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Abstract: This paper presents a technique for designing switching rules that drive the state of
a class of nonlinear switched system to a desired constant reference. The system may contain
state-dependent sector-bounded nonlinear functions. The proposed method considers a switching
rule using the ‘max’ composition of auxiliary functions. The results are given in terms of Linear
Matrix Inequalities (LMIs) and they guarantee global asymptotic stability of the closed-loop
system even if sliding modes occur on any switching surface of the system. The application of
the method is illustrated through a numerical example based on a Photovoltaic (PV) system
and important requirements are achieved, such as the Maximum Power Point Tracking (MPPT)
and robustness with respect to the uncertain parameters of the PV array.

1. INTRODUCTION

A switched system can be defined as a dynamical system
composed by a set of subsystems with continuous time
dynamics and a rule that organizes the switching between
them (Liberzon and Morse (1999)). The problem of design-
ing switching rules for switched systems has been largely
studied and several results are available in the literature
(see the survey of DeCarlo et al. (2000), for instance).

Among the switching rule design techniques, some of
them are based on Lyapunov functions and Linear Matrix
Inequality (LMI) techniques, as for instance in Bolzern
and Spinelli (2004) and Trofino et al. (2011). The interest
of recasting the problem as LMIs is that it is easy to
incorporate new constraints to the problem, provided that
these constraints can be also expressed as LMIs, and
the availability of powerful computational packages to
solve the LMI problems. However, extending the results
obtained for the class of linear switched systems to the
class of nonlinear switched systems is a difficult task,
and the design conditions for general nonlinear systems
usually result in conservative LMIs. A possible way to
reduce the conservatism is to consider a specific class of
nonlinear functions, as for instance the class of sector-
bounded functions of the state (see Khalil (2002)).

Renewable energy generation systems, such as the Pho-
tovoltaic (PV) systems, can be viewed as a nonlinear
switched system due to the power electronic devices em-
ployed. For PV systems in particular, one of the biggest
challenges for control is the fact that the system presents
a highly nonlinear model.

This paper presents an extension of the results in Trofino
et al. (2011) to the class of nonlinear switched systems in
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which the nonlinearities are sector bounded. A multiple
Lyapunov function approach is used to design switching
rules that guarantee global asymptotic stability of the
switched system with convergence to a desired equilib-
rium point even if sliding motions occur on any switching
surface of the system. An extension to the switching rule
design based on partial state measurement is presented.
It is also shown that, depending on the system struc-
ture, it is not necessary to know all the state vector at
the desired equilibrium point a priori for the design of
the switching rule. Motivated by the complexity of the
nonlinear function present in PV generation systems, we
consider this application to illustrate the design method.
As the nonlinear function in PV systems also depends on
uncertain parameters, a formula for determining robust
sector-bounds for this system is also provided, allowing
for the application of Maximum Power Point Tracking
(MPPT) algorithms.

The paper is organized as follows. This section ends with
the notation used in the paper. The next section presents
some preliminary results and definitions. The main results
for the switching rule design are presented in the Section 3.
Section 4 is devoted to the application of the method to a
PV system with MPPT, including numerical simulations.
Some concluding remarks end the paper.

Notation. Rn denotes the n-dimensional Euclidean
space. Rn×m is the set of n ×m real matrices. ‖.‖ stands
for the euclidean norm of vectors and its induced spectral
norm of matrices. Block matrix terms that can be deduced
from symmetry are represented by •. 0n and 0m×n are the
n×n and m×n matrices of zeros. In is the n×n identity
matrix. For a real matrix S, S′ denotes its transpose
and S > 0 (S < 0) means that S is symmetric and
positive-definite (negative-definite). For a set of real num-
bers {v1, . . . , vm} we use arg max{v1, . . . , vm} to denote
a set of indexes that is the subset of {1, . . . ,m} associated
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with the maximum element of {v1, . . . , vm}. The symbol
⊗ denotes the Kronecker product and ϑ(θ) represents the
set of all vertices of a given polytope θ. For a symmetric
matrix M , λmin(M) denotes its minimum eigenvalue.

