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Abstract: Feedback control system performance can be decreasing during its operation because
of the components’ wear or degradation. To deal with such loss of efficiency, a research aspect of
dependability concerns fault-tolerant control (FTC) strategies which give the feedback control
system the ability to overcome faults. In this way, the RUL (remaining useful life) becomes
valuable information which can be integrated in controller design in efforts to find a satisfactory
trade-off between control system performances and components’ lifetime. The main aim of this
paper is twofold. On one hand, it proposes an integrated model which jointly describes the state
of the feedback control system and the actuators degradation. On the other hand, a probabilistic
model-based framework is presented in order to assess the RUL of the deteriorating feedback
system. No special monitoring device is used to observe the health status of actuator, thus the
measurements of closed system response are considered as the only available health information.
The RUL is computed by a two-step technique. First, the system state regarding the available
observations is estimated on-line by using the Particle Filter method. Then, the reliability of the
system is computed with a classical Monte Carlo method. In order to illustrate this approach,
a well-known simulated double-tank level control system is used.

Keywords: dynamic systems, closed-loop systems, device degradation, stochastic modelling,
stochastic jump process, reliability analysis, stochastic filtering, Remaining Useful Life,
Piecewise Deterministic Markov Process

1. INTRODUCTION

Depending on its special structure, the feedback control
system (FCS) has the ability to compensate for distur-
bances in the controlled applications. However, failure or
loss of efficiency of system components such as actuators or
sensors can lead to the instability of the control loop and
reduce the product quality. Therefore, the maintenance
optimization is one of the main research aspects to improve
the reliability, durability of production systems, and also
reduce the cost (Wang (2002); Dieulle et al. (2003)).

Another research aspect of dependability concerns fault-
tolerant control (FTC) strategies which give the FCS the
ability to overcome faults (Zhang and Jiang (2008)). The
key objective of FTC system design may not offer optimal
performance in a strict sense for normal operation, but
generally it can mitigate effects of system components
failures. In this way, the degradation level and/or the
remaining useful life (RUL) of the system become a valu-
able information which could be integrated in controller
design with the aim to find a satisfactory trade-off between
feedback system performances and its reliability (Langeron
et al. (2013); Pereira et al. (2010)).

The main aim of this work is to deal from a dependability
point of view with a closed-loop system combining a
deterministic part related to the system dynamics and a

stochastic part related to the actuator degradation. Our
main contribution in this work is twofold. Firstly, we
propose an integrated model which jointly describes the
state of the feedback control system and also the stochastic
degradation process of the actuator. Secondly, we propose
a probabilistic model-based framework with a diagnosis-
prognosis approach for dealing with the assessment of
the RUL on the basis of the closed system output alone.
This means that no additional sensor is devoted to the
monitoring of the degradation phenomenon of actuator,
only the measurements of the system output are available
in order to assess the system health. A diagnosis-prognosis
approach composed of two steps is developed which can be
justified because the dynamics of the controlled process
combined with the degradation process of actuator can be
modeled using a Piecewise Deterministic Markov Process.
First, the computation of the conditional distribution
of the system state regarding the available observations
is required (because the actual state of actuator is not
observed). Then, the distribution of the remaining lifetime
of the system knowing that the current state is distributed
according to the density function estimated at first step is
computed.

The remainder of this paper is organized as follows. Sec-
tion 2 is devoted to the description of the system charac-
teristics and the assumption about its degradation process.
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Section 3 describes the condition monitoring process and
the approach for computing remaining useful life which
is relevant to state estimation. In order to estimate the
system state, the need of the system health information
results in the introduction of excitation signals in the set-
point input. To illustrate the methodology, a specific case
study is introduced in Section 4. Some numerical results
are also discussed here. Finally, conclusions drawn from
this work and possible ways for further studies are given.

2. SYSTEM MODELING AND INSPECTION POLICY

2.1 Feedback control system structure

Within a general framework, let consider a dynamical
process whose state evolution can be described by the
nonlinear differential equation:

ẋt = f(t, xt, ut) (1)

where xt is the state vector of process, ut denotes control
force acting on the process.

