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Abstract: This work extends recent investigations on control design of continuous-time nonlinear models 
to non-quadratic observer design. The models under consideration are exactly rewritten in the Takagi-
Sugeno form. By means of the Finsler's Lemma or a Tustin-like transformation, the progressively complex 
observer gains and the Lyapunov function are decoupled, thus providing the flexibility of using a quadratic 
Lyapunov functions while preserving the non-quadratic nature of the observer. Conditions obtained are 
expressed as linear matrix inequalities which are efficiently solved by convex optimization techniques. 
Examples are provided to show the effectiveness of the proposed approach.  

 

1. INTRODUCTION 

For many years, Takagi-Sugeno fuzzy models (TS) (Takagi 
and Sugeno 1985) have been an important topic of many 
research works in the control community due to their capacity 
to exactly represent an important class of nonlinear systems 
in a compact set of the state space. The TS representation is 
usually obtained via the sector nonlinearity approach 
(Taniguchi et al. 2001): it is an exact rewriting of the 
nonlinear model, not an approximation. A TS fuzzy model is 
composed of a set of linear models blended together with 
memberships functions (MFs) which contain the model 
nonlinearities and hold the convex sum property (Tanaka and 
Wang 2001). Taking advantage of their convex structure 
along with the direct Lyapunov method, TS models permit to 
obtain linear matrix inequality (LMI) conditions for stability 
analysis as well as for controller and observer design (Wang 
et al. 1996), (Tanaka et al. 1998). Getting LMI conditions is 
convenient since they are efficiently solved via convex 
optimization techniques (Boyd et al. 1994).  

The aforementioned conditions are only sufficient due to 
several reasons: the way the MFs are dropped off or 
considered in the analysis, the model construction as well as 
the choice of the Lyapunov function (Feng et al. 2005), (Sala 
et al. 2005). Several works have been developed in order to 
tackle these sources of conservatism: diverse ways to obtain 
LMIs from nested convex sums (Tuan et al. 2001), (Liu and 
Zhang 2003), (Sala and Ariño 2007); different 
representations of the convex models such as descriptor 
(Guelton et al. 2009) or polynomial forms (Tanaka et al. 
2009); more general Lyapunov functions such as piecewise 
(Johansson et al. 1999), line-integral (Rhee and Won 2006) 
and fuzzy (Tanaka et al. 2003), (Guerra and Vermeiren 
2004). 

In the continuous-time framework, non-quadratic Lyapunov 
functions have not met the development of the discrete-time 
domain (Guerra et al. 2009). The latter is due to the fact that 
the use of non-quadratic Lyapunov functions obliges to deal 
with the time-derivatives of the MFs (Blanco et al. 2001), a 
problem that has been considering in several works (Mozelli 
et al. 2009), (Bernal and Guerra 2010), (Lee et al. 2012).  

This paper proposes a observer design scheme based on two 
former results: the Finsler's Lemma approach (Jaadari et al. 
2012) and a Tustin-like transformation (Shaked 2001), 
(Márquez et al. 2013); it breaks the link between observer 
gains and the Lyapunov function. 

This paper is organized as follows. Section 2 presents the TS 
model obtained by the sector nonlinearity methodology, 
provides basic notation and useful properties. In section 3 the 
main result in this paper is developed: it considers Finsler-
based and Tustin-like approaches via a quadratic Lyapunov 
function for TS observers; moreover, thanks to a scheme of 
nested convex sums, it produces progressively more relaxed 
results. Section 4  gives  some examples to illustrate the 
effectiveness of the proposed approaches, and finally, Section 
5 briefs the paper results and discusses future work on the 
subject. 

2. DEFINITIONS AND NOTATIONS 

Consider a nonlinear model of the form 

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

x t f z t x t g z t u t

y t e z t x t

= +

=



 (1) 

with ( )f ⋅ , ( )g ⋅  and ( )e ⋅  being nonlinear functions, 

( ) nx t ∈  the state vector, ( ) mu t ∈  the input vector, 
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( ) oy t ∈  the output of the system, and ( )( ) pz x t ∈  the 
premise vector assumed to be bounded and smooth in a 
compact set C  of the state space including the origin. 

