
Optimal LED-based Illumination Control
via Distributed Convex Optimization

Farooq Aslam ∗ Ralph M. Hermans ∗ Ashish Pandharipande ∗∗

Mircea Lazar ∗

∗ Eindhoven University of Technology, 5612 AZ Eindhoven, The
Netherlands (e-mail: m.f.aslam@tue.nl; rhermans85@gmail.com;

m.lazar@tue.nl).
∗∗ Philips Research, 5656 AE Eindhoven, The Netherlands (e-mail:

ashish.p@philips.com).

Abstract: Achieving illumination and energy consumption targets is essential in indoor lighting
design. The provision of localized illumination to occupants and the utilization of natural light
and light-emitting diode (LED) luminaires can help meet both objectives. This paper presents
several distributed optimal illumination control schemes that provide localized illuminance to
occupants. The lighting system consists of multiple LED-based luminaires, each governed by an
individual local controller. The illuminance requirements and energy costs for the lighting system
are expressed as a linear programming problem that is solved in a distributed manner, using only
local communication amongst the controllers. State-of-the-art accelerated first-order methods
are applied to parallelize the optimization among multiple controllers. Practical aspects such as
convergence rate, computational complexity and communication requirements are investigated
via simulations.

Keywords: optimal illumination control, light-emitting diodes, smart energy buildings,
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1. INTRODUCTION

Providing sufficient illuminance while reducing energy
costs are primary objectives in the design and control
of indoor lighting for commercial and office buildings. In
particular, the use of occupancy information and the inte-
gration of natural and artificial light are effective strategies
for serving both requirements (Roisin et al., 2008). Illu-
mination control schemes use occupancy information in
several ways. In the simplest case, luminaires are switched
on if an occupant is present (Guo et al., 2010). In large
rooms, such strategies may not be as energy-efficient as
more advanced schemes that provide localized illuminance
to occupants (Singhvi et al., 2005; Pandharipande and
Caicedo, 2010). In such control schemes, luminaires in an
occupant’s vicinity provide the desired illuminance, and
other luminaires are switched off or dimmed. The use of
occupancy and illuminance sensors enables localized illu-
minance control to adequately meet both illuminance and
energy requirements. Moreover, these schemes are well-
suited for lighting systems that use light-emitting diode
(LED) luminaires. Compared to traditional technologies
such as incandescent light bulbs and fluorescent lights,
LEDs have longer life times, are more energy-efficient, and
offer greater design and control flexibility (Tsao et al.,
2010).

In indoor environments with multiple luminaires, local-
ized illuminance control schemes require suitable coordina-
tion mechanisms to obtain luminaire dimming levels that
achieve the desired illuminance and energy levels. In cen-
tralized coordination, sensor measurements are gathered

by, and luminaire dimming levels are issued from a central
controller (Pandharipande and Caicedo, 2010). Modular
LED-based luminaires with integrated micro-controllers,
sensors and communication capabilities can help overcome
the need for global connectivity in centralized illumination
coordination. This results in a distributed control archi-
tecture, where luminaires determine their dimming levels
locally without the intervention of a central controller.
As indoor lighting solutions transition towards modular
LED-based luminaires, there is a need for fast and simple
distributed coordination mechanisms.

In this paper, the centralized coordination mechanism for
LED-based office lighting systems developed in (Pandhari-
pande and Caicedo, 2010) is extended to a distributed
setting. The lighting system consists of multiple ceiling-
mounted LED luminaires, equipped with micro-controllers
and communication devices, and with integrated illumi-
nance and occupancy sensors. A target illumination pat-
tern, consisting of illuminance specifications for each re-
gion, is imposed via linear constraints on the luminaire
dimming levels. Each controller is responsible for provid-
ing the desired illuminance levels in a certain part of
the workspace plane and has control over the dimming
levels of a subset of the LED luminaires. Since adjacent
luminaires affect the illuminance in each other’s areas,
they use local communication and iterative algorithms to
coordinate their dimming levels such that local illuminance
requirements are met and overall energy consumption is
minimized. Minimization of energy consumption is speci-
fied as a linear cost on luminaire dimming, thus yielding a
linear program that can be solved in a distributed manner.
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Several methods for distributed convex optimization are
applicable to the above setting. These include subgradient
methods (Bertsekas and Tsitsiklis, 1997), constrained con-
sensus (Nedic et al., 2010), accelerated first-order methods
(Necoara and Suykens, 2008; Dinh et al., 2013), interior-
point methods (Necoara and Suykens, 2009). In addition,
there are distributed variants of the simplex method for
linear programming problems (Bürger et al., 2011). These
algorithms differ greatly in terms of convergence rate,
computational complexity, and communication. Recently,
distributed illumination coordination schemes for LED-
based office lighting systems were developed in (Wang
et al., 2012; Caicedo and Pandharipande, 2013). In both
works, the optimal illumination control problem is for-
mulated as a linear program, and a feasible solution is
obtained with communication restricted to neighboring
controllers only. In (Wang et al., 2012), heuristic methods
based on the simplex algorithm are proposed. In (Caicedo
and Pandharipande, 2013), a constrained consensus ap-
proach is used. Sufficient conditions are provided under
which this method converges to a feasible solution, and a
bound on sub-optimality is obtained. Heuristic approaches
for distributed illumination coordination via stochastic hill
climbing were studied, e.g., in (Miki et al., 2007).

