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Abstract: In Kalman filtering applications, the variance of the estimation error is guaranteed to
be minimized only if a complete description of the plant dynamics is available. While nowadays
there are several established methods to find an accurate model of a physical system, the
evaluation of the covariance matrices of the disturbances is still a hard task. Therefore, such
matrices are usually parameterized as diagonal matrices and their entries are estimated from a
preliminary set of measurements. In this paper, we analyze the properties of the Kalman filter for
linear time-invariant systems and we show that, for some classes of systems, the number of design
parameters can be significantly reduced. Moreover, we prove that, under some assumptions, the
covariance of the process noise can be parameterized as a full matrix without increasing the
complexity of the tuning procedure. The above theoretical results are tested on two numerical
examples.
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1. INTRODUCTION

Since the celebrated paper by Kalman and Bucy [1961],
Kalman filtering and prediction have become main design
tools in engineering and science, in order to estimate
unknown signals and unknown parameters. Specifically,
Kalman filtering not only permits to use current input
and output measurements to derive an estimate of the
unmeasured state variables, but such an estimate is also
guaranteed to minimize the variance of the estimation
error, provided that the system dynamics is known and
captured by a given mathematical model.

The model can be inferred from the physical laws of the
underlying system or from data-based system identifica-
tion methods Ljung [1999], Verhaegen and Verdult [2007].
As a matter of fact, while the system matrices can be de-
rived from the mathematical model, the evaluation of the
covariance matrices from physical considerations is a hard
task, especially for the state equation noise assessment.

This is why the covariance matrices are usually estimated
from a set of preliminary experimental measurements,
often by resorting to trial and error procedures. Early
contributions in such a direction date back to the ’70s, with
the proposal of an iterative process aiming at achieving
an innovation signal with suitable properties, see Mehra
[1970, 1972], Carew and Bélanger [1973]. Such an approach
has also been further elaborated in more recent years, see
e.g. the auto-covariance least-squares (ALS) method in
Odelson et al. [2006], Åkesson et al. [2008], or the Bayesian
approach using Monte Carlo simulations in Matisko and
Havlena [2013].
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Notwithstanding these recent efforts, the definition of
simple and easy-to-use tuning recipes is still an open
question and the industrial standard still relies on diagonal
parameterization of the covariance matrices and semi-
empirical tuning.

In this paper, our aim is not to present a new estimation
strategy, rather we try to gather a deeper insight on how
the covariance matrices affect the resulting filter, in order
to understand whether their data-based optimization can
be simplified.

Based on the above problem setting, we first consider the
scalar case and show that the performance of the Kalman
filter does not depend separately upon the variance of the
process noise and that of the output noise, but only their
ratio matters. This is not a new result, because a similar
theorem has been already presented for frequency tracking
in Bittanti and Savaresi [2000]. However, in that paper,
the proof was based on a circular rationale, whereas here
the proof is explicit and extended to multivariable systems
under suitable assumptions on the system structure.

As a secondary result, we show that, under the assumption
that the dynamic matrix of the system can be diagonal-
ized, the covariance of the process noise can be param-
eterized as a full matrix, thus generally increasing the
estimation performance, without increasing the number of
design parameters.

The remainder of the paper is as follows. In Section 2,
the problem of interest is introduced and formally posed;
moreover, we state the objectives of the analysis. The
main results are presented in Section 3: specifically, in
Subsection 3.1, we study how many tuning knobs are really
relevant in Kalman filtering, whereas in Subsection 3.2 we
present a reasonable way to parameterize the covariance
of the process noise as a full matrix, without increasing
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the number of design parameters. The results are further
discussed on two numerical examples in Section 4. The
paper ends with some concluding remarks.

2. PROBLEM FORMULATION

Consider the discrete-time linear time-invariant system

x(t+ 1) = Fx(t) + vx(t) (1a)

y(t) = Hx(t) + vy(t) (1b)

where x(t) ∈ R
n, y(t) ∈ R

p and vx(t) ∼ WN(0, Q),
vy(t) ∼ WN(0, R) are uncorrelated Gaussian noises with
covariance matrices Q ∈ R

n×n and R ∈ R
p×p, respectively.