Let ( ) ,j j jz z z ⋅ ∈   , { }1, ,j p∈   be the set of bounded 

nonlinearities in (1) belonging to C. Employing the sector 
nonlinearity approach (Taniguchi et al. 2001), the following 
weighting functions can be constructed 

( ) ( ) ( ) ( )0 1 0, 1j jj j j

j j

z z
w w w

z z
− ⋅

⋅ = ⋅ = − ⋅
−

, { }1, ,j p∈  . (2) 

From the previous weights, the following MFs are defined: 

( )1
1 21 2 2

1
p jp

p
j

i i ji i i
j

h h w z−+ + × + + ×
=

= = ∏


 (3) 

with { }1, ,2 pi ∈  , { }0,1ji ∈ . These MFs satisfy the convex 

sum property ( )1
1r

ii
h

=
⋅ =∑  , ( ) 0ih ⋅ ≥  in C . Where 

convenient, convex sums will be denoted as 
( )( )1

r
z i ii

h z t
=

ϒ = ϒ∑ , their inverse as 

( )( )( ) 1
1

1

r
z i ii

h z t
−

−
=

ϒ = ϒ∑ , and with extended indexes as 

( )( ) ( )( ) ( )( )
1 2 1 21 21 1 1 q qq

r r r
z i i i i i ii i i

h z t h z t h z t
= = =

ϒ = ϒ∑ ∑ ∑


  . 

Based on the previous definitions, an exact representation of 
(1) in C  is given by the following continuous-time T-S 
model: 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

1

1

r

i i i z z
i

r

i i
i

x t h z t A x t B u t A x t B u t

y t h z t C x t

=

=

= + = +

=

∑

∑



 (4) 

with 2 pr = ∈  representing the number of linear models 
and ( ), ,i i iA B C , 1, ,i r=   a set of matrices of proper 
dimensions. 

For brevity, an asterisk ( )∗  for inline expressions denotes the 
transpose of the terms on its left-hand side; for matrix 
expressions denotes the transpose of its symmetric block-
entry. Should a matrix expression be involved with symbols 
" < " and " > ", they will stand for negative and positive-
definiteness, respectively. When convenient, arguments will 
be omitted. 

The following properties will be used to develop the main 
results: 

Property 1 (Schur complement): Let : 0n n TP R P P×∈ = > , 
m nX R ×∈  a full rank matrix, and n nQ R ×∈ , then (Boyd et al. 

1994): 

( )1 *0
0

0

T QQ X P X
X PP

−  − >
⇔ >  >  

 (5) 

Property 2: Given 0TP P= > , then 
1T TQ P Q Q Q P− ≥ + −  (6) 

Property 3 (Finsler’s Lemma): Let ,nx ∈  T n nQ Q ×= ∈ , 
and m nR ×∈  such that ( )rank R n< ; the following 
expressions are equivalent: 

a) 0Tx Qx < , { }: 0, 0nx x x Rx∀ ∈ ∈ ≠ =  

b) : 0n m T TX Q XR R X×∃ ∈ + + < . 

It is well-known that TS-LMI based controller design usually 
leads to inequalities containing multiple nested convex sums. 
For instance, given matrix expressions 

0 1 qi i iϒ


, 

{ }0 1, , , 1, ,qi i i r∈  , the following inequality may arise: 

( )( ) ( )( ) ( )( )
0 1 0 1

0 1 21 1 1 1
0

q q
q

r r r r

i i i i i i
i i i i

h z t h z t h z t
= = = =

ϒ <∑∑∑ ∑


   (7) 

The sign of such expressions should be established via LMIs, 
which implies that the MFs therein should be adequately 
dropped-off: conditions thus obtained will be therefore only 
sufficient. This is why selecting a proper way to perform this 
task is important to reduce conservatism. When double sums 
are involved ( 1q = ), a good compromise for guaranteeing (7) 
without adding slack variables is given by the following 
lemma: 

Relaxation 1 (Tuan et al. 2001): Let 
0 1i iϒ , { }0 1, 1, ,i i r∈   be 

matrices of the same size. Condition (7) is verified for 1q =  
if : 

{ }

( ) { }
0 0

0 0 0 1 1 0

0

2
0 1 0 1

0,   1, ,

2 0,   , 1, , ,
1

i i

i i i i i i

i r

i i r i i
r

ϒ < ∀ ∈

ϒ + ϒ + ϒ < ∀ ∈ ≠
−





. (8) 