In spite of sophisticated filter structures, noise in mea-
surement process is usually an unavoidable problem. Here,
it is assumed that measurement noises (ǫt)t∈R+ are inde-
pendent random variables with a probability density g,
not necessarily Gaussian, independent of the process state
(xt)t∈R+ . The measurements of controlled process state
may be formally expressed as:

yt = h(t, xt, ut) + ǫt (2)

In this work, we consider classical Proportional-Integral-
Derivative (PID) controllers which are widely used in
industrial applications thanks to their simplicity and per-
formance. The PID controller output uc

t is given by:

uc
t = KP

[

et +
1

TI

∫ t

0

eτdτ + TD

det
dt

]

(3)

where et is the error signal defined as et = yreft − yt
with yreft the desired set-point (reference input), KP is
proportional gain, TI is the integral time and TD is the
derivative time of the PID controller. Adjustment of these
three parameters to the optimum values for the desired
control response is extensively studied in control design
(Aström and Hägglund (1995)).

2.2 Actuator deterioration modeling

An important element in feedback control is the actual
performance level of the actuator because degradation of
such a component affects the control action and can lead
to a lack of performance of the feedback control system.
The real output of the actuator may be defined as the
following model:

ut = g(uc
t , Ct) (4)

where g is a decreasing function w.r.t. the actual actuator
capacity Ct which is related to the degradation process.

In this work, it is assumed that an actuator is subject to
shocks that occur randomly in time. Each shock impacts
a random quantity of damage to the actuator. Hence, the
capacity of the actuator at time t before its failure can be
expressed as:

Ct = C0 −Dt (5)

where C0 is the initial capacity of the actuator, Dt de-
scribes the accumulated deterioration of the actuator at
time t (in capacity unit)

The most common assumption of this degradation model
is that the shocks occur according to a Poisson process
with intensity λ. The amount of damage dj produced by
the j-th shock is randomly distributed according to a given
probability law G with G(δ) = P(dj ≤ δ). All the dj , j ≥ 1
are independent and identically distributed. Let Nt denote
the total number of shocks up to time t ≥ 0. Then the
accumulated deterioration of the actuator at time t is:

Dt =

Nt
∑

j=0

dj (d0 = 0) (6)

Under this modeling assumption, the degradation impacts
the actuator only at discrete times. In case of an actuator
which gradually deteriorates, other processes should be
considered e.g. as the homogeneous Gamma process which
can be thought as the accumulation of an infinite number
of small shocks during each time interval (Van Noortwijk
(2009)).

2.3 Excitation signal and condition monitoring process

No additional sensor is devoted to the monitoring of the
actuator degradation. The noisy measurement of system
output is considered as the only available health infor-
mation about the closed system. As a consequence each
transient response which occurs in the short period of
time immediately after a change of set-point has to be
considered to assess the system health.

In this paper a fixed set-point control is considered and
the direct use of the system output in the prognostic
purpose is not possible because of a lack of transient
response. In order to deal with this limit, excitation signals
are considered. Short pulses (small changes of the set-
point) are emitted in order to allow the observance on how
the system responds to such perturbations. The resulting
behavior is often called impulse response. This information
is then used by the considered prognostic approach in
order to make the prediction of the RUL of the system
(Figure 1).

Controller Actuator Process

set-point 

(r)

control error 

(e)

controller output 

(u
c
) manipulated 

variable (u)

process 

variable (x)

-

measured process 

variable (y)

degradation 

process

Sensor

measurement 

noise (ϵ)

+
+

constant value

(rset)

excitation signal

(Ext
i
)

2-step technique for RUL assessment

Fig. 1. RUL assessment scheme

The occasional changes of set-point due to short pulses are
considered as disturbances for the system. The frequency
of the excitation period and the type of excitation signal
should be chosen carefully. The simplest kind of pulse is
a rectangular pulse. Exti denotes the i-th excitation pulse
which is characterized by the beginning T b

i , the excitation
duration ∆Ti and the excitation amplitude δi
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Exti =







0 if t < T b
i

δi if T b
i ≤ t < T b

i +∆Ti

0 if t ≥ T b
i +∆Ti.

(7)

where the excitation amplitude δi is less than a percentage
of set-point value (5% or 2%) in order to be able to observe
the transient response of the system without affecting the
ability of the system to fulfill its task.