2. PRELIMINARIES

Consider a nonlinear switched dynamic system composed
of m affine sub-systems as indicated below.

ẋ(t) = Aix(t) + bi +Bφx(qx(x(t))) , i ∈M := {1, . . . ,m}
(1)

where x ∈ Rn is the system state, φx : R 7→ R is
a nonlinear function of the scalar qx(x(t)) := Cqx(t),
Cq ∈ R1×n, and Ai ∈ Rn×n, bi ∈ Rn, B ∈ Rn are given
matrices of structure.

The problem of concern in this paper is to design a
switching rule that asymptotically drives the system state
to a constant reference x. In other words, the desired
equilibrium point x of the (closed-loop) switched system
must be asymptotically stable. Given x, we can represent
the tracking error dynamics as a switched system with the
following subsystems

ė(t) = Aie(t) +Aix+ bi +Bφ(q(e(t))) , i ∈M (2)

where

φ(q(e(t))) := φx(q(e(t)) + Cqx)) = φx(qx(x(t))), (3)

e(t) := x(t)− x , q(e(t)) := Cqe(t). (4)

Now consider the following decomposition of Ai, bi.

Ai = Ao +Ai , bi = bo + bi (5)

where Ao, bo denote the component of Ai, bi, respectively,
that is common for all i ∈M and Ai, bi contain the terms
that vary according to i. Defining

ho = Aox+ bo , hi = Aix+ bi, (6)

we can rewrite Aix+ bi as ho + hi.

Assuming the sliding mode dynamics of the system can be
represented as convex combinations of the subsystems as in
Filippov (1988), the global switched system, that includes
the subsystem dynamics and the sliding mode dynamics
that may eventually occur in any switching surface, is
represented by

ė(t) =
∑m

i=1
θi(e(t))(Ai e(t) + ho + hi +Bφ(q(e(t)))),

θ(e(t)) ∈ Θ, (7)

where θ(e(t)) is a piecewise continuous vector with entries
θi and Θ := {θ :

∑m
i=1 θi = 1, θi ≥ 0 } is the unitary sim-

plex. A sliding motion may be occurring at a point e if
there exists a convex combination of the subsystem vector
fields such that ė(t) is a vector that belongs to the tangent
hyperplane of the switching surface at the point e.

In order to achieve the tracking objective, the origin
must be an asymptotically stable equilibrium point of (7).
Define θ = θ(0) and φ = φ(0). Hence, the following lemma
is established.

Lemma 1. The origin is an equilibrium point of (7) iff
there exists θ ∈ Θ such that∑m

i=1
θi
(
ho + hi +Bφ

)
= 0 . (8)

Proof: Set ė(t) = 0 and e(t) = 0 in (7). 2

Hereafter we assume θ is constant and the dependence
of the state on time will be omitted to simplify the
presentation. As (8) is a zero identity, we can subtract the
left hand side of (8) to (7) and rewrite the error dynamics
in the following more convenient form.

ė = Aθ e+ kθ , θ(e) ∈ Θ, (9)

where Aθ =
∑m
i=1 θi(e)Ai and kθ =

∑m
i=1 θi(e)ki with

ki = hi − hθ +B∆φ, (10)

where hθ =
∑m
i=1 θihi and ∆φ = φ− φ.

Thanks to the error system (9) the problem of concern can
be restated as to design a switching rule that asymptoti-
cally drives the error system state to the origin. For this
purpose consider the switching rule given by

σ(e) := arg max
i∈M
{vi(e)}, vi(e)=e′Pie+2e′(Si−Sθ) (11)

where Sθ :=
∑m
i=1 θiSi and Pi ∈ Rn×n and Si ∈ Rn×1

are matrices to be determined. The set valued signal σ :
Rn 7→ M is a map specifying the set of subsystems having
‘maximum energy’. For instance, σ(e(t0)) = {j, k, l}means
that at instant t = t0 the error trajectory is at the switch-
ing surface defined from the subsystems {j, k, l} because
vj(e(t0)) = vk(e(t0)) = vl(e(t0)) = maxi∈M{vi(e(t0))}.
Whenever the set σ(e) has more than one element, a sliding
mode may be occurring at that instant and the elements
of convex combination, the entries of the vector θ(e), are
such that θi(e) = 0 if i /∈ σ(e). We refer the reader to
(Filippov, 1988, p.50) for details on this point.

