probability densities
of such a distribution are available in closed-form, this
can be done efficiently by employing a special case of the
Metropolis Hastings sampler, namely the Gibbs sampler
(see e.g. [Gilks et al., 1996]). The basic idea is that each
conditional random variable is the state of a Markov chain;
then, drawing samples from each conditional probability
density iteratively, we converge to the stationary state of
this Markov chain and generate samples of the conditional
distribution of interest. In our case, in view of (21), we set
p(g, λ, {τi}Ni=1|y) as target probability density. Then, the
conditional densities are as follows.

(1) p(τi|g, λ, {τj}Nj=1,j 6=i, y), i = 1, . . . , N . Note that,
for any i = 1, . . . , N , τi is independent of λ, τj
and yj , j 6= i and indeed it depends only on the
observed value of the noise sample vi. Then, recalling
that vi = yi − Uig, where Ui denotes the i-th
row of U , this conditional density has the form
(11), namely a generalized inverse Gaussian with
parameters ( 2

σ2 , (yi − Uig)2, 1
2 ).

(2) p(λ−1|g, {τi}Ni=1, y). Once g is given, λ becomes in-
dependent of all the other variables (see Lemma 1).
Hence this conditional corresponds to the one stated
in Lemma 1, namely a Gamma distribution with
parameters (n2 + 1, gTK−1β g).

(3) p(g|λ, {τi}Ni=1, y). This probability density can be
easily derived from (19) and has a Gaussian distri-
bution, with mean λKβU

TΣ−1y y and covariance

λKβ − λ2KβU
TΣ−1y UKβ .

Having established the above conditional probabilities, we
need to specify the initial values for g and λ, to be used as
starting points in the iterative Gibbs sampler. These are
obtained by exploiting the estimation procedure proposed
in Section 4.1 for the Gaussian noise case.

We now give our system identification algorithm.

Algorithm: Outlier robust system identification

Input: {y(t)}Nt=1, {u(t)}Nt=1

Output: {ĝ}nt=1
(1) Initialization:

(a) Estimate σ2 from (13) and β from (17)
(b) Obtain g0 from (16) and λ0 from (17)

(2) For k = 1 to M :
(a) Draw the sample τki , i = 1, . . . , N from

p(τi|gk−1, λk−1, {τk−1j }Nj=1,j 6=i, y)

(b) Draw the sample λk from

p(λ−1|{τki }Ni=1, g
k−1, y)

(c) Draw the sample gk from

p(g|λk, {τki }Ni=1, y)

(3) Compute ĝ = 1
M−M0

∑M
k=M0

gk

In the above algorithm, the parameters M and M0 are
introduced. M the number of samples to be generated;
clearly, large values of M should guarantee more accurate
estimates of g. M0 is the number of initial samples drawn
from the conditional of g to be discarded. In fact, the
conditionals from which those samples are drawn are to
be considered as non-stationary, since the Gibbs sampler
takes a certain number of iterations to get close to a
stationary distribution.

Remark 4. The estimation procedure of β is in a certain
sense “non-optimal”, since it is based on a different noise
model. However, we observe that the sensitivity of the
estimator to the value of β is relatively low, in the sense
that a large interval of values of β can model a given
realization of g efficiently (see Lemma 2 in [Bottegal and
Pillonetto, 2013]). Models for β will be introduced in future
works.

A block scheme representation of the proposed identifica-
tion algorithm is shown in Figure 3. From this scheme, it
is clear that this algorithm can be seen as a refinement
of the algorithm proposed in [Pillonetto et al., 2010] and
briefly described in Section 4.1.

5. NUMERICAL EXPERIMENTS

In this section, we report numerical results to illustrate
the performance of the proposed algorithm. We evaluate
the proposed algorithm by means of 4 Monte Carlo exper-
iments of 100 runs each. At each run, a linear system is
randomly generated such that its transfer function G(z)
has 30 zeros and 30 poles. These poles are always within
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{y(t)}Nt=1

SS-ML

SS-GS
{ĝ(t)}nt=1

β̂, σ̂2, λ0, g0

{u(t)}Nt=1

Fig. 3. Block scheme of the proposed algorithm. The label
SS-ML represents the marginal likelihood-based sys-
tem identification method reviewed in Section 4.1. The
label SS-GS indicates the Gibbs sampler step of the
proposed method.

