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Abstract: This paper presents an algorithm that provides a regularization for the costate
dynamics of state constrained optimal control problems with a scalar constraint under the
assumption that the Hamiltonian is convex in the control and the state dynamics equation
of the constrained state is monotonically increasing in the control variable. The algorithm is
demonstrated with a classical optimal control problem.

1. INTRODUCTION

Let us consider a numerical solution for optimal control
problems with a scalar “pure” state inequality constraint,
i.e. problems of the type:

(P)


min
u∈U

Φ(x(t1)) +

∫ t1

t0

F (x(t), u(t))dt,

subject to: ẋ = f(x(t), u(t)), x(t0) = x0,

h(xc(t)) ≤ 0.

Here, u is the control variable, x the state variable, U is a
closed convex set of admissible controls for every t and
x, t0 the initial time, t1 the end time, Φ the function
describing the final cost, F the integral cost function, f
the state dynamics equation, x0 the initial condition, h the
inequality constraint function on the scalar constrained
state xc.

Pontryagin’s Minimum Principle (PMP) is a well known
tool to solve unconstrained optimal control problems, i.e.
problems of type P without the constraint function h.
Solutions obtained through the PMP are often referred to
as indirect solutions given the two step procedure of first
constructing the Hamiltonian function H = F + p>f and
deriving necessary conditions of optimality which results
in the following boundary value problem:

ẋ(t) = Hp, x(t0) = 0, (1)

ṗ(t) = Hx, p(t1) = Φx, (2)

in which the control at each time instance is given by
minuH. The boundary value problem can then be solved
in a second step using numerical tools, see, e.g., Ascher,
et.al. [1988]. This mechanism provides an infinite dimen-
sional solution meaning that quantization of the state and
control space is not required.

Extentions of the necessary conditions of optimality for
state constrained problems are availiable, see Jacobson,
et.al. [1971], and also Maurer [1977], Seierstad and Syd-
sæter [1987], Hartl, et.al. [1995]. This involves the con-
struction of the Lagrangian L = H+νh and in addition to
(1) states the following necessary conditions for optimality:

ṗ(t) = Lx, p(t1) = Φx, (3)

p(τ+) = p(τ−) + η(τ), η(τ) = ξ(τ−)− ξ(τ+), (4)

ν(t)h(t) = 0, ν(t) ≥ 0, (5)

where ν(t) = ξ̇(t), and τ− and τ+ indicate the time just
before and just after the time instance τ where the costate
may have a discontinuity. If H and g are convex in x then
(1), (3) to (5) are also sufficient conditions for optimality,
see [Seierstad and Sydsæter, 1987, Theorem 1, p. 317].
Nevertheless, information regarding the time instance τ
where the optimal state trajectory touches with the con-
straint cannot be directly derived from the optimality con-
ditions. Therefore, the solution for (1), (3) to (5) cannot
be obtained with the standard tools for boundary value
problems, see Bonnans [2007].

Direct numerical methods have been developed to solve
state constrained optimal control problems, see, e.g., Bock
and Plitt [1984], Pytlak [1999], Gerdts and Kunkel [2008],
Loxton, et.al. [2009]. Direct methods are based on an
a priori quantization of the control, state and/or time
space of the continuous time optimal control problem and
reformulation to a finite dimensional nonlinear program.
The discretization methods are robust in practice. Never-
theless, the computational effort grows at a nonlinear rate
with the number of grid points used for the quantization.

In Van Keulen, et.al. [2014], an algorithm is proposed
to obtain an infinite dimensional solution for state con-
strained optimal control problems with a scalar state. It
is shown that the time instance where the unconstrained
solution exceeds the contraint the most is a contact point
with the constraint under the assumption that H is convex
in the control and that the state dynamics are mono-
tonically increasing in the control. If the state dynamics
are scalar, the boundary value problem can be split at
this time instance into two subtrajectories which again
can be solved using the same mechanism. In this way
the recursive algorithm provides a regularization for the
costate dynamics.