Consider the following definition.

Definition 1. (Sector-bounded function). A function ϕ(q):
R 7→ R, with ϕ(0) = 0, is said to be in sector [l, u] if for
all q ∈ R, p = ϕ(q) lies between p = lq and p = uq. Then,
the inequality

(p− uq)(p− lq) ≤ 0 (12)

holds for all q, p = ϕ(q). 2

Consider the Definition 1 with the nonlinear function
p = ∆φ(q), q = Cqe, and note that ∆φ = 0 for Cqe = 0.
Therefore, it is possible to rewrite (12) as

−(∆φ− uCqe)(∆φ− lCqe) ≥ 0. (13)

See (Khalil, 2002, p.232) for more details on sector-
bounded nonlinear functions.

3. MAIN RESULTS

Before presenting the theorem for the switching rule de-
sign, let us introduce some auxiliary notation. Let ℵθ :
Rm 7→ Rr×m be a linear annihilator of θ as in Definition
1 of Trofino et al. (2011), i.e. ℵθ is a linear function of
θ with ℵθθ = 0, ∀θ ∈ Θ, let αi ∈ R, i ∈ M, be given
positive scalars chosen according to Remark 1 of Trofino
et al. (2011) and

A = [A1 . . . Am] , α = [α1In . . . αmIn] (14)

H = [h1 . . . hm] , P = [P1 . . . Pm] , S = [S1 . . . Sm]

1m = [1 . . . 1] ∈ R1×m, La(θ) =
∑m

i=1
θiLi (15)

Ca =
[
0(1×mn) 1m 0

]
, Cb(θ) =

[
ℵθ⊗In 0(rn×m+1)

]
(16)

Γ =

−I ′oC ′q(u l)CqIo • •
0m×mn 0m •

CqIo(u+ l)/2 01×m −1

 , Io = 1m ⊗ In

Pθ =

m∑
i=1

θiPi
(17)
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Ψ=

A′P+P ′A+(P−PθIo)
′α+α′(P−PθIo) • •

H ′P + S′A+ 2S′α H ′S+S′H •
B′P B′S 0


(18)

In this paper annihilators are used jointly with the
Finsler’s Lemma to reduce the conservativeness of param-
eter dependent LMIs as in Trofino and Dezuo (2013).

Theorem 1. Let x be a given constant vector, representing
the desired equilibrium point of the system (1), and
suppose that x(t) is available online. Consider the error
system (9) and let θ ∈ Θ be a given constant vector
according to Lemma 1. With the auxiliary notation (14)-
(18), let Lb, Li, i ∈M, be matrices to be determined with
the dimensions of Cb(θ)

′, Ca, respectively.

Suppose that ∃P, S, τ, Lb, Li, i ∈M, solving the following
LMI problem.

Pθ > 0 (19)

Ψ+τ Γ+LbCb(θ)+Cb(θ)
′L′b+La(θ)Ca+C ′aLa(θ)′ < 0,

∀θ ∈ ϑ(Θ) (20)

Then the system (9) is globally asymptotically stable with
the switching rule (11) and

V (e) := max
i∈M
{vi(e)} , vi(e)=e′Pie+ 2e′(Si − Sθ) (21)

is a Lyapunov function for the switched system. 2

Proof: The proof consists of showing that if the LMIs
(19),(20) are satisfied, then the continuous function V (e)
defined in (21) satisfies the conditions

φ1(e) ≤ V (e) ≤ φ2(e), (22)

DėV (e) ≤ −φ3(e), (23)

where φ1(e), φ2(e), and φ3(e), are continuous positive
definite functions and DhV (e) is the Dini’s directional
derivative of V (e) in the direction h, and is given by
(Lasdon, 1970, p.420)

DhV (e) = max
i∈σ(e)

∇vi(e)h, (24)

where ∇vi(e) = 2(e′Pi + S′i − S′
θ
) denotes the gradient

of vi(e). The local asymptotic stability follows from (22),
(23) using the same arguments in (Filippov, 1988, p.155).