Moreover, F ∈ R
n×n and H ∈ R

p×n in (1) denote the
state matrix and the output matrix. From now on, it will
be assumed that the system is stabilizable and detectable.

The problem of optimal prediction of x(t) using output
measurements y(t) is solved by the Kalman predictor

x̂(t+ 1|t) = F x̂(t|t− 1) +K(t) (y(t)−Hx̂(t|t− 1)) (2)

where the time-varying Kalman gain is

K(t) = FP (t)HTL(t) (3a)

L(t) =
(

HP (t)HT +R
)−1

(3b)

and P (t) = E
[

(x(t)− x̂(t|t− 1))(x(t)− x̂(t|t− 1))T
]

is
the covariance matrix of the one-step ahead prediction
error, given by the solution of the Difference Riccati
Equation (DRE)

P (t+ 1) = FP (t)FT +Q− FP (t)HTL(t)HP (t)FT (4)

with user-defined initial conditions P (1) and x̂(1|0) (for
more details, see, e.g., Anderson and Moore [1979], Simon
[2006], Verhaegen and Verdult [2007], Lewis et al. [2008]).

In real-world applications, Q and R capture, respectively,
the process uncertainty and the noise affecting the output
measurements. A common experience among engineers is
that the values of the entries of matrices Q and R are
unknown or very uncertain, hence difficult to tune. An-
other common experience is that the filtering performance
is strongly dependent upon the results of such a tuning
procedure. Therefore, this aspect of Kalman filter design
is a time consuming trial-and-error procedure.

In some applications, it is possible to collect a set of N
measurements DN = {x(t), y(t)}t=1,...,N in a preliminary
tuning phase, in order to suitably design Q and R. For
instance, one can solve the nonlinear optimization problem

min
Q,R

tr

[

1

N

N
∑

t=1

(x(t)− x̂(t|t− 1))(x(t)− x̂(t|t− 1))T

]

(5a)

s.t. (1), (2), (3), (4) hold, ∀t, and Q > 0, R > 0. (5b)

Solving Problem (5) is generally a hard task, therefore
brute force solutions, i.e., gridding over a set of instances
of Q and R, are sometimes employed. Moreover, since both
the covariance matrices must be constrained to be positive
semi-definite, Q and R are often parameterized as diagonal
matrices, i.e. they are assumed to be of the form

Q =









q1 0 . . . 0
0 q2 . . . 0
...

...
. . .

...
0 0 . . . qn









, R =









r1 0 . . . 0
0 r2 . . . 0
...

...
. . .

...
0 0 . . . rp









.

In such a form, the sign constraints for Q and R simply
become qi > 0, i = 1, . . . , n, rj > 0, j = 1, . . . , p, thus also
reducing to n+ p the number of parameters to tune.

However, although the diagonal parameterization of the
covariance matrices works quite well in some real-world
applications, it yields indeed a sub-optimal solution of
the original problem. Moreover, even under the diagonal
assumption, the choice of n + p parameters might be a
non-trivial computational task.

Summing up, it is desirable to reduce the number of tuning
knobs and let the parameterization of Q, R be as general
as possible. Both these problems are addressed in this
paper and the related results will be presented in the next
section.

3. MAIN RESULTS

In this section, we first illustrate (Subsection 3.1) some
specific cases where the number of parameters can be
reduced without loss of optimality. Then, in Subsection
3.2, we present some sufficient conditions under which
Q and R can be set as full matrices without increasing
the computational complexity. All the results will be
referred only to the Kalman predictor for the sake of
space. However, the theorems can be straightforwardly
extended, without conceptual changes, to Kalman filtering
applications (as a matter of fact, one example out of two
in Section 4 is dedicated to a filtering problem).

3.1 Reducing the tuning knobs

In this first subsection, we address the problem of reducing
the number of parameters when both Q and R are param-
eterized as diagonal matrices. To start with, consider the
scalar case n = p = 1. The following theorem holds.

Theorem 1. (Scalar systems). Consider a scalar system
(1), i.e. let n = p = 1 and Q = q, R = r, where q, r ∈ R

+.

The steady-state prediction of the state (2) depends on
λ = r/q only.