In this paper, the algorithm of Van Keulen, et.al. [2014]
is extented to include nonscalar optimal control problems
with a scalar “pure” state constraint. The state and costate
dynamics that are not subject to constraints are to be
continuous along the time horizon. Hence, the scalar pro-
cedure of splitting the state trajectory into subtrajecto-
ries is not possible for the nonscalar problem description.
Instead, the extended algorithm becomes a multipoint
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boundary value problem with an additional boundary
condition at the time instance where the constraint is ex-
ceeded the most in the unconstrained solution. Constraint
exceeding of the multipoint boundary value problem so-
lution can again be evaluated. A recursive algorithm is
obtained that converges to the constrained optimal solu-
tion.

The algorithm has all the advantages of the indirect ap-
proach; a priori quantization of control and state space can
be avoided. Besides, multiplier information is inherently
available in the solution. The algorithm is demonstrated
with a classical optimal control problem, see Lasdon, et.al.
[1967], Jacobson and Lele [1969], which has been used
to demonstrate algorithms for direct state constrained
optimal control problems, see Jennings and Fisher [2002],
Rutquist and Edvall [2006].

This paper is structured as follows. In the next section, the
extentions to the algorithm of Van Keulen, et.al. [2014] are
discussed. In Section 3, the example is presented. Finally,
in Section 4 a discussion and conclusions are provided.

2. THE ALGORITHM

In this section, the proof from Van Keulen, et.al. [2014]
is adjusted to include nonscalar optimal control problems
with a scalar inequality constraint.

Lemma 1. Let H = F + p>f with u a scalar variable,
H a strictly convex function in u, F a convex function
in u, f a convex and monotonic increasing function in
u, and h a constraint function of first order meaning
that the control appears explicitely in the first time
derivative of the constraint function. Additionally, assume
the differential equation ṗ = ∂H

∂x , with ∂H
∂x locally Lipschitz

in p on a domain defined by U , then u∗ = arg minuH
is a monotonic decreasing function of p and there is a
monotonic increasing relation between the initial value of
the costate associated to the constrained state pc(t0) and
the final state xc(t1) and between the inverse relation of
the final state xc(t1) and the initial value of the costate
pc(t0).

Proof. If H is strictly convex in u, then H has a unique

minimum u∗ defined by ∂H(u)
∂u = 0 with ∂H(u)

∂u < 0 if

u < u∗ and ∂H(u)
∂u > 0 if u > u∗. If f(u) is convex

and monotonic increasing in u, then ∂f(u)
∂u > 0 and also

monotonic increasing in u. Therefore, p>a
∂f(u)
∂u > p>b

∂f(u)
∂u

if p>a > p>b (element wise). Furthermore, since F and f

are convex, it follows that ∂F (ua)
∂u ≥ ∂F (ub)

∂u if ua > ub and
∂f(ua)
∂u ≥ ∂f(ub)

∂u if ua > ub.

In the optimum it holds that ∂F (u)
∂u + p∂f(u)∂u = 0, with

p>a
∂f(u)
∂u > p>b

∂f(u)
∂u if p>a > p>b and using ∂F (ua)

∂u ≥ ∂F (ub)
∂u

if ua > ub and ∂f(ua)
∂u ≥ ∂f(ub)

∂u if ua > ub, it follows that
the minimum u∗ of H is a monotonic decreasing function
of p.

If ∂H
∂x is Lipschitz continuous in p, it follows that p is

a unique solution of ṗ, see [Khalil, 2002, Theorem 3.1],
hence pa(t0) > pb(t0) implies p0a(t) > p0b(t) (element wise),
where p0(t) denotes the trajectory resulting from p(t0).

Using that the minimum u∗ of H is a monotonic decreasing
function of p, it follows that u0a(t) ≤ u0b(t) if p0a(t) > p0b(t),
where u0 denotes the control trajectories resulting from
p(t0). Finally, given the state dynamics ẋ = f with f
monotonic increasing in u and u appearing in the first
time derivative of h 1 , a monotonic increasing relation is
found between the costate associated to the constrained
state pc(t0) and xc(t1) and likewise between xc(t1) and
pc(t0). 2

Next, a method is proposed to find each boundary interval
or contact time with the state constraint h(xc(t)) based
on the times where the constraint is exceeded the most in
the unconstrained optimal trajectory. A new multipoint
boundary value problem is obtained with a touching point
of the constrained state with the constraint at the time
where the constraint is exceeded the most.