First, it will be demonstrated that the condition (22) is
satisfied. As θi(e) = 0 for i /∈ σ(e) and V (e) = vi(e),
∀i ∈ σ(e), we get the identities below.∑m

i=1
θi(e) =

∑
i∈σ(e)

θi(e) = 1 (25)

m∑
i=1

θi(e) vi(e) =
∑
i∈σ(e)

θi(e) vi(e) =
∑
i∈σ(e)

θi(e) V (e) = V (e)

(26)
Therefore, the following is true.

V (e) := max
i∈M
{vi(e)} =

∑m

i=1
θi(e) vi(e) (27)

Keeping in mind that
∑m
i=1 θiSi = Sθ, we get that∑m

i=1
θi(Si − Sθ) = Sθ − Sθ = 0 (28)

and from (11),(17),(28) it follows that
m∑
i=1

θi vi(e) = e′(

m∑
i=1

θiPi)e+ 2e′
m∑
i=1

θi(Si − Sθ) = e′Pθe.

(29)

Note that the maximum element of a finite set of real num-
bers is always greater or equal to any convex combination
of the elements of the set. Therefore, we can conclude from
(19),(27),(29) that ∀e 6= 0 we have

V (e) ≥
∑m

i=1
θi vi(e) = e′Pθe > 0. (30)

Thus, V (e) is positive definite and radially unbounded,
because e′Pθe is a positive quadratic form in view of (19).

Besides, vi(e) ≤ βi(‖e‖) where βi(‖e‖) := ‖Pi‖‖e‖2 +
2‖Si − Sθ‖‖e‖. Hence, (22) is satisfied with

φ1(e) = λmin(Pθ)‖e‖
2 , φ2(e) = max

i∈M
{βi(‖e‖)} (31)

where the lower and upper limits are class K∞ functions.

Next, we show that the condition (23) is satisfied, i.e.
V (e) decreases along any system trajectory for any ∆φ
belonging to a given sector [l, u]. Note that for any point
e and direction h, the directional derivative of V (e) exists
and is given by (24). In order to take all possible sliding
modes into account (Filippov, 1988, p.155), let us take
the directional derivative in the direction h = ė, where
ė = fθ(e) characterizes the switched system (9), i.e.

fθ(e) = Aθ e+ kθ. (32)

First, consider a point e on a switching surface under
sliding motion. In this case σ(e) has more than one element
and does not change on an infinitesimal increment of time
t+ − t > 0 and thus

vi(e(t)) = V (e(t)) , ∀i ∈ σ(e(t)) = σ(e(t+)), (33)

∇vi(e) fθ(e) = ∇vj(e) fθ(e) , ∀i, j ∈ σ(e). (34)

While (33) represents the property of maximum energy
of vi(e) associated to σ(e), the condition (34) implies
that σ(e) does not change with an incremental step in
the direction fθ(e) and then a sliding mode involving
the subsystems specified by σ(e) is occurring. Observe
that (34) can be rewritten as ∇vij(e) fθ(e) = 0, where
vij(e) = vi(e) − vj(e), showing that the vector field fθ(e)
belongs to the hyperplane tangent to the switching surface
given by F = {e : vij(e) = 0}. From (24) and (34) with
h = f(e) = ė, it follows that

DėV (e) = ∇vi(e) fθ(e) , ∀i ∈ σ(e). (35)

Since θ(e) ∈ Θ and θi(e) = 0, ∀i /∈ σ(e), it follows from
(34) that (35) can be rewritten as

DėV (e) =
∑m

i=1
θi(e)∇vi(e) fθ(e) =: Ω(θ(e)). (36)