Proof. To start with, notice that, in the scalar case, the
expression of the Kalman gain and the DRE become,
respectively,

K(t) =
FP (t)H

H2P (t) + r
(6)

P (t+ 1) = F 2P (t) + q −
F 2P 2(t)H2

H2P (t) + r
. (7)

Then, consider a companion problem using a different
parameterization of the noise, i.e. set a state prediction
problem for

x(t+ 1) = Fx(t) + ṽx(t) (8a)

y(t) = Hx(t) + ṽy(t) (8b)

where ṽx(t) ∼ WN(0, 1), ṽy(t) ∼ WN(0, λ) are uncorre-
lated Gaussian noises with variance of 1 and λ = r/q, re-
spectively. The corresponding expressions for the Kalman
gain and the DRE are, respectively,

K̃(t) =
FP̃ (t)H

H2P̃ (t) + λ
(9)
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P̃ (t+ 1) = F 2P̃ (t) + 1−
F 2P̃ 2(t)H2

H2P̃ (t) + λ
, (10)

which clearly depend on the unique tuning knob λ.

On the other hand, the companion problem can be shown
to be equivalent to the original one. As a matter of fact,
by multiplying (7) on both sides by q−1 and defining

P̃ = q−1P , Equation (10) is obtained. Moreover,

K̃(t) =
FP̃ (t)H

H2P̃ (t) + λ
=

q−1FP (t)H

q−1H2P (t) + λ

=
FP (t)H

H2P (t) + qλ
=

FP (t)H

H2P (t) + r
= K(t),

that is, the Kalman gain given as the solution of the
companion problem coincides with the optimal one, pro-
vided that the initial values are suitably tuned as P̃ (1) =
q−1P (1). In case the initial conditions do not correspond,
the result is still valid for the steady-state predictor.

✷

From Theorem 1, it follows that one can solve the com-
panion problem introduced in the proof, by tuning a single
parameter λ instead of q and r, and use the corresponding
Kalman gain for state prediction, without loss of perfor-
mance. In fact, we showed that such a gain is equivalent
to the optimal gain for the original problem.

It should be here said that this idea for the scalar case
is not new, as it was already presented for the frequency
tracking problem in Bittanti and Savaresi [2000]. However,
the structure of the proof was based on a circular argument
needed for the nonlinear nature of the problem. In this
paper, the proof for the linear case is given in a simpler
form.

With such a modification, the previous result can be
straightforwardly extended to multivariable systems with
n = p, provided that some additional assumptions on the
dynamic matrices are made. The result in the MIMO case
is presented in the next Theorem.

Theorem 2. (Multivariable systems). Consider a multivari-
able system (1) where n = p. Assume that

A1. FQ = QF ,
A2. H = hIn, where h ∈ R and In denotes the n× n
identity matrix.

The steady-state prediction of the state (2) depends on
the n× n matrix Λ = RQ−1 only.

Proof. Like in the proof of Theorem 1, consider a com-
panion problem using a different parameterization of the
noise, i.e. set a state prediction problem for

x(t+ 1) = Fx(t) + ṽx(t) (11a)

y(t) = hx(t) + ṽy(t) (11b)

where ṽx(t) ∼ WN(0, In), ṽy(t) ∼ WN(0,Λ) are uncor-
related Gaussian noises with covariance matrices In and
Λ = RQ−1, respectively. The corresponding expressions
for the Kalman gain and the DRE are, respectively,

K̃(t) = hFP̃ (t)L̃(t) (12a)

L̃(t) =
(

h2P̃ (t) + Λ
)

−1

(12b)

P̃ (t+1) = FP̃ (t)FT + In−FP̃ (t)HT L̃(t)HP̃ (t)FT (13)
which depend on the only matrix Λ.

The companion problem can be shown to be equivalent to
the original one. As a matter of fact, by post-multiplying
(4) on both sides by Q−1, the DRE can be rewritten, for
the current case, as

P (t+ 1)Q−1 = FP (t)FTQ−1 + In+ (14)

− h2FP (t)
(

h2P (t) +R
)

−1
P (t)FTQ−1.