Should more than two nested convex sums be involved, a 
generalization of the sum relaxation in (Tanaka et al. 1998) 
will be used (Sala and Ariño 2007): 

Relaxation 2 (Sala and Ariño 2007): Let 
0 1 qi i iϒ


, 

{ }0 1, , , 1, ,qi i i r∈   be matrices of the same size and 

( )0 1, , , qi i iΡ   be the set of all permutations of the indexes 0i , 

1i ,..., qi . Condition (7) is verified if: 

( )
( ) { }

0 1

0 1 0 1

1
0 1

, , ,

0, , , , 1, ,
q

q q

q
i i i q

i i i i i i

i i i r +

∈Ρ

ϒ < ∀ ∈∑


 

  . (9) 

3. OBSERVER DESIGN 

As in (Jaadari et al. 2012) and (Márquez et al. 2013), Finsler's 
Lemma and Tustin-like transformation will be used to relax 
the link between the Lyapunov function and the observer 
design. A quadratic Lyapunov function will be considered; it 
will outline the way to involve the approaches in the desired 
decoupling. 
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The proposed observer of the TS model in (4) has the 
following structure: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )

1ˆ ˆ ˆ

ˆ ˆ
z z z z

z

x t A x t B u t H K y t y t

y t C x t

−= + + −

=



 (10) 

with ( )ˆ nx t ∈  as the observer state, ( ) ( ) ( )ˆe t x t x t= −  as 

the estimation error, n n
zH ×∈  and o n

zK ×∈  matrix 
functions of the premise vector to be designed in the sequel. 
Therefore, the estimation error dynamics is described as: 

( ) ( ) ( )1
z z z ze t A H K C e t−= − . (11) 

3.1  Finsler's lemma 

Consider the quadratic Lyapunov function (QLF) candidate 
with 0TP P= >  

( )( ) ( ) ( )TV x t e t Pe t= . (12) 

Theorem 1 (QLF, generalized observer design via Finsler's 
lemma): The estimation error model (11) with zH  and zK  is 
asymptotically stable if 0,ε∃ > and matrices 0TP P= > , 

1 2 qi i iH


, and 
1 2 qi i iK


, { }1, , 1, ,qi i r∈   of proper dimensions 
such that (9) holds with 

( ) ( )

( )

1 2 0 1 2 0

1 2 1 20 1 2

1 21 2 0 1 2 0

q q

q qq

qq q

i i i i i i i i

T
i i i i i ii i i i

T
i i ii i i i i i i i

H A K C

P H H

HH A K C
ε

ε

 − + ∗ ∗ 
 
  −  ϒ =
   −
   ++ −    

 









 

. (13) 

Proof: Consider the quadratic Lyapunov function in (12); its 
time-derivative will thus be negative if: 

0
0

0

Te P e
V

e P e
     

= <     
     



 

 (14) 

all together with the following restriction 

1 0z z z z

e
A H K C I

e
−   − − =    

, (15) 

arising from (11). Inequality (14) under equality constraint 
(15) holds is equivalent to through Finsler's Lemma: 

( )10
* 0

0 z z z z

P U
A H K C I

P W
−     + − − + <        

. (16) 

Let zU H=  and zW Hε=  with 0ε > , then (16) yields 

( ) ( )
( ) ( ) 0z z z z

T T
z z z z z z z

H A K C

P H H A K C H Hε ε

 − + ∗ ∗ 
< 

− + − − +  
. (17) 

Conditions (9) with 
0 1 2 qi i i iϒ


 defined as in (13) guarantee the 
inequality above, thus producing the desired result. □ 

Remark 1: Parameter ε  has been introduced in the 
aforementioned development to naturally include the 

quadratic case. Effectively, with zH P=  and z zK K= , the 
Schur complement of (17) satisfies the following property: 

( ) ( ) ( )11* * 0
2

T
z z z z z zPA K C PA K C Pε −− + + − < , (18) 

which proves the referred inclusion when 0ε >  is enough 
small. 