The above expression for DėV (e) was derived for the
points where σ(e) is not singleton and a sliding motion is
taking place, as indicated in (33) and (34). However, (36) is
still valid when σ(e) is singleton, case in which θi(e) = 1 for
i ∈ σ(e) and θi(e) = 0 for i /∈ σ(e). The points where σ(e)
is not singleton but no sliding mode will occur from these
points, i.e. (34) is not satisfied and thus the trajectory
is leaving a switching surface, then the expression (36)
must be satisfied ∀θi(e) ∈ Θ with θi(e) = 0 for i /∈ σ(e)
as indicated in (24). However this type of condition is
difficult to be checked as DėV (e) in (36) is trajectory
dependent. To overcome this difficulty the idea is to use a
more conservative condition where θ(e) is replaced with an
arbitrary time varying parameter θ in the unity simplex
Θ. To reduce the conservativeness associated with this
relaxation of the problem, we can apply the S-Procedure
to the condition (23) and take into account the constraint
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(30) that represents the “max” composition. Therefore, we
replace (23) with the following condition.

Ω(θ) + 2αθ
(
V (e)− e′Pθe

)
< −φ3(e) , ∀θ ∈ Θ, (37)

where Ω(θ) is the function indicated in (36) with θ(e)
replaced by an arbitrary time-varying parameter θ, V (e)
is indicated in (27) and αθ :=

∑m
i=1 αiθi > 0 is a scaling

factor with given positive constants αi. Note that (37) im-
plies from (36) that Ω(θ(e)) = DėV (e) < −φ3(e) because
2αθ
(
V (e)− e′Pθe

)
is non-negative from (30) and θ(e) ∈ Θ.

Next we show that (20) implies (37) for a suitable positive
definite function φ3(e) to be specified later. Consider the
notation Pθ :=

∑m
i=1 θi Pi, Sθ :=

∑m
i=1 θi Si and Sθ−θ :=

Sθ − Sθ. Let us rewrite the left hand-side of (37) as[
e
1

]′[
A′θPθ + PθAθ + 2αθ(Pθ − Pθ) •
k′θPθ + S′

θ−θAθ + 2S′
θ−θαθ k′θSθ−θ + S′

θ−θkθ

][
e
1

]
< 0. (38)

Note that Sθ−θ = S(θ−θ) and kθ = hθ−hθ+B∆φ = H(θ−
θ) + B∆φ. Therefore, it is possible to rewrite (38) using
the auxiliary notation (14)-(18) as

Ω(θ) + 2αθ
(
V (e)− e′Pθe

)
= ξ′Ψ ξ < 0, (39)

ξ =

 eθ
θ − θ
∆φ

 , eθ =

 θ1e
...

θme

 ∈ Rmn. (40)

Now it is possible to incorporate to the condition (39) the
fact that ∆φ is a sector-bounded function of the error.
Using the notation (17), we can rewrite (13) as

ξ′Γξ ≥ 0. (41)

The inequality (39) must be satisfied whenever (41) is
satisfied. By using the (lossless) S-Procedure, this occurs
if there exists a scalar τ ≥ 0 such that

M := ξ′(Ψ + τ Γ)ξ < 0. (42)

With Ca and Cb(θ) from (16), it follows that Caξ = 0 and
Cb(θ)ξ = 0. From the Finsler’s Lemma, (42) is satisfied
if there exist scaling matrices Lb ∈ Rnm+m+1×rn, Li ∈
Rnm+m+1×1, ∀i ∈M, and La(θ) defined in (15) such that

U(θ) < 0, ∀θ ∈ Θ (43)

where

U(θ) := Ψ+τ Γ+LbCb(θ)+Cb(θ)
′L′b+La(θ)Ca+C ′aLa(θ)′.