The response of the system to this excitation is observed
from T b

i to the instant at which the last observation is
recorded, denoted T e

i . Figure 2 illustrates the inspection
process. An observation period is then divided into two
phases: excitation and re-establishment phases.

Re-etablissement phase

Excitation 

phase

Set-point, 

system output

TimeTi
b Ti

e0

rset

Ti
b + Ti

Noisy observations of 

output
rset + δi

Fig. 2. Rectangular pulse and inspection process

Actually, we take an interest in the observations at some
discrete times T b

i ≤ T 1
i < . . . < T ni

i ≤ T e
i (ni observations

are recorded). This information on the system state is then
modeled by some random variables Y 1

i , . . . , Y
ni

i depending
on the actuator random degradation process. The realiza-
tion yji of Y j

i can be written from (2):

yji = h(T j
i , xT

j

i

, u
T

j

i

) + ǫ
T

j

i

(8)

Let us introduce Tprog as the time of the last observation.
Tprog is also the time at which the estimation of the RUL
is expected. Suppose that until this instant m excitation
periods are executed. For the simplicity of notation, all
the available information until this prediction instant are
denoted as Y1, . . . , Yn. These random variable are defined
at discrete times 0 < T1 < . . . < Tn = Tprog

3. RUL ASSESSMENT

3.1 Two-step technique for RUL assessment

We adopt a model-based approach that jointly describes
the controlled state of system with its degradation. The
whole behavior of the deteriorating closed-loop system at
time t can be resumed by a random vector as:

Zt =

(

Ct

xt

t

)

(9)

with Ct the actual actuator capacity variables related to
the degradation, xt the state variables of controlled process
and time t. The time t is useful for the process (Zt)t≥0 to
be homogeneous in time.

In the context of the feedback control system, the system is
considered as failed when it is not able to fulfill its require-
ments anymore. More concretely, the actual capacity of the
actuator has to be greater than a minimal capacity level

which relates to the objectives of control system design.
The RUL at time t is defined as the remaining time (from
t) before the system can no longer fulfill its mission. More
formally if the failure zone F refers to the set of undesired
system states the RUL at time t is defined as:

RULt = inf(s ≥ t, Zs ∈ F)− t (10)

The system state is submitted to random jumps at points
in time, but between two jumps its evolution is determinis-
tically governed by a system of differential equations which
combine the characteristics of the process dynamics and
the PID controller. The system state (Zt)t≥0 is a Piecewise
Deterministic Markov Process (PDMP). As a consequence
see Lorton et al. (2013), the distribution of the RUL of
the system at time Tprog conditionally to online available
information can be computed by a two-step technique
representing successively the diagnosis and the prognosis.

P(RULTprog
> s|Y1 = y1, . . . , Yn = yn)

=

∫

Rz(s)µy1,...,yn
(dz)

(11)

where:

• for diagnosis µy1,...,yn
(dz) is the probability law of

the system state at time Tprog regarding the available
observations y1, . . . , yn:

µy1,...,yn
= L(ZTprog

|Y1 = y1, . . . , Yn = yn) (12)

• for prognosis Rz(s) is the reliability of the system at
time s starting from the initial state value z:

Rz(s) = P(Zu /∈ F ∀u ≤ s|Z0 = z) (13)

In (11) two characteristic variables have to be considered
successively: µy1,...,yn

(dz) and Rz(s), leading to the two-
steps technique that is detailed in sections 3.2 and 3.2.

3.2 Step 1: Particle filter state estimation

Let ZT0 be the initial state of the system. The objective
is to make inferences on the system state at prognostic
instant ZTprog

= ZTn
given only realizations y1:n =

y1, . . . , yn of the observation process Y1:n = {Yi, i =
1, . . . , n} as described in Section 2.3. More specifically, the
main task is to estimate the filtering density, p(zTk

|y1:k)
for any k ≤ n.