Under Assumption A1 and defining P̃ = PQ−1, Equation
(14) can be rewritten as

P̃ (t+ 1) = FP̃ (t)FT + In+

− h2FP (t)
(

h2P (t) +R
)

−1
P̃ (t)FT

= FP̃ (t)FT + In+

− h2FP (t)Q−1
(

h2P (t)Q−1 +RQ−1
)

−1
P̃ (t)FT

= FP̃ (t)FT + In+

− h2FP̃ (t)
(

h2P̃ (t) + Λ
)

−1

P̃ (t)FT , (15)

that corresponds to (13). Moreover, using the relationship

between P (t) and P̃ (t), the matrix L̃(t) given by (12) turns
out to be

L̃(t) =
(

h2P (t)Q−1 + Λ
)

−1
,

= Q
(

h2P (t) +R
)

−1
= QL(t) (16)

and, as a consequence,

K̃(t) = hFP (t)Q−1QL(t) = hFP (t)L(t) = K(t), (17)

that is, the Kalman gain given as the solution of the com-
panion problem coincides with the optimal one, provided
that P̃ (1) = P (1)Q−1. In case the initial conditions do
not correspond, the result is still valid for the steady-state
predictor.

✷

From Theorem 2, it follows that one can solve the com-
panion problem introduced in the proof, by tuning a single
matrix Λ instead of Q and R, and use the corresponding
Kalman gain for state prediction, without loss of perfor-
mance. In fact, as in the scalar case, the original and the
companion problem are equivalent.

The tuning problem (5) then becomes

min
Λ

tr

[

1

N

N
∑

t=1

(x(t)− x̂(t|t− 1))(x(t)− x̂(t|t− 1))T

]

(18a)

s.t. (1), (2), (3), (4) hold, ∀t, and Λ > 0, (18b)

where Λ is set in place of R and Q is set as the identity
matrix.

Obviously, the assumptions n = p and H = hIn of
Theorem 2 do not make it generally applicable to any
MIMO problem. However, the result can still be useful
in some practical cases, e.g., in those cases where all the
states are measured, but the signal to noise ratio is so large
that the Kalman formulas still need to be used to obtain
accurate estimates. This situation will be exemplified in
Section 4.

Notice also that the assumption of commutativity of Q
and F is not verificable in practice, since Q is unknown.
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However, under the assumption of parameterizing Q as a
diagonal matrix, the commutativity of Q and F is always
satisfied whenever F is diagonal or Q can be assumed to
be of the form Q = qIn, where q is unknown.

In Section 4, we will present an example where the above
result is useful to reduce the design complexity without
jeopardizing the performance.

3.2 Diagonalization

In this subsection, we try to answer the question: “is it pos-
sible to parameterize Q as a full matrix, without increasing
the number of optimization variables and without adding
a more complex constraint to enforce Q > 0?”.

The problem is certainly difficult to solve in the general
case. However, we will show that, under a sufficient condi-
tion, we can find a full Q by solving a companion problem
with the same number of unknowns. The above condition
and the technical details are given in the following Theo-
rem.

Theorem 3. (Diagonalization). Consider a system (1) such
that

A3. ∃ non-singular T : Fd = T−1FT is diagonal and
real

and let its diagonal state-space representation be

xd(t+ 1) = Fdxd(t) + vxd
(t) (19a)

y(t) = Hdx(t) + vy(t) (19b)

where Hd = HT , xd(t) ∈ R
n and vxd

(t) ∼ WN(0, Qd)
is the corresponding process noise with covariance matrix
Qd.

The Kalman gain for state prediction of the original system
(1) is

K(t) = TKd(t), (20)
where Kd is the Kalman gain for state prediction of (19).

Proof. Consider the DRE associated with Equations (19)

Pd(t+1) = FdPd(t)F
T
d +Qd−FdPd(t)H

T
d Ld(t)HdPd(t)F

T
d

(21)
where

Ld(t) =
(

HdPd(t)H
T
d +R

)−1
. (22)

By recalling the expressions of Fd and Hd, Equation (21)
can be rewritten as

Pd(t+ 1) = T−1FTPd(t)T
TFTT−T +Qd+

− T−1FTPd(t)T
THTLd(t)HTPd(t)T

TFTT−T

(23)

that is, by pre-multiplying and post-multiplying both sides
for T and TT , respectively,

TPd(t+ 1)TT = FTPd(t)T
TFT + TQdT

T+

− FTPd(t)T
THTLd(t)HTPd(t)T

TFT

(24)

Since also L(t) can be rewritten as a function of the
matrices in (1) as

Ld(t) =
(

HTPd(t)T
THT +R

)−1
, (25)

by comparing (24) with (4), it is clear that P and Pd are
related to each other according to the equation

P (t) = TPd(t)T
T .