The expression (43) shows that if (20) is satisfied then
M < 0 which in turn implies (39). Note that (20) implies
τ > 0. Now define the positive constants

ε0 = min
θ∈Θ

(θ′θ) , ε3 = min
θ∈Θ

λmin (−U(θ)) . (44)

By multiplying the inequality (20) by ξ to the right and by
its transpose to the left and keeping in mind that Caξ = 0
and Cb(θ)ξ = 0, we get

ξ′(Ψ + τΓ)ξ ≤ −ε3‖ξ‖2. (45)

As ‖ξ‖2 = ‖eθ‖2 +‖θ−θ‖2 +‖∆φ‖2 and ‖eθ‖2 = ‖θ‖2‖e‖2,
we conclude that ‖ξ‖2 ≥ ‖eθ‖2 ≥ ε0‖e‖2, which implies

ξ′(Ψ + τΓ)ξ ≤ −ε3ε0‖e‖2. (46)

Using φ3(e) = ε3ε0‖e‖2 we have shown that the LMI (20)
is a sufficient condition for (42), thus for (37) whenever
∆φ ∈ [l, u], and finally for (23). Thus, global asymptotic
stability follows from (Filippov, 1988, p.155). 2

3.1 Partial state measurement

Consider the system (1) with measurement vector y(t) =
Cix(t) ∈ Rgi , and Ci ∈ Rgi×n, i ∈ M, given matrices.
Suppose the output tracking error ε(t) := y(t)−Cix = Cie
is available online and assume that the auxiliary functions
vi(e) have the structure (11) with Pi, Si redefined as

Pi := P0 + C ′iQiCi , Si := S0 + C ′iRi , i ∈M (47)

where P0 = P ′0 ∈ Rn×n, S0 ∈ Rn, Qi = Q′i ∈ Rgi×gi ,
Ri ∈ Rgi , are matrices to be determined. The Theorem
1 can be directly applied to cope with the case of partial
state information by introducing the constraint (47), which
makes the switching rule (11) a function of the output error
(see Trofino et al. (2011) for details)

σ(ε) = arg max
i∈M
{ε′Qiε+ 2ε′Ri}. (48)

3.2 Design independent of the equilibrium point

In this section we show that it is possible to have the LMIs
in Theorem 1 independent of the equilibrium x, θ if the
matrices Ai and Pi have particular structures. First, note
from (6),(14) that if the matrix Ai, from the decomposition
(5), is zero (i.e. Ai is the same for all i ∈ M), then the
LMIs in Theorem 1 are independent of equilibrium point x.

Now consider vi(e) with the structure (11),(47) and recall
that the full state feedback case is recovered with Ci = In,
∀i ∈ M. It is possible to get the LMIs in Theorem 1 also
independent of θ̄ by forcing Qi = 0,∀i ∈ M. In this case,
we have Pθ =

∑m
i=1 θiPi = P0 and Pθ =

∑m
i=1 θiPi = P0.

Therefore, the LMI (19) can be replaced by P0 > 0 and
the term (P−PθIo)

′α+α′(P−PθIo) is eliminated from (20).

This allows for the Theorem 1 to be applied even if some
entries of the desired operation point x are not known a
priori or change with time. In the later case, the changes
are possible provided that they can be represented by
piecewise constant vectors x̄, θ varying slowly enough when
compared to the system dynamics.

4. APPLICATION FOR PV SYSTEMS

In this section the following symbols are used.

Symbols. Rs - Series resistance of the PV module;
Rp - Shunt resistance of the PV module; ε - Electron
charge (1.6 × 10−19 C); η - Diode quality factor; κ -
Boltzmann constant (1.38 × 10−23 J/K); Tr - Standard
Test Conditions (STC) temperature (298K, i.e. 25◦C); Gr
- STC Irradiation (1000 W/m2); Isc - PV module short-
circuit current at STC; Voc - PV module open-circuit
voltage at STC; γ - Temperature coefficient of Isc; Eg -
Band gap for silicon (1.1 eV); Mp - Number of modules in
parallel; Ms - Number of modules in series; Ns - Number
of PV cells in series in each module.

A PV array can be modeled as a current source, where the
output current Ipv of the array is a nonlinear function of
the voltage Vpv in the terminals of the array, given by

Ipv=MpIph−MpIr

(
exp

(
ε

ηκT

(
Vpv

MsNs
+

RsIpv
Mp

))
−1
)

(49)

where

Ir = Irr

(
T

Tr

)3

exp

(
εEg
ηκ

(
1

Tr
− 1

T

))
,
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Irr =
Isc − Voc/Rp

exp
(
εVoc

ηκTr

)
− 1

, Iph = [Isc + γ (T − Tr)]
G

Gr
.

where T is the operating temperature [K] of the array and
G is the solar irradiation [W/m2] received by the array.
Note in (49) that it is not possible to isolate Ipv to deter-
mine its value algebraically. Moreover, (49) is a nonlinear
function of the uncertain input parameters T and G.