3.2 Tustin-like transformation 

Theorem 2 (QLF, generalized observer design via Tustin-
like transformation): The estimation error model (11) with 

zH  and zK  is asymptotically stable if 0,ε∃ > and matrices 
0TP P= > , 

1 2 qi i iH


, and 
1 2 qi i iK


, { }1, , 1, ,qi i r∈   of proper 
dimensions such that (9) holds with 

( )

( )
1 2 1 20 1 2

1 21 2 0 1 2 0

*

q qq

qq q

i i i i i ii i i i
T
i i ii i i i i i i i

P
H P H

HH A K Cε

− 
 

−  −  ϒ =     
   −− −    









 

. (19) 

Proof: Consider the quadratic Lyapunov function in (12); 
derivative ( )( ) 0V x t <  is satisfied if: 

( ) ( )1 0z z z zP A H K C−− + ∗ < . (20) 

Considering a small enough 0ε > , it is clear that the 
following condition is equivalent to (20): 

( ) ( ) ( ) ( )1 1* * 0
T

z z z z z z z zP A H K C A H K C Pε− −− + + − <  (21) 

from which the next rewriting can be done multiplying by ε  
and adding P P− : 

( ) ( )

( ) ( )

1

2 1

*

* 0

z z z z

T

z z z z

P A H K C

A H K C P P P

ε

ε

−

−

− +

+ − + − <
 

or rewritten: 

( )( ) ( )1 * 0
T

z z z zI A H K C P Pε −+ − − <  (22) 

Thus by Schur complement (22) is equivalent to: 

( )
( )1 1

*
0,

z z z z

P

I A H K C Pε − −

 
> 

+ −  
 (23) 

which after pre-multiplication by 
0

0 z

I
H

 
 
 

 and post-

multiplication by 
0

0 T
z

I
H

 
 
 

 gives: 

( )
( ) 1

*
0T

z z z z z z z

P
H H A K C H P Hε −

 
> + − 

. (24) 

Using the property (6) with zQ H= , it is clear that 
1 T T

z z z zH P H H H P− ≥ + − , which allows guaranteeing (24) if 
the following holds: 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7996



 
 

     

 

( )
( )

*
0T

z z z z z z z

P
H H A K C H H Pε

 
> + − + − 

. (25) 

But (25) holds if relaxation (9) is applied with 
0 1 2 qi i i iϒ


 
defined as in (19), which concludes the proof. □ 

Remark 2: The inclusion of the quadratic case is also 
guaranteed. Proof is direct with a Schur complement using 

zH P= , z zK K=  and the fact that ε  can be a small as 
possible. 

Remark 3: Results in this work are parameter-dependent 
LMI; their result depend on the choice of ε . Nevertheless, it 
has been proved in (de Oliveira and Skelton 2001) and 
(Oliveira et al. 2011) that a logarithmically spaced family of 
values, for instance { }6 5 610 ,10 , ,10ε − −∈  , is adequate to 
avoid an exhaustive search of feasible solutions, thus 
outperforming existing results. 

4. EXAMPLES 

In this section some examples are presented to show the 
effectiveness of the proposed observer design. 

4.1 Example 1 

Consider the following TS model: 

( ) ( )( ) ( ) ( )( )
2

1
i i i

i
x t h z t A x t B u t

=

= +∑  (26) 

with 1

1 0
5 5 10 10

A
a b

 
=  + − 

, 2

1 0
5 5 10 10

A
a b

 
=  − + 

, 

1

1
1

Ta
C

b
+ 

=  + 
, 2

1
1

Ta
C

b
− 

=  − 
, 1,2i = , 1 1sinz x= , 

1 1
0

1 sin
2

xw −
= , 1 1

1 01w w= − , 1
1 0h w= , 1

2 1h w=  with [ ]1,1a ∈ − , 

and [ ]1,1b∈ − . 

The following results were obtained considering 
{ }6 610 , ,10ε −∈Ε =  .  
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P
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Fig. 1. Comparison: " ∗ " for (13) with 3q = , "o" for (13) 
with 1q = . 
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P
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er
 "

b"

 

Fig. 2. Comparison: " ∗ " for (19) with 3q = , "o" for (19) 
with 1q = . 