Under nonlinear and non-Gaussian circumstance, particle
filtering is used here to allow for numerical computation of
the filtering density. The key idea of this sequential Monte
Carlo method is to approximate the targeted filtering
distribution p(zTk

|y1:k) by a cloud of Ns i.i.d. random

samples (particles) {z
(i)
Tk
, i = 1, . . . , Ns} with associated

weights {w
(i)
Tk
, i = 1, . . . , Ns}, which satisfy

∑

i w
(i)
Tk

=
1, so that the target distribution at time Tk can be
approximated by

p(zTk
|y1:k) ≈ p̂(zTk

|y1:k) =

Ns
∑

i=1

w
(i)
Tk
δ
z
(i)

Tk

(dzTk
) (14)

where δ
z
(i)

Tk

(dzTk
) is the Dirac delta mass located in z

(i)
Tk
.

In Daigle et al. (2012) a procedure based on filtering
methods is used to predict the RUL of open loop systems.
The progression of damage in time is characterized by
functions, parameterized by unknown but constant wear
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parameters. The damage estimation then reduces to joint
state-parameter estimation using for example particle fil-
tering technique for tracking purpose.

The used particle filter is similar to the Generic Particle
Filter in (Arulampalam et al. (2002)) with deterministic
re-sampling scheme which is one computationally cheaper
algorithm (Kitagawa (1996)). Indeed, re-sampling is used
to avoid the degeneracy phenomenon that is, avoiding
the situation that all but one particle have the negligi-
ble importance weight (Arulampalam et al. (2002)). The

algorithm uses the prior importance function p(zTk
|z

(i)
Tk−1

)

based on the simulation of the actuator degradation pro-
cess and the deterministic behavior of the controlled pro-
cess which is derived from (1) to (7) using a discretized
scheme of (1) to (3).

Therefore, the particle filtering system state estimation
procedure, given the sequence of measurement y1:k can be
summarized by the algorithm in Table 1.

3.3 Step 2: RUL estimation

This step consists in the estimation of the remaining
lifetime from time Tprog knowing that the system state
at Tprog is estimated to be distributed according to (14).

Actually, the remaining lifetime is computed by classical
Monte Carlo simulation. It means that the simulation
of trajectories of the system until its failure is required.
The departure point of each trajectory is then randomly
selected from the particles set obtained at step 1. Each
particle is propagated forward to the failure zone in order
to obtain the histogram of RUL. The mean value or
quantiles of the RUL can also be derived.

4. CASE STUDY: A DOUBLE-TANK LEVEL
CONTROL SYSTEM

In the previous section, a methodology to compute the
conditional pdf of the RUL of a dynamic system was
described. Here, it is illustrated on a well-known feedback
control system: a double-tank level control system.

4.1 Description of the case study

Consider a double-tank level system with cross-sectional
area of the first tank S1 and the second one S2. Water or
other incompressible fluid (i.e. the mass density of fluid ρ
is constant) is pumped into the first tank at the top by a
pump motor drives. Then, the out flow from the first tank
feeds the second tank.

h1 S1

Tank 1

h2 S2

Tank 2

qin

q1,out

q2,out

V1

V2

PID controller Driver
Set-point

Level measurement sensor

- u

Fig. 3. A double-tank level control system

In order to consider the real response of pump motor,
the relation between the inlet flow rate qin and the pump
motor control input u is represented as a first order system
(Chen and Chen (2008)):

dqin
dt

= −
1

τa
qin +

Ka

τa
u (15)

where τa is the time constant of pump motor, Ka is the
servo amplify gain (with the initial gainKainit

). The pump
saturates at a maximum input umax and it cannot draw
water from the tank, so u ∈ [0, umax].

The fluid leaves out at the bottom of each tank through
valves with the flow rates according to the Torricelli rule:

qj,out = Kvj

√

2ghj, j = 1, 2 (16)

where hj is level of tank j, g is the acceleration of gravity
and Kvj is the specified parameter of the valve j.

Using the mass balance equation, the process can be
described by following equations:















dh1(t)

dt
=

1

S1
qin −

Kv1

S1

√

2gh1(t)

dh2(t)

dt
=

Kv1

S1

√

2gh1(t)−
Kv2

S2

√

2gh2(t)

(17)

The water level of tank 2 is measured by a level measure-
ment sensor and controlled by adjusting the pump motor
control input which is calculated by a PID controller.
It is assumed that measurement noises are independent
gaussian random variables with standard deviation σ and
mean equal to zero. The overall tank level control system
is shown in Figure 3.