In this paper we consider the PV array connected to a
Boost converter with fixed output voltage as shown in Fig.
1. This is the case for stand-alone systems with a battery
bank or grid-connected systems with a constant DC link
voltage. The objective is to extract the maximum power
of the array even under variations in T and G.

Fig. 1. Topology of PV system considered.

The PV system from Fig. 1 has only one switching device
(u0) and, therefore, it is composed of two different subsys-
tems (m = 2). Consider the state vector x = [Il Vpv]

′,
where Il is the electric current through the inductor L
and Vpv is the voltage over the capacitor C. Define the
nonlinear function φx(qx(x(t))) = Ipv(Vpv). Therefore,
qx(x(t)) = Cqx(t) = Vpv with Cq = [0 1].

Considering the decomposition (5) and the definition (6),
the system dynamics can be represented as in (9) with

A0 =

[
−Rl/L 1/L
−1/C −1/(RcC)

]
, A1 = A2 = 02,

b0 = b1 =

[
0
0

]
, b2 =

[
−Vdc/L

0

]
, B =

[
0

1/C

]
.

(50)

Taking into account the Lemma 1, the equilibrium is
defined by

∑m
i=1 θi(ho + hi + Bφ) = 0, from which we

get the following system of equations.{
I l = −V pv/Rc + Ipv ≈ Ipv
V pv = RlIpv + θ2Vdc

(51)

The approximation in (51) takes into account that 1/Rc
(the dielectric conductance of C) has very small values
(around nΩ−1). Therefore, in practice, the influence of the
term −V pv/Rc is negligible when compared to Ipv.

Consider the objective of maximizing the power extracted
from the PV array and note that we have x = [Ipv V pv]

′,

according to (51). However, the values of Ipv and V pv are
coupled by the nonlinear equation (49), which depends on
the uncertain parameters T and G, not known in real time.
It means that if Ipv is fixed, it is not possible to calculate

V pv, and vice versa.

To overcome this difficulty we design the switching rule
based on output feedback (Section 3.1), which requires
only one of the references in real time. In the case presented

in this paper, the output considered is the current state x1.
Therefore, y(t) = Cix(t) with Ci = [1 0], ∀i ∈M.

In order to perform the MPPT, we consider the value of
Ipv as the output of an MPPT algorithm, such as the
simple Perturb and Observe (P&O) algorithm. See Tan
et al. (2005) for details on the P&O algorithm considered.
The algorithm will perform changes in the value of Ipv to
get as close as possible to the maximum power point even
in case of changes in T and G. According to the Section
3.2, Ipv is allowed to change as a slowly varying piecewise
constant function.

According to (3), in the system representation (9) we have
∆φ = Ipv(q+ V pv)− Ipv, where q = Cqe = Vpv − V pv and

Ipv = Ipv(V pv). Note that ∆φ = 0 for q = 0, therefore we
are able to represent ∆φ as a sector-bounded function of q.

Fig. 2 shows the I-V characteristic curve of the array,
obtained by plotting (49) for fixed values of T and G. Fig.
2 also shows the axis for the sector-bounded function ∆φ
as a function of q for given values of Ipv and V pv as well
as sector-bounding lines satisfying the sector condition.

Ipv

Vpv

∆φ = Ipv − Ipv

q = Vpv − V pv

Ipv

V pv

uq

lq

(i)

(ii)

o

Fig. 2. Example of I-V characteristic curve (blue curve)
and sector bounds (red lines).