In this paper, recent results on accelerated first-order
methods from (Necoara and Suykens, 2008; Dinh et al.,
2013) are leveraged to obtain optimal distributed illumina-
tion coordination algorithms. Unlike most of the above al-
ternatives, their application to the considered LED-based
lighting system yields simple iterative schemes that are ob-
tained by solving the underlying subproblems analytically.

2. OPTIMAL ILLUMINATION CONTROL

2.1 Preliminaries

Let R, R+, and Z denote the field of real numbers, the
set of non-negative reals, and the set of integer numbers,
respectively. The notation R[c1,c2] and Z[c3,c4] denotes the
sets {k ∈ R : c1 ≤ k ≤ c2}, for c1, c2 ∈ R, and
{k ∈ Z : c3 ≤ k ≤ c4}, for c3, c4 ∈ Z, respectively.
The vector space Rn is endowed with inner product
〈x, y〉 := x>y for x, y ∈ Rn and Euclidean norm ‖x‖ =√
〈x, x〉. For a matrix A ∈ Rm×n, the operator norm

is given by ‖A‖ = max‖x‖=1 ‖Ax‖, and A> denotes
the transpose. For sets A and B, A \ B := {a : a ∈
A, a /∈ B} denotes the set difference, and |A| denotes the
cardinality of A. For a set {Mi}i∈Z[1,N]

, Mi ∈ Rmi×ni , the

notation col
(
{Mi}i∈Z[1,N]

)
and col(M1, · · · ,MN ), denotes

the matrix (M>1 , · · · ,M>N )>. The notation 0 and 1 is used
for vectors, whose dimension will be clear from the context,
with all entries equal to zero and one, respectively. A
function f : Rn → R is convex if for all x, y ∈ Rn and
α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

and strongly convex, with convexity parameter σ > 0, if
for all x, y ∈ Rn and α ∈ [0, 1],

f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y)−1

2
σα(1−α)‖x− y‖2.

It is concave if −f is convex. A set X ⊆ Rn is convex if
each point on the line segment connecting any two points

in X is also in X , i.e., for all x, y ∈ X and α ∈ [0, 1], αx+
(1− α)y ∈ X . A prox-function φX : Rn → R+ of a closed
convex set X ⊆ Rn is a function which is continuous on
X and strongly convex with convexity parameter σX . The
prox-center x0 := arg minx∈X φX (x) satisfies φX (x0) = 0.
A continuously differentiable function f has L-Lipschitz
continuous gradient with respect to the norm ‖ · ‖ if,
∀x, y ∈ Rn, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. The scalar
L ∈ R+ is called the Lipschitz constant of ∇f .

Definition 1: Suppose f : Rn → R is convex and ∇f
is L-Lipschitz continuous on a convex set X ⊆ Rn. The
gradient mapping of f at x ∈ X is given by:

G(x) := arg min
x̂∈X

{
〈∇f(x), x̂〉+

L

2
‖x̂− x‖2

}
.

2.2 LED Lighting System

The considered lighting system consists of LED luminaires
located at fixed points of an office ceiling. The luminaire
dimming levels are controlled individually by adjusting
the duty cycles of the respective pulse-width modulated
driving waveforms. The workspace plane, denoted byW ⊆
R2, is a horizontal plane parallel to the ceiling and at a
fixed perpendicular distance from it. The i-th occupant is
located at pi ∈ W, for i ∈ IO := Z[1,nO], where nO is the
total number of occupants in the room. The i-th occupied
region is described by a circle of radius rO centered at pi,
i.e., RiO := {w ∈ W : ‖w − pi‖ ≤ rO}, i ∈ IO. The total
occupied region is given by the union of the individual
occupied regions, i.e., RO :=