Due to degradation of the pump, its capacity Ka stochas-
tically decreases. The shock instants ξi follow a Poisson
process with intensity λ. At each time ξi the capacity of
the pump Ka(t) decreases of a quantity di which follows a
uniform distribution on [0;∆]

As mentioned above, the system response (the level of
the tank 2) is considered as the only available health
information of the system. All excitation signals are the
rectangular pulses with the same duration ∆T and the
same amplitude δ. At each inspection period, a same finite
number of observations are recorded.

Under all these considerations, the behavior of water tank
level control system can be summed up using the process
Z = (Zt)t∈R+ , where Zt is given by:

Zt = (Ka(t), h1(t), h2(t), t)
T (18)

The current state of the system at time t is then a four-
component vector Zt, which includes the current capacity
of the pump, the water levels of two tanks, and the current
time t.

According to (15) and (17), the steady states are obtained
at instant tss if

u(tss) =
S1

S2

Kv2

Ka(tss)

√

2gh2(tss) (19)

Since u(tss) ≤ umax so

Ka(tss) ≥
S1

S2

Kv2

umax

√

2gh2(tss)
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Table 1. Generic particle filter for system state estimation

Initialization: ∀i = 1, . . . , Ns

Draw particle z
(i)
T0

according to the initial condition of system and assign corresponding weight w
(i)
T0

= 1
Ns

At step k (corresponding to time Tk): Given

{

z
(i)
Tk−1

, w
(i)
Tk−1

}Ns

i=1
, do

(a) Importance sampling: Based on the system description (derived from (1) to (7)), draw particles z̃
(i)
Tk

∼ p(zTk
|z

(i)
Tk−1

)

(b) Weight update: Based on the likelihoods of the observations yk collected (Eq. (8)), assign weights w
(i)
Tk

= w
(i)
Tk−1

p(yk|z̃
(i)
Tk

)

(c) Weight normalisation: w
(i)
Tk

=
w

(i)

Tk
∑

Ns

i=1
w

(i)

Tk

(d) Re-sampling decision: If N̂eff = 1
∑

Ns

i=1
(w

(i)

Tk
)2

< Nthresh then perform re-sampling:

{

z̃
(i)
Tk

, w
(i)
Tk

}Ns

i=1
⇒

{

z
(i)
Tk

, 1
Ns

}Ns

i=1

(e) Distribution: p(zTk
|y1:k) ≈

∑Ns

i=1
w

(i)
Tk

δ
z
(i)

Tk

(dzTk
)

Repeat till the prognostic instant Tprog is reached

that means the actual capacity of the actuator must be
greater than a minimal capacity defined in the control
system design phrase. In this case study, the failure zone
is defined as:

Ka(t) ≤ Kamin
=

S1

S2

Kv2

umax

√

2g(rset + δ) (20)

4.2 Numerical illustrations - Discussions

Numerical values for double-tank level control system are
summed up in Table 2

Table 2. Double-tank model

Physical parameters
S1 = 25 Kv1 = 8 τa = 1
S2 = 20 Kv2 = 6 g = 9.82
umax = 100 σ = 0.01

Controller parameters
KP = 4.2519 TI = 18.9817 TD = 1.6182

Initial condition (t = 0)
h1(0) = 0 h2(0) = 0 Kainit

= 5.0
Natural degradation

λ = 0.05 ∆ = 0.1
Set-point and Excitation signal

rset = 10 ∆T = 1 δ = 0.5

Figure 4 represents one trajectory of the process Z until
the complete failure of actuator when no excitation pulse
is applied. With the constant set-point, the water level
of tank 1 and tank 2 are reflected in Figure 4(b) and
Figure 4(c). Figure 4(d) shows the real (unobservable)
value of actuator capacity. As depicted in Figure 4, the
actuator fails completely (i.e.Ka = 0) at 1912.8 time units,
but the failure of the system here occurs at 1531.8 time
units. One can find that after the system failure date the
water level of tank 2 (the controlled variable) cannot track
the desired set-point.