It follows that the Kalman gain associated with the
diagonal system is expressed as

Kd(t) = FdPd(t)H
T
d Ld(t)

= T−1FTPd(t)T
TH

(

HTPd(t)T
THT +R

)−1

= T−1FP (t)H
(

HP (t)HT +R
)−1

= T−1K(t)

and the thesis holds.

✷

This result obviously does not provide any additional
knowledge about the covariance of the process noise.
However, from a practical point of view, it is definitely
more reasonable to assume a diagonal parameterization
for the diagonal companion system, than for the original
one. Once Qd is designed and the corresponding Kd is
obtained, the Kalman gain for prediction of the desired
state x(t) is given - without additional tuning effort - by
(20).

4. SIMULATION EXAMPLES

4.1 Example 1

Consider system (1), with n = 2 states and p = n = 2
output, described by the matrices

F =

[

0.9 −0.4
0.2 0.9

]

, Q =

[

0.25 0
0 0.25

]

,

H =

[

0.5 0
0 0.5

]

, R =

[

0.64 0
0 0.071

]

and suppose that one wants to estimate x1(t). Since x1(t)
is measured via the first output y1(t), one can argue that
it is sufficient to take the first term of the trivial estimator
x̂(t|t) = H−1y(t). However, notice that the signal to noise
ratio of the first output is very low (the ratio between the
variance of 0.5x1(t) and the variance of the noise affecting
the first equation is approximately 0.5), therefore the use
of a Kalman filter is generally preferable to obtain an
accurate estimate of x1(t).

Collect then a set of data by injecting the white noise
vx(t) = [vx1

(t), vx2
(t)]T , where vx1

(t) ∼ WN(0, 0.64) and
v2(t) ∼ WN(0, 0.071) and record the corresponding state
and output measurements for tuning purposes.

Since F and Q commute and H = 0.5I2, A1 and A2 hold
and the result of Theorem 2 can be applied to estimate
the two parameters of

Λ = RQ−1 =

[

λ1 0
0 λ2

]

=

[

2.56 0
0 0.2844

]

,

instead of the four parameters of the diagonal matrices Q
and R. We should here remark that the result in Theorem
2 in the proposed form can be directly applied the one-
step ahead predictor. However, in this case where F is
invertible, the optimal filter can be simply obtained as
x̂1(t|t) = F−1x̂(t|t− 1).

The result of the simulations with the filter obtained via
Theorem 2 is compared to standard Kalman filtering in
Figure 1 (for more details on the numerical implementa-
tion of the Kalman filter, see Grewal and Andrews [2008]).
In both cases, all the required matrices are initialized as
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Fig. 1. Estimation of x1 in Example 1: state trajectory
(thick solid), trivial estimator (dotted), Kalman filter
using the real covariance matrices Q and R (thin
solid), Kalman filter with tuning of Λ, according to
Theorem 2 (dash-dotted), Kalman filter with stan-
dard tuning of both Q and R (dashed). Notice that
the last two lines are almost overlapping.

2 × 2 identity matrices, the Matlab function fmincon is
used to solve Problems (5) and (18) and the asymptotic,
time-invariant, Kalman gains are implemented.

Notice that, although the result is suboptimal with respect
to the ideal filter using real Q and R (a local minimum is
achieved with the above initialization), the standard and
the proposed strategies almost coincide, and the corre-
sponding estimates in Figure 1 are practically overlapping.
This fact can be verified also numerically, by looking at the
achieved value of Λ = RQ−1 and the mean squared error
(MSE) between the considered predictors and the ideal
one (see Table 1).

Figure 1 also shows that the trivial estimation would be an
unfortunate choice, since the variance of the noise on y1(t)
is evidently too large for an accurate filtering of x1(t).

Standard Reduced

λ1 6.6258 6.7916

λ2 0.9338 0.9143

MSE 0.16144 0.038773

Table 1. Mean squared errors (MSE) with
respect to the ideal Kalman predictor and

entries of Λ.