⋃
i∈IO R

i
O. The remaining

part of the workspace plane constitutes the non-occupied
region, i.e.,RU :=W\RO. The target illumination pattern
consists of illuminance specifications for these regions. The
realization of this pattern is facilitated by characterizing
illuminance intensities at a finite number of evaluation
points in W. Let P ⊂ W denote the set of evaluation
points, with nP elements, and x ∈ RnL

[0,1] denote the vector

of luminaire dimming levels, where nL is the number of
luminaires. Define index sets IP := Z[1,nP ] and IL :=
Z[1,nL]. Furthermore, let Ψ ∈ RnP

+ denote the vector whose
i-th entry is the illuminance due to natural light at the i-th
evaluation point. The illuminance Ei : RnL

[0,1] × RnP
+ → R+

at the i-th evaluation point is given by

Ei(x,Φ) := 〈Fi, x〉+ Ψi, i ∈ IP , (1)

where the j-th entry of Fi ∈ RnL
+ represents the contribu-

tion of the j-th luminaire to the illuminance at the i-th
evaluation point, for (i, j) ∈ IP × IL. The target illumi-
nation pattern consists of the following illuminance spec-
ifications: (i) uniform illumination of intensity Lt ∈ R+

across each occupied region RiO, i ∈ IO; (ii) illumination
intensity above Lm ∈ R+ in RU . Illumination unifor-
mity is measured in terms of the illuminance contrast
(Boyce, 2003), which describes the deviation of intensity
with respect to the target illuminance Lt. Specifically, the
illuminance contrast Ci : R+ × R+ → R+ at the i-th
evaluation point is defined as follows:

Ci(Ei, Lt) :=
|Ei − Lt|

Lt
, i ∈ IP . (2)

Illuminance uniformity for the i-th occupied region RiO,
i ∈ IO, is achieved by bounding the illuminance contrast
at each evaluation point in RiO and requiring the average
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illuminance across evaluation points in RiO to equal Lt.
Let Vi ⊂ P, i ∈ IO, denote the set of evaluation points,
with nVi

elements, for the i-th occupied region RiO, and
U ⊂ P denote the set of evaluation points, with nU
elements, for the non-occupied region RU . Define index
sets IVi

:= Z[1,nVi
], i ∈ IO, IU := Z[1,nU ], and IV :=

Z[1,nV ], where nV is the number of elements in the set
V :=

⋃
i∈IO Vi. The target illumination pattern can then

be described as follows:

1

nVi

∑
j∈IVi

Ej(x,Ψ) = Lt, i ∈ IO, (3a)

L ≤ Ei(x,Ψ) ≤ L, i ∈ V, (3b)

Ei(x,Ψ) ≥ Lm, i ∈ U , (3c)

where L := Lt(1 − Cth), L := Lt(1 + Cth) and Cth ∈ R+

is the upper bound on the illuminance contrast.

2.3 Problem Formulation

The objective of the optimal illumination control scheme
is to realize the target illumination pattern in (3) with
minimum power consumption of the LED luminaires. The
average power consumption of the LED luminaires over
an integer number of waveform cycles is given by P (x) :=
〈Pon, x〉+〈Poff,1− x〉, where the i-th entries of Pon ∈ RnL

+
and Poff ∈ RnL

+ denote the power consumption of the i-th
luminaire, i ∈ IL, in the on and off states, respectively.
Under the assumption that Poff = 0 and Pon := pon1, the
power consumption of the lighting system is given by

P (x) = pon 〈1, x〉 . (4)

In this case, minimizing P is equivalent to minimizing the
sum of luminaire dimming levels. Note that the target illu-
mination pattern in (3) is described by linear constraints
in the variable x ∈ RnL

[0,1]. Defining appropriate matrices

A ∈ Rq×nL and B ∈ RnO×nL and vectors a ∈ Rq and
b ∈ RnO , where q := 2nV + nU , the optimal dimming
vector can be described as the solution of the following
linear programming problem:

x∗ := arg min
x

ψ0(x) := 〈1, x〉 , (5a)

s.t.: Ax ≤ a, (5b)

Bx = b, (5c)

x ∈ X := RnL

[0,1]. (5d)

Next, the decision variables and constraints are divided
amongst N controllers such that there is no overlap
between the variables and constraints of any two con-
trollers. The following discussion makes this assignment
more precise. Divide the workspace plane W into N non-
overlapping regions Wi, i ∈ IC := Z[1,N ], such that
W =