the circle with center at the origin and radius 0.95 on the
complex plane. We consider an input-output delay equal
to 1. In order to simulate the presence of outliers in the
measurement process, the noise samples v(t) are drawn
from a mixture two Gaussian of the form

v(t) ∼ c1N (0, σ2) + c2N (0, 100σ2) , (23)

with c1 = 0.7 and c2 = 0.3, so that outliers (observa-
tions with 100 times higher variance) are generated with
probability 0.3. The value of σ2 was set to the variance of
the noiseless output divided by 100. Two different types of
input signals are considered: 1) u(t) is obtained by filtering
a white noise sequence through a second-order low pass
filter with random bandwidth (labeled as LP); 2) u(t) is
white noise (labeled as WN).

At each Monte Carlo run, N samples of the input and
output signals are generated; we consider two different
situations where the number of available samples is either
N = 200 or N = 500. In all the experiments, we set
n = 50. Thus, there is a total of 4 different Monte Carlo
experiments whose features are summarized in Table 1.

Exp.# Data set size (N) Input type

1 200 LP

2 500 LP

3 200 WN

4 500 WN

Table 1: Features of the 4 Monte Carlo experiments.

Two different algorithms are tested; their performances are
evaluated at any run by computing the fitting score, i.e.

FITi(%) = 100

(
1− ‖gi − ĝi‖2‖gi‖2

)
, (24)

where gi and ĝi represent, respectively, the true and
the estimated impulse responses (truncated at the n-th
sample) obtained at the i-th run. The estimators tested
are specified below.

SS-ML: This is the nonparametric kernel-based identifi-
cation method proposed in [Pillonetto et al., 2010] and
briefly described in Section 4.1. The impulse response is
modeled as in (4) and the hyperparameters λ and β are
estimated by using a marginal likelihood maximization
approach. Note that this estimator does not attempt to
model the presence of outliers.
SS-GS: This is the approach proposed in this paper, where
a Gibbs sampler is employed for computing (21). The
parameter M , denoting the number of samples generated
from each conditional probability density, is set to 1500.
The first M0 = 500 generated samples are discarded. The
validity of the choice of M and M0 is checked by assessing
that quantiles 0.25, 0.5, 0.75 are estimated with good

precision [Raftery and Lewis, 1996]. The initial values of
g and λ and the estimated values of β and σ2 are drawn
from the SS-ML Algorithm.

Figure 4 shows the box plots of the 100 reconstruction
errors obtained by each estimator after the 4 Monte Carlo
experiments. The proposed method offers a substantial
improvement of the fitting score in the example scenario.
This is particularly visible in the case of white noise, where
the fitting score is above 90%. When the input is a low-
pass signal, one can see that sometimes the performance
of the estimators are not so satisfactory. This happens
when a high-pass transfer function is fed with a short-
band input, a combination that is known to give rise to
ill-posed problems [Bertero, 1989].

5.1 An example with no outliers

In order to complete our analysis, we also test our algo-
rithm in the same framework as above, but setting c1 = 1
and c2 = 0, that is, generating errors from a Gaussian noise
model with no outliers. We use N = 500, and generate
inputs by filtering white noise through random second
order low-pass filters. The boxplots of Figure 5 show the
comparison between SS-ML and SS-GS over 100 Monte
Carlo runs. The performance of the proposed algorithm is
comparable to the performance of the SS-ML Algorithm,
with a slight degradation in the fitting score due to the
modeling of the noise, which, in the proposed estimator,
is Laplacian instead of Gaussian.

6. CONCLUSIONS

In this paper, we have proposed a novel identification
scheme for estimating impulse responses of linear system
when the measurements are corrupted by outliers. We have
shown that, modeling the measurement noise as Lapla-
cian random variables, we can model our problem using
a mixture of Gaussian random variables. The mixture
coefficients can be estimated by adopting a MCMC scheme
which exploits closed-form expressions of conditional prob-
abilities for the parameters of interest. The performance of
the proposed algorithm gives a substantial improvement
over the state-of-the-art algorithm, which does not use
outlier-robust noise modeling.

SS−ML SS−GS
0

20

40

60

80

100

Fig. 5. Box plot of the fitting score when no outliers are
simulated.
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