This procedure is repeated with a recursive scheme until
the state constraints are met for all t ∈ [t0 t1], hereby
increasing the complexity of the boundary value problem
with one boundary condition for each iteration.

Algorithm 2. The optimal multiplier p∗(t) and state x∗(t)
trajectories for the state constrained optimal control prob-
lem with scalar state constrained are found by the follow-
ing sequence:

• compute the unconstrained optimal solution defined
by the initial value of the costate p(t0), i.e., solve the
two point boundary value problem as in (1) and (2).
If a state constraint is violated, i.e., if h(xc(t)) > 0:

repeat
• find the time instance τi where the state boundary is

exceeded the most,

τi = arg max
t∈[t0 t1]

(h(xc(t))), (6)

where i is the ith iteration of this recursive scheme,
• extend the boundary value problem with an addi-

tional boundary condition xc(τi) = h(xc(τi)), then
solve the extended boundary value problem, i.e., solve
(1) and (2) defined by the boundary conditions p(t0)
and [p(τ1) . . . p(τi)],
until maxt∈[t0 t1] h(xc(t)) ≤ eh, where eh is an al-
lowed constraint exceeding.

The proof for optimality for these three situations is in line
with the proof of Van Keulen, et.al. [2014]. The proof of
the algorithm is based on the following two observations:

• from the jump conditions of the PMP, the follow-
ing proporties of the optimal solution are obtained:
p(τ+i ) ≤ p(τ−i ) if the upper constraint is reached,
p(τ+i ) ≥ p(τ−i ) if the lower constraint is reached,

• using the invertible monotonic increasing relation
between pc(t1) and xc(τ) described in Lemma 1
it follows that the time at which the boundary is
exceeded the most is a contact point or part of the
boundary interval, and, therefore, part of the optimal
constrained solution.

1 Algorithm 2 fails if the control does not appear explicitely in
the first time derivative, see, e.g., the third order problem in
Jacobson, et.al. [1971] where the maximum constraint exceeding of
the unconstrained solution is not part of the boundary interval of
the contstrained optimal trajectory.
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3. EXAMPLE

Consider the minimization of the following objective func-
tion:

J =

∫ 1

0

x21(t) + x22(t) + 1
200u

2(t)dt, (7)

subject to the state dynamics and boundary conditions:

ẋ1(t) = x2(t), x1(0) = 0, (8)

ẋ2(t) = −x2(t) + u(t), x2(0) = −1, (9)

and the continuous inequality constraint:

x2(t)− 8
(
t− 1

2

)2
+ 1

2 ≤ 0, (10)

in which t is the time, x1 and x2 are the state variables
and u is the control variable. Note that, the functions
are continuously differentiable in x and u. Moreover, the
integrand of J is a strictly convex function in u, ẋ2 is a
strictly monotonic increasing function in u, and the control
appears explicitely in the first time derivative of (10).

The problem is given in Lasdon, et.al. [1967]. A solution
of the problem using an approximation of the constraint
with penalty functions is presented in Jacobson and Lele
[1969]. A numerical solution for the problem using a direct
solution method can be found in Jennings and Fisher
[2002] or Rutquist and Edvall [2006].