⋃
i∈IC Wi. The inequality constraints corresponding

to points w ∈ Wi, i ∈ IC , are assigned to the i-th
controller. The location of the j-th occupant is used to
determine the assignment of the corresponding equality
constraint. More precisely, the j-th equality constraint is
assigned to the i-th controller, where pj ∈ Wi, (i, j) ∈ IC×
IO. Re-arranging the rows and columns of the matrices A
and B, and the entries of the vectors a and b, the linear
constraints in (5b)-(5c) can be expressed as follows:

∑
j

Aijxj ≤ ai, i ∈ IC , (6a)∑
j

Bijxj = bi, i ∈ IC , (6b)

where Aij ∈ Rqi×nj (respectively, Bij ∈ Rli×nj ) denote
the contribution of the luminaires assigned to the j-th
controller to the inequality (equality) constraints assigned
to the i-th controller.

The optimal illumination control problem (5) differs from
the ones formulated in (Pandharipande and Caicedo, 2010;
Caicedo and Pandharipande, 2013) in two main aspects.
Firstly, in (5), an equality constraint is defined for eval-
uation points in each of the sets U i, for i ∈ IO. These
constraints are, in general, coupled across a subset of the
decision variables. In (Pandharipande and Caicedo, 2010),
a single equality constraint is defined for all evaluation
points in the set U = ∪i∈IOU i. This constraint can, in
some situations, be coupled across the dimming vectors
of all controllers. Secondly, (5) defines illuminance re-
quirements for a grid of points in the workspace plane.
A finer resolution leads to better illumination rendering
but increases the number of illuminance constraints. In
(Caicedo and Pandharipande, 2013), illuminance require-
ments are instead specified at luminaire-integrated illumi-
nance sensors (one sensor per luminaire) which measure
average illuminance values in their respective fields of view.
After careful calibration of the illuminance sensors, this
approach is used to formulate an optimal illumination con-
trol problem where the number of illuminance constraints
is equal to the number of illuminance sensors.

3. DISTRIBUTED OPTIMAL ILLUMINATION
CONTROL

This section presents several algorithms for solving (5) in
a distributed manner over a network of inter-connected
controllers. The algorithms are obtained by applying the
distributed optimization methods proposed in (Necoara
and Suykens, 2008; Dinh et al., 2013) for separable convex
optimization. Sections 3.1 and 3.2 present the algorithms,
and Section 3.3 describes their distributed implementation
with local communication between controllers. In what
follows, (5) is referred to as the primal problem, and x
as the primal variable. Furthermore, it is assumed that (5)
is feasible and its optimal value is given by f∗ := ψ0(x∗).
The constraints (5b)-(5c) are relaxed by introducing the
dual variable y := col(λ, µ) ∈ Rm, where λ and µ
are Lagrange multipliers associated with the inequality
and equality constraints in (5b)-(5c), respectively. The
Lagrange function L0 : RnL × Rm → R is defined as
L0(x, y) := ψ0(x) + 〈y, Cx− c〉, where C := col(A,B) and
c := col(a, b). The corresponding dual function is defined
as:

d0(y) := min
x∈X
L0(x, y). (7)

The dual problem associated with (5),

d∗ := max
y∈Y

d0(y), (8)

where Y := {y = col(λ, µ) ∈ Rm : λ ≥ 0}, satisfies
d∗ = f∗ (Bertsekas, 1999, Prop. 5.2.2). The following
functions play an important role in the methods used in
this section:
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dβ1(y) := min
x∈X
{L0(x, y) + β1φX (x)}, (9a)

fβ2(x) := max
y∈Y
{L0(x, y)− β2φY(y)}, (9b)

where β1 > 0, β2 > 0, and φX and φY are prox-functions,
with convexity parameters σX and σY , for the sets X
and Y, respectively. Let x(y;β1) and y(x;β2) denote the
optimal solutions for the problems in (9), i.e.,

x(y;β1) := arg min
x∈X
{L0(x, y) + β1φX (x)}, (10a)

y(x;β2) := arg max
y∈Y
{L0(x, y)− β2φY(y)}. (10b)

In accordance with (Nesterov, 2005, Thm. 1), ∇dβ1(y) =
Cx(y;β1) − c is Lβ1-Lipschitz continuous with Lipschitz

constant Lβ1
= ‖C‖2

β1
. The gradient mapping of dβ1

is

defined as:

G(y;β1) := arg max
ŷ∈Y

{
〈∇dβ1(y), ŷ〉− Lβ1

2
‖ŷ − y‖2

}
. (11)