Theorems 1 was compared considering two different values 
for q  ( 1q =  and 3q = ). Fig. 1 shows that feasibility points 
of (13) with 1q =  are included in the solutions presented 
considering 3q = . Fig. 2 illustrate that solutions of (19) in 
theorem 2 considering 3q =  overcome solutions with 1q = .  

Comparing results between Fig. 1 and Fig. 2, it is possible to 
observe that both approaches present the same feasibility 
region. Nevertheless, it is not possible to show theoretically 
that both approaches are equivalent or one included the other. 
They remain two different approaches to solve the problem. 

4.2 Example 2 

 Consider the following TS model: 

( ) ( )( ) ( ) ( )( )
2

1
i i i

i
x t h z t A x t B u t

=

= +∑  (27) 

with 1

1 1.5
1.5 0.5

a
A

b
− + 

=  − − 
, 2

1 1.5
1.5 0.5

a
A

b
− − 

=  − + 
, 

1

1
0

Tb
C

− 
=  

 
, 2

1
0

Tb
C

+ 
=  

 
,  1,2i = , 2

1 1z x= , 1 2
0 11w x= − , 

1 1
1 01w w= −  , 1

1 0h w= ,  with [ ]3,3a ∈ − , and [ ]3,3b∈ − . 

A non-PDC control law ( ) ( ) ( )1 0.1sinz zu t F G x t t−= +  will be 
employed in order to stabilize the nonlinear system; the gains 
are calculated as in (Jaadari et al. 2012). 

Theorem 2 with 3q =  was compared with conditions in 
(Bergsten et al. 2002) considering parameter 

{ }6 610 , ,10ε −∈Ε =  . Fig. 3 shows that solutions of 
conditions in (Bergsten et al. 2002) are included in the 
solutions of (19) with 3q = . 

Using the Tustin-like approach in theorem 2 for state 
estimation (measured premises) and selecting the following 
parameters 3q = , 1a = , and 2b = − , with 0.1ε = , a feasible 
solution has been found, it is not possible with conditions in 
(Bergsten et al. 2002). 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7997



 
 

     

 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Parameter "a"

P
ar

am
et

er
 "

b"

 

Fig. 3. Comparison: " ∗ " for (19) with 3q = , "o" for 
conditions in (Bergsten et al. 2002). 

The gains for the observer and Lyapunov matrix are given by 

3.263 1.446
1.446 1.691

P
− 

=  − 
, 111

12.680
0.444

K  
=  − 

, 112

23.2469
1.3349

K  
=  

 
, 

121

5.635
0.490

K  
=  − 

, 122

59.069
3.511

K
− 

=  − 
, 211

5.635
0.490

K  
=  − 

, 

212

74.642
4.791

K  
=  − 

, 221

74.642
4.791

K
− 

=  − 
, 222

41.483
0.383

K
− 

=  
 

, 

111

4.132 0.718
1.718 1.547

H
− 

=  − 
, 112

14.767 4.902
26.003 121.072

H  
=  − 

, 

121

7.699 2.406
11.170 33.948

H
− − 

=  − 
, 122

278.828 42.130
6.069 334.907

H
− 

=  − − 
, 

211

2.003 2.406
11.170 83.110

H
− − 

=  − 
, 212

112.002 20.350
1.741 143.536

H
− 

=  
 

, 

221

161.947 20.350
1.741 195.714

H
− 

=  
 

, 222

4.344 0.067
1.792 2.044

H  
=  − 

. 

The estimation error for a trajectory of the states is presented 
in Fig 4.  
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Fig. 4. Time evolution of the estimation error in Example 2. 
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Fig. 5. Time evolution of the states in Example 2. 

The initial condition are [ ]0.5 0.5 T− , while the estimated 

ones are [ ]0 0 T . The time evolution of the states is shown in 
Fig. 5. It is clear to observe that the estimation error goes to 
zero despite the fact that the states remain oscillating. 

5.  CONCLUSIONS 

Novel approaches for observer design for continuous-time 
nonlinear models have been reported. Taking advantage of a 
convex rewriting of the model (TS form) as well as the 
Finsler's Lemma or a Tustin-like transformation, the observer 
design has been decoupled from the quadratic Lyapunov 
function it is based on. It has been shown that the proposed 
decoupling introduces progressively better results thanks to a 
nested convex structure. Some examples have been given to 
illustrate the usefulness of the new schemes. 
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