Note that the equilibrium point (Ipv, V pv) can be any
point on the I-V characteristic curve. In order to find
sector-bounds [l, u] for the curve ∆φ(q) for any value of
(Ipv, V pv) we must consider the following two worst case

scenarios. (i) When Ipv = 0 all the points of the curve are
located in the second quadrant and the curve is limited
above by a line with slope l = d∆φ

dq evaluated at the origin

(∆φ = q = 0 with Ipv = 0). The value of d∆φ
dq at this point

characterizes the most negative slope of the curve ∆φ(q),
as it can be seen in Fig. 2. (ii) Analogously, when V pv = 0,
d∆φ
dq at this point characterizes the least negative slope of

the curve ∆φ(q).

However, the slopes of the curve ∆φ(q) in relation to q
for the worst cases are not known a priori because they
depend on the uncertain parameters T and G, as shown
in the sequence. Note that

d∆φ

dq
=
dIpv
dVpv

= − Mp

MsNsRs (1 + f(T,G, Vpv, Ipv))
, (52)
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f(T,G, Vpv, Ipv) :=

ηκT/
(
εRsIr

(
exp

(
ε

ηκT

(
Vpv

MsNs
+

RsIpv
Mp

))
− 1
))

. (53)

In order to find a robust sector [l, u], note that f is always
positive, independently of the values of (T,G, Vpv, Ipv).
Thus, the most negative (l) and the least negative (u)

values of d∆φ
dq can be extracted from (52) as follows.

l = lim
f→0

d∆φ
dq = − Mp

MsNsRs
, u = lim

f→∞
d∆φ
dq = 0 (54)

Therefore, the sector [l, u] given by (54) is robust in rela-
tion to T and G (it depends only on constant parameters of
the system) and it is guaranteed to contain ∆φ(q) for any
reference (Ipv, V pv) because these bounds contemplate the
worst case scenarios (i) and (ii).

4.1 Numerical simulations

In the sequel we have used SeDuMi with Yalmip inter-
face (Löfberg (2004)) to solve the LMIs and Simulink to
perform the simulation of the switched system.

Consider a PV array consisting of 20 Kyocera’s KC200GT
modules (arranged with Mp = 2, Ms = 10) connected to a
Boost converter with fixed output voltage as shown in Fig.
1. The system parameters considered are shown in Table 1.

Table 1. System parameters

PV module
parameters Value

Voc 32.9V

Isc 8.21A

γ 3.18 × 10−3A/◦C

η 1.2

Rs 5mΩ

Rp 7Ω

Ns 54

Circuit
parameters Value

C 100µF

Rc 1GΩ

L 50mH

Rl 10mΩ

Vdc 350V

Consider the sector [l, u] = [−0.7407, 0] obtained with (54)
and the matrices Pi, Si defined as in (47) with Qi = 0
(according to Section 3.2) and Ci = [1 0],∀i ∈ M. The
LMIs of Theorem 1 are satisfied and as a result we obtain
the matrices Ri, i ∈ M, used to compute the switching
rule (48).

The simulation is initiated with T = 10◦C and G =
1000 W/m2 and zero initial conditions for the states.
To show the robustness of the technique with respect to
variations on these input parameters, T is changed to 25◦C
in t = 0.3s, and G is changed to 1200 W/m2 in t = 0.4s.

Fig. 3(a) presents the power generated by the array (Ppv).
Note that the Maximum Power Point (MPP) is achieved
for all the different values of T and G. Fig. 3(b) shows that
the curve of Ipv converges to Ipv (discretized output of an
P&O algorithm) due to the convergence of the state Il to
Ipv as in (51). Fig. 3(c) shows the convergence of the non-
measured state Vpv to its reference (not known a priori). 2

5. CONCLUDING REMARKS

The switching rule design technique proposed in this paper
can be extended in many directions, as to include per-
formance requirements such as guaranteed cost and H∞
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Fig. 3. (a) Ppv = VpvIpv (black curve) and the MPP for
each values of T and G (red lines). (b) Ipv (black

curve) and its reference Ipv (green lines). (c) Vpv.

attenuation, for instance. The extension for grid-connected
PV systems will be presented in a future work. In the
last case, a potential difficulty is that the system model
contains time-based nonlinearities (sinusoids), which are
not sector-bounded functions of the states.
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