Likewise, ∇fβ2
(x) = 1 + C>y(x;β2) is Lβ2

-Lipschitz

continuous with Lipschitz constant Lβ2 = ‖C‖2
β2

. The

gradient mapping of fβ2
is defined as:

H(x;β2) := arg min
x̂∈X

{
〈∇fβ2

(x), x̂〉+Lβ2

2
‖x̂− x‖2

}
. (12)

The following prox-functions are used:

φX :=
1

2
‖x− x0‖2, φY(y) :=

1

2
‖y − y0‖2, (13)

where x0 := 1
21, y0 := 0, σX = σY = 1, and

ΦX := max
x∈X

φX (x) =
nL
8
. (14)

For the primal-dual pair (x, y) ∈ X × Y, the primal gap
ψ0(x) − f∗ is bounded as follows (Necoara and Suykens,
2008, Lemma 3.3):

−‖y∗‖‖[Cx− c]+‖ ≤ ψ0(x)− f∗ ≤ ψ0(x)− d0(y),

where y∗ denotes an optimal solution of the dual problem
(8), and the vector [Cx−c]+ := col(max{0, Ax−a}, Bx−b)
is the residual, with the maximum being taken component-
wise. The terms ψ0(x) − d0(x) and ‖[Cx − c]+‖ are
referred to as the primal-dual gap and the feasibility gap,
respectively. The parameters β1 > 0 and β2 > 0 bound
the primal-dual and feasibility gaps for the primal-dual
pair (x, y) ∈ X × Y. In particular, suppose the following
condition holds for some (x, y) ∈ X × Y and β1, β2 > 0:

fβ2(x) ≤ dβ1(y). (15)

Then, from (Dinh et al., 2013, Lemma 3), it follows that:

ψ0(x)− d0(y) ≤ β1ΦX , (16a)

‖[Cx− c]+‖ ≤ β2

(
‖y∗‖+

√
‖y∗‖2 +

2β1

β2
ΦX

)
. (16b)

The condition (15) is referred to as the excessive gap
condition.

3.1 Proximal Center Algorithm

The function dβ1
forms a smooth approximation of the

dual function d0 (Necoara and Suykens, 2008, Thm. 3.1).
In particular,

dβ1(y)− β1ΦX ≤ d0(y) ≤ dβ1(y), y ∈ Y.

The proximal center algorithm (Necoara and Suykens,
2008) solves the following optimization problem:

max
y∈Y

dβ1
(y), (17)

to a desired accuracy ε > 0 where β1 = ε
ΦX

.

Algorithm 1: Choose ε > 0 and set β1 := ε
ΦX

. For
k ∈ Z+, perform the following steps:

(1) Compute x̂k from (10) as x̂k := x(yk;β1).
(2) Compute ŷk as follows:

ŷk := arg max
y∈Y

{ k∑
l=0

l + 1

2

〈
∇dβ1(yl), y

〉
−Lβ1

σY
φY(y)

}
.

(3) Compute x̄k as follows:

x̄k :=
2

(k + 1)(k + 2)

k∑
l=0

(l + 1)x̂l.

(4) Compute ȳk from (11) as ȳk := G(yk;β1).
(5) Update yk+1 := 2

k+3 ŷ
k + k+1

k+3 ȳ
k. �

For the primal-dual pair (x̄k, ȳk) ∈ X × Y generated
after k iterations of Algorithm 1, the primal-dual and
feasibility gaps are bounded as in (16) with β1 = ε

ΦX
and

β2 = 4‖C‖2
β1(k+1)2 (Necoara and Suykens, 2008, Thm. 3.7).

3.2 Excessive Gap Algorithms

Excessive gap algorithms (Dinh et al., 2013) generate
primal-dual pairs (x̄k, ȳk) ∈ X × Y, for k ∈ Z+, which
satisfy the excessive gap condition (15). This section
presents three variants.

Algorithm 2: (Primal Excessive Gap Algorithm) Set
τ0 := 0.5 and β0

1 = β0
2 := ‖C‖. Compute x̄0 and ȳ0 from

(10) and (12) as follows:

ȳ0 := y(x0;β0
2), x̄0 := H(x0;β0

2).

For k ∈ Z+, perform the following steps:

(1) Update βk+1
1 := (1− τk)βk1 , βk+1

2 := (1− τk)βk2 , and
τk+1 := 1

k+3 .

(2) Compute x̃ from (10) as x̃ := x(ȳk;βk1 ) and update
x̂ := τkx̃+ (1− τk)x̄k.

(3) Compute ỹ from (10) as ỹ := y(x̂;βk+1
2 ) and update

ȳk+1 := τkỹ + (1− τk)ȳk.