The methodology previously described is applied to deduce
prognostic about the RUL of the system. It is assumed
that 10 excitation signals are introduced in the system at
time instants T b

i = i.120, i = 1, . . . , 10. Observations of the
system response (measurement of water tank level 2) are
then recorded until the prognostic instant Tprog = T e

10 =
1209.

The first step of the method is to compute the pdf of the
system state regarding the available observations until the
end of observation process. An approximation of the pdfs

0 500 1000 1500 2000
0

2

4

6

8

10

12
Set−point

Time (t)

Se
t−

po
in

t (
yre

f )

(a)

0 500 1000 1500 2000
0

2

4

6

8

10

Time (t)

W
at

er
 le

ve
l o

f 
ta

nk
 1

 (
h 1)

Trajectory of water level of tank 1

 

 

Actuator failure
System failure

(b)

0 500 1000 1500 2000
0

2

4

6

8

10

Time (t)

W
at

er
 le

ve
l o

f 
ta

nk
 2

 (
h 2)

Trajectory of water level of tank 2

 

 

Actuator failure
System failure

(c)

0 500 1000 1500 2000
0

1

2

3

4

5
Trajectory of actuator capacity

Time (t)

A
ct

ua
to

r 
ca

pa
ci

ty
 (

K
a)

 

 
Real capacity
Minimum capacity
Actuator failure
System failure

(d)

Fig. 4. A trajectory of the water tank level control system
until failure of actuator: (a) Set-point, (b) Water level
of tank 1, (c) Water level of tank 2 and (d) Actuator
capacity

are represented in Figure 5(a) for the water level of tank
1, Figure 5(b) for the water level of tank 2 and Figure 5(c)
for the actuator capacity with Ns = 3000 particles.

The last step of the method is to compute the distribution
of the remaining lifetime of the system starting at Tprog

knowing the approximated pdf of the system state at
that instant. Indeed, the simulation of trajectories of the
system until its failure is required. With 3000 simulation
trajectories, the obtained pdf of the RUL is shown in
Figure 5(d).

The quality of the state estimation hence of the RUL
estimation increases with the amount of collected condi-
tion information. With the same underlying degradation
trajectory of system (as shown in Figure 4(d)) and the
parameters of condition monitoring process as described
above, several scenarios with different excitation frequency
are implemented. The available health information of each
scenarios is then different. RUL estimation is done at the
same instant Tprog = 1209.
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Fig. 5. Conditional distribution of the system state at time
Tprog = 1209 time units according to the noisy obser-
vations for Ns = 3000 particles and the corresponding
distribution of the RUL of the system

Figure 6 illustrates the corresponding RUL predictions.
For visualization, the particles populations is then fitted
by the kernel density estimation. The probability distri-
butions all cover the true failure time of system, and as
frequency progresses, the prediction become significantly
more accurate and precise. Note that the black dashed
curve presents the density of the RUL with Monte Carlo
simulation in the idealistic case when the departure point
of each system trajectory is the real value of actuator
capacity at instant Tprog (it gives a benchmark of the best
information one may have on the system).
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Fig. 6. RUL estimation with different excitation scenarios

5. CONCLUSION

The present paper proposes a modeling framework com-
bining the deterministic behavior of a feedback control
system with the stochastic degradation process for the
actuator. A perturbation technique is considered on the
constant desired output in order to allow the actuator
degradation diagnosis and prognosis. Particle filter method

is used to estimate on-line the state of the considered
deteriorating system regarding the observation of process
response. By using a methodology based on the assump-
tion of Markov property, the Remaining Useful Life can
be deduced with Monte Carlo simulation. A simulated
double-tank level control system is considered as a case
study to illustrate the efficiency of the proposed approach.
Future research will focus on the use of the estimation of
the system state and the RUL in the design of an adaptive
controller.

ACKNOWLEDGEMENTS

This work is a part of the Ph.D research work of
Danh Ngoc Nguyen financially supported by Ministère de
l’Enseignement supérieur et de la Recherche, France.

REFERENCES

Arulampalam, M.S., Maskell, S., and Gordon, N. (2002).
A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking. IEEE Transactions on
signal processing, 50, 174–188.
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