Finally, notice that, on a Intel i7 processor at 2.67 GHz,
the computation time using fmincon for the standard pa-
rameterization is 1.99 s, whereas for the reduced paramer-
ization becomes 1.48 s. In other words, the computational
time is decreased of 35%. This difference is obviously not
crucial in the proposed toy example, but might become
significant when the dimension of the system is large.

4.2 Example 2

Consider the system (1), with n = 2 states and p = 1
output, described by the matrices

F =

[

−0.5 0.5
−0.25 0.95

]

, Q =

[

1.059 1.054
1.054 1.051

]

,

H = [1 1.5], R = 0.01.

From the above selection ofQ, it is evident that the process
noises on the two state equations are highly correlated each
other. Therefore, a diagonal parameterization of Q is far
from being suitable in this case.

However, since F can be shown to be equivalent to the real
diagonal matrix

Fd =

[

−0.4079 0
0 0.8579

]

,

by means of the transformation Fd = T−1FT , where

T =

[

−0.9835 −0.3455
−0.1811 −0.9384

]

,

i.e., A3 holds, the result in Theorem 3 can be applied to
find a full matrix Q without increasing the complexity of
the optimization problem.

Specifically, let the covariance matrix for the process noise
affecting the diagonal system be Qd. Collect a set of data
by injecting the white noise vx(t) = [vx1

(t), vx2
(t)]T ,

where vx2
(t) = vx1

(t) + ǫ(t), vx1
(t) ∼ WN(0, 1) and

ǫ(t) ∼ WN(0, 0.0025).

Problem 5 can then be solved using data, by simply
parameterizing Qd as a diagonal matrix, as usually done in
practice. The gain of the Kalman predictor for the original
system is given by K(t) = TKd(t), where Kd(t) is the
Kalman gain for the diagonal system, directly coming from
the solution of the Riccati equation using Qd and Rd.

In Figure 2, the performance of such a predictor is shown
for steady-state prediction of the second state variable
x2(t). In the same Figure, the ideal Kalman predictor using
the real covariance matrices Q and R and the standard
tuning optimizing over diagonal matrices are illustrated. In
both the proposed and the standard method, the Matlab
function fmincon has been used to solve Problem (5).
Moreover, in both cases, the same initialization values are
used. Specifically, the initial value for the covariance of
the process noise is Q0 = I2, where I2 is the 2× 2 identity
matrix, whereas the variance of the output noise has been
initialized at its real value, since here it is not the critical
task.

Diagonal parameterization Proposed method

MSE x1 0.072551 0.25275

MSE x2 0.44257 0.34181

Table 2. Mean squared error (MSE) between
the ideal Kalman predictor and the stan-
dard strategy, compared to MSE between ideal
Kalman predictor and the proposed method.

As expected, the method proposed herein provides better
performance in case the original Q is not diagonal. This
fact concerns the whole state vector, as shown in Table
2, where the mean squared error (MSE) between the
standard version of the Kalman predictor and the ideal
one with the real Q is compared with the MSE between
the ideal predictor and the proposed one.
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Fig. 2. Prediction of x2 in Example 2: state trajectory
(thick solid), Kalman prediction using the real co-
variance matrices Q and R (thin solid), Kalman pre-
diction using the result of Theorem 3 (dash-dotted),
Kalman prediction using diagonal matrices (dashed).

The performance can be obviously shown to be the same
in case the real Q is diagonal and local minima do not
occur.

5. CONCLUSIONS

In this paper, we addressed the problem of tuning the
process and noise covariance matrices in Kalman formulas
for prediction problems. Specifically, we considered two
subproblems: the issue of decreasing the number of op-
timization variables when the matrices are parameterized
as diagonal matrices and the issue of parameterizing them
as full matrices. For the first problem, we considered the
scalar case, by reformulating the result in Bittanti and
Savaresi [2000] and we extended it to the MIMO case for
the specific setting where n = p. Concerning the second
problem, we showed that, under the assumption of a diago-
nalizable state matrix, it is possible to find a full covariance
matrix for process noise, without increasing the complexity
of the design issue. The results showed to be effective
on two numerical examples, where implementation issues
were also discussed in detail.

Future work will deal with a number of real-world ap-
plications, as well as the extension to nonlinear filtering
problems.
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