(4) Compute x̄k+1 from (12) as x̄k+1 := H(x̂;βk+1
2 ). �

For the primal-dual pair (x̄k, ȳk) ∈ X ×Y generated after
k iterations of Algorithm 2, the primal-dual and feasibility

gaps are bounded as in (16) with β1 = β2 = 2‖C‖
k+2 (Dinh

et al., 2013, Thm. 2).

Algorithm 3: (Primal-Dual Excessive Gap Algorithm)

Set τ0 := 0.5(
√

5 − 1) and β0
1 = β0

2 := ‖C‖. Compute
x̄0 and ȳ0 from (10) and (11) as follows:

x̄0 := x(y0;β0
1), ȳ0 := G(y0;β0

1).

For k ∈ Z+, perform the following steps:

(1) If k is even
(a) Compute x̃ from (10) as x̃ := x(ȳk;βk1 ) and

update x̂ := τkx̃+ (1− τk)x̄k.
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(b) Compute ỹ from (10) as ỹ := y(x̂;βk2 ) and update
ȳk+1 := τkỹ + (1− τk)ȳk.

(c) Compute x̄k+1 from (12) as x̄k+1 := H(x̂;βk2 ).

(d) Update βk1 as βk+1
1 := (1− τk)βk1 .

(2) If k is odd
(a) Compute ỹ from (10) as ỹ := y(x̄k;βk2 ) and

update ŷ := τkỹ + (1− τk)ȳk.
(b) Compute x̃ from (10) as x̃ := x(ŷ;βk1 ) and update

x̄k+1 := τkx̃+ (1− τk)x̄k.
(c) Compute ȳk+1 from (11) as ȳk+1 := G(ŷ;βk1 ).

(d) Update βk2 as βk+1
2 := (1− τk)βk2 .

(3) Update τk as τk+1 := τk
2

[√
τ2
k + 4− τk

]
. �

For the primal-dual pair (x̄k, ȳk) ∈ X × Y generated
after k iterations of Algorithm 3, the primal-dual and

feasibility gaps are bounded as in (16) with β1 = 2‖C‖
k+1

and β2 = (
√

5+1)‖C‖
k+1 (Dinh et al., 2013, Thm. 3).

Algorithm 4: (Dual Excessive Gap Algorithm) Choose

ε > 0 and set β1 := ε
ΦX

, β0
2 := ‖C‖2

β1
, and τ0 := 0.99.

Compute x̄0 and ȳ0 from (10) and (11) as follows:

x̄0 := x(y0;β1), ȳ0 := G(y0;β1).

For k ∈ Z+, perform the following steps:

(1) Compute ỹ from (10) as ỹ := y(x̄k;βk2 ) and update
ŷ := τkỹ + (1− τk)ȳk.

(2) Compute x̃ from (10) as x̃ := x(ŷ;β1) and update
x̄k+1 := τkx̃+ (1− τk)x̄k.

(3) Compute ȳk+1 from (11) as ȳk+1 := G(ŷ;β1).

(4) Update βk2 as βk+1
2 := (1− τk)βk2 .

(5) Update τk as τk+1 := τk
2

[√
τ2
k + 4− τk

]
. �

For the primal-dual pair (x̄k, ȳk) ∈ X × Y generated
after k iterations of Algorithm 4, the primal-dual and
feasibility gaps are bounded as in (16) with β1 = ε

ΦX

and β2 = 2‖C‖2
25(τ0k+2)2 ‖y

∗
β1
‖, where ‖y∗β1

‖ ∈ Y is an optimal

solution of (17) (Dinh et al., 2011, Thm. 4).

3.3 Distributed implementation

This section describes the distributed implementation of
Algorithms 1-4 for the networked LED-based lighting sys-
tem described in Section 2. This implementation exploits
the structure of the constraint matrix C := col(A,B) in
(5b)-(5c). In accordance with the structure outlined in (6),
the dual variable y is partitioned as y = col(y1, · · · , yN ),
where yi ∈ Rmi is associated with the constraints assigned
to the i-th controller, i ∈ IC . It is assumed that the
i-th controller stores the matrices Cii ∈ Rmi×ni and
Cji ∈ Rmj×ni , j ∈ Ni := {j ∈ IC : j 6= i, Cji 6= 0}.
In each iteration, the considered algorithms need to solve
different combinations of the subproblems described in
(10), (11) and (12). If the prox-functions φX and φY are
chosen as in (13), these sub-problems can be parallelized
and solved analytically. Note that the subproblem in Step
2 of Algorithm 1 is similar to that in (10b), and thus, will
not be considered separately.

First, consider subproblem (10a). Given y ∈ Y, the
parameter β1 > 0 and the prox-function φX as in (13),
the solution of this optimization problem is:

x(y;β1) = min

{
max

{
0, x0 − 1

β1
(1 + C>y)

}
,1

}
, (18)

where the minimum and maximum are taken component-
wise. Let the optimizer in (18) be denoted by x̄ and
partitioned according to x̄ = col(x̄1, · · · , x̄N ). Then, the
vectors x̄i, i ∈ IN , can be computed in parallel by
exploiting the structure of the matrix C, while relying on
inter-controller communication. To determine x̄i, the i-th
controller needs to form the following vector:∑

j∈i∪Ni

y>j Cji.

Hence, the i-th controller needs to obtain the dual vari-
ables yj from the j-th controller, j ∈ Ni. Likewise, the
i-th controller needs to transmit its dual variables yi to
the j-th controller, j ∈ Mi := {j ∈ IC : j 6= i, Cij 6= 0}.
Thus, the i-th controller needs to perform the following
steps:

(1) Transmit yi ∈ Rmi to j ∈Mi.
(2) Receive yj ∈ Rmj from j ∈ Ni.
(3) Compute si :=

∑
j∈i∪Ni

y>j Cji.

Next, consider the subproblem (10b). Given x ∈ X , the
parameter β2 > 0 and the prox-function φY as in (13), the
solution of this optimization problem is:

y(x;β2) =
1

β2
[Cx− c]+. (19)

Let the optimizer in (19) be denoted by ȳ and partitioned
according to ȳ = col(ȳ1, · · · , ȳN ). To determine ȳi, the i-th
controller needs to form the following vector:∑

j∈Mi

Cijxj .

Hence, the i-th controller needs to obtain the vector Cijxj
from the j-th controller, j ∈ Mi. Likewise, the i-th
controller needs to transmit the vector Cjixi to the j-
th controller, j ∈ Ni. Thus, the i-th controller needs to
perform the following steps:

(1) Compute rji := Cjixi and transmit rji ∈ Rmj to
j ∈ Ni.

(2) Receive rij ∈ Rmi from j ∈Mi.
(3) Compute ri := Ciixi +

∑
j∈Mi

rij .

Lastly, consider the subproblems (11) and (12). Given
(x, y) ∈ X×Y and the parameters β1, β2 > 0, the solutions
of these subproblems are:

G(y;β1) =

[
y +

1

Lβ2

(Cx(y;β1)− c)
]+

,

H(x;β2) = min

{
max

{
0, x− 1

Lβ1

(1 + C>y(x;β2))

}
,1

}
.

The parallelization of these sub-problems and the corre-
sponding controller steps are similar to those for the sub-
problems (10). Tables 1 and 2 summarize the coordination
requirements and number of communication rounds, per
iteration, for Algorithms 1-4.

4. SIMULATION RESULTS

The distributed optimal illumination control algorithms
are tested on the office, shown in Fig. 1, which is designed
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Table 1. Coordination requirements, per itera-
tion, for the i-th controller

Compute Data in Data out

xi(y;β1)
∑

j∈Ni
mj mi|Mi|

yi(x;β2) mi|Mi|
∑

j∈Ni
mj

Table 2. Communication rounds per iteration

Compute Alg. 1 Alg. 2 Alg. 3 Alg. 4

x(y;β1) 1 1 1 1
y(x;β2) 0 1 1 1
G(y;β1) 2 0 0 or 1 1
H(x;β2) 0 1 1 or 0 0

Fig. 1. Office modeled in DIALux

Fig. 2. Natural light distribution and occupancy pattern

in the simulation environment DIALux (v. 4.9.0.2), a simu-
lation tool that is commonly used by lighting professionals
and architects. 1 The room is 24 m long, 12 m wide, 3 m
high, and contains 32 workstations. The workspace plane
is located 0.75 m above the floor. A window (length 22
m, height 1.2 m, and located 0.75 m above the floor) is
placed on one side of the office. LED-based luminaires of
type BPS560 2 are placed on the ceiling and arranged in
a grid with 12 rows, 24 columns and separation 1 m. The
workspace plane is discretized and a grid of evaluation
points is obtained. The grid contains 47 points along the
width of the room and 95 points along its length. The 4465
evaluation points are placed 0.25 m apart.

The distribution of natural light and the occupancy pat-
tern, shown in Fig. 2, are assumed to be constant. Illumi-
nance intensities are relatively high close to the window,
which is located along the upper edge of the figure. Circles
of radii 1 m, centered at the occupant locations, represent
individual occupied regions. Each occupied region contains
approximately 50 evaluation points, and up to 77 LED
luminaires contribute to the average illuminance in an oc-
cupied region. The target illumination pattern parameters
are Lt = 600 lux, Lm = 300 lux and Cth = 0.3. Sparsity
is induced in the optimal illumination control problem (5)
by ignoring luminaire illuminance contributions below a
threshold of 4 lux. The so-obtained optimization problem

1 For details, see www.dial.de/DIAL/en/dialux/.
2 For details, see www.ecat.lighting.philips.com/.
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Fig. 3. Evolution of primal cost function ψ0(x)
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Fig. 5. Illuminance after 1000 iterations of Algorithm 4

contains 5657 inequality constraints and 27 equality con-
straints. The matrix norm ‖C‖ = 6.82× 103.

Algs. 1-4 are used to solve the optimal illumination control
problem (5). The prox-functions φX and φY are chosen
as in (13), and the accuracy parameter ε = 1 in Algs. 1
and 4. The 288 luminaires are divided equally amongst 18
controllers. This assignment of luminaires leads to a com-
munication graph in which a controller needs to coordinate
only with its immediate neighbors. Figs. 3 and 4 show
the primal cost function and the feasibility gap for each
algorithm, respectively. The dual excessive gap method
(Alg. 4) is the quickest, in terms of number of iterations, to
approach optimality. The proximal center algorithm (Alg.
1) requires less iterations than the primal and primal-dual
excessive gap algorithms (Algs. 2 and 3) to approach opti-
mality, but requires more iterations to approach feasibility.
For this problem instance, the dual excessive gap method
obtains an approximate solution in 1000 iterations. Fig.
5 shows the lux distribution after 1000 iterations of Alg.
4. Although not included in Figs. 3 and 4, the results for
Algorithm 4 with initial step-size τ0 = 0.5(

√
5−1) yielded

curves that were almost identical to those obtained for
Algorithm 1. All calculations are performed on a 2.53 GHz
workstation with 3.0 GB RAM. The total computational
times for 5000 iterations of Algorithms 1-4 are 19.4, 27.0,
27.5 and 36.6 seconds, respectively. These are determined
using the tic-toc function in MATLAB.

In each algorithm, most of the computational effort is
needed for matrix-vector multiplications. In Section 3.3,
sparsity and communication were exploited to distribute
the computations amongst the controllers. The structure
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Table 3. Different luminaire assignments and
their communication requirements.

LEDs per controller Total links Max. links Max. mult.

1 7227 77 1673
4 623 25 5583
9 206 18 10518
16 50 9 14716
36 18 6 31239
144 1 1 115536
288 - - 228109

of the matrices A and B in (5b)-(5c) defines the communi-
cation requirements, such as the number of communication
links for each controller, the maximum number of links
across the controllers, and the total number of links in
the network. These aspects are considered for luminaires
arranged in square blocks containing 1, 2, 3, 4, 6 and 12
luminaires in each row/column. Table 3 summarizes the
communication requirements for different arrangements.
The last column lists the maximum number of multipli-
cations required for a single matrix-vector multiplication.
Table 3 shows that as more LED luminaires are assigned
to a controller, the computational effort per controller
increases but the communication requirements ease. For
instance, the total communication links quadruple when
the number of LED luminaires per controller is decreased
from 16 to 9. In this case, the maximum number of links
required by a controller double. With 16 LED luminaires
assigned per controller, the resulting communication graph
requires neighbor-neighbor communication only. For each
assignment of LED luminaires, the performance of Algs.
1-4 in terms of number of iterations is the same as that
shown in Figs. 3-4.

5. CONCLUSION

This paper investigated distributed illumination coor-
dination schemes for LED-based lighting systems that
provide localized illuminance to occupants. The central-
ized optimization-based approach developed in (Pandhari-
pande and Caicedo, 2010) was extended to a distributed
setting. Several state-of-the-art non-centralized optimiza-
tion algorithms were applied to the resulting optimization
problem. For the considered lighting problem, the dual
excessive gap method (Alg. 4) outperformed the proximal
center, primal excessive gap and primal-dual excessive gap
algorithms (Algs. 1–3). The problem formulation assumes
knowledge of the occupancy pattern in the workspace
plane and the illuminance contributions of natural and
artificial light. Algorithm performance was evaluated using
numerical simulations.
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