3.1 Necessary conditions of optimality

Pontryagin’s Minimum Principle can be applied to derive
necessary conditions of optimality for the problem de-
scribed above. A first step is to construct the Hamiltonian
function:

H = x21(t) + x22(t) + 1
200u

2(t)+

p1(t)x2(t) + p2(t) (−x2(t) + u(t)) , (11)

in which the state dynamics are adjoined to the integrand
of the objective function with the introduction of costate
variables p1 and p2. Here, the trivial solution [p1, p2] =
[0, 0] on the interval [0, 1) is excluded from the candidate
solution trajectories. The Hamiltonian H is strictly convex
in u. The state inequality constraint (10) can be adjoined
to the Hamiltonian to form the following Lagrangian:

L = H + ν(t)
(
x2(t)− 8

(
t− 1

2

)2
+ 1

2

)
, (12)

where ν is a Lagrange multiplier. The Minimum Principle
provides the following necessary conditions for optimality:

• the differential condition on the costate

ṗ1(t) = − ∂L

∂x1
= −2x1(t), (13)

ṗ2(t) = − ∂L

∂x2
= −2x2(t)− p1(t) + p2(t)− ν(t).

(14)

Note that, ṗ is continously differentiable in p. Hence
the Lipschitz condition of Lemma 1 holds,
• the jump condition at junction time τ

p(τ∗) = p(τ−) + η(τ), (15)

with η ≥ 0. Under the assumption that ξ is allowed to
have a piecewise continuous derivative, it is possible
to set ν(t) = ξ̇(t) for every t for which ξ exist and
η(τ) = ξ(τ−) − ξ(τ+), for all τ ∈ [t0, t1] where ξ is
not differentiable,

• the complementary condition

ν(t) ≥ 0, (16)

ν(t)
(
x2(t)− 8

(
t− 1

2

)2
+ 1

2

)
= 0, (17)

• the minimum condition

u∗(t) = arg min
u
H(t, x∗1, x

∗
2, u, p

∗
1, p
∗
2). (18)

Since H is strictly convex in u, the first derivative
of the Hamiltonian to the control can be set to zero
in order to obtain an analytical expression for the
control:

∂H

∂u
= 0⇒ u∗(t) = −100p2(t). (19)

• the transversality condition at terminal time t1 = 1

p1(1) =
∂Φ

∂x1
= 0, (20)

p2(1) =
∂Φ

∂x2
= 0. (21)

3.2 The unconstrained solution

Using the necessary conditions of optimality outlined in
Section 3.1, a boundary value problem is obtained, with
the objective to find initial conditions for the costate
p1(0) and p2(0), together with the prescribed boundary
conditions on the state x1(0) and x2(0), such that the
boundary conditions on p1(1) = 0 and p2(1) = 0 are
met. The unconstrained optimal solution for problem (7)
to (9) can found by solving the system of linear ordinary
differential equations with boundary conditions described
by (8), (9), (13), (14) where ν = 0, (20) and (21).

A matrix differential equation of the form ẏ(t) = Ay(t) is
obtained with the following general solution

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3 + c4e

λ4tv4, (22)

where y = [x; p]>, and Λ = [λ1 . . . λ4] and V = [v1 . . . v4]>

are the eigenvalues and eigenvectors of A, respectively, i.e.,
the solution of V −1AV = Λ. Parameters C = [c1 . . . c4] are
constants given by:

C = V −1y0, (23)

where y0 = [x1(0); x2(0); p1(0); p2(0)]. The eigenvalues

are
√

200, 1, -1, −
√

200, so the associated initial value
problem is unstable (λ1 > 0 and λ2 > 0). Hence, small
changes in p1(0) or p2(0) lead to large changes in the
(co)state at t = 1. Nevertheless, the boundary value
problem is stable on the specified boundary interval. The
solution can be summarized with: solve (22) with y0 such
that the following boundary conditions are met

x1(0) = 0, x1(1) = free, (24)

x2(0) = −1, x2(1) = free, (25)

p1(0) =??, p1(1) = 0, (26)

p2(0) =??, p2(1) = 0. (27)

By Lemma 1 it follows that, since the state dynamics are
monotonic increasing in u, a monotonic increasing relation
is found between p2(0) and x2(1).

From the initial value problem (22) with t = 1, a set of
2 (nonlinear) algebraic equations for the unknown y0 is
obtained.

z(q) ≡ g(q, y(y0(q))) = 0. (28)
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Here q = [p1(0) p2(0)]. The Jacobian ∂z
∂q is constant such

that a one step Newton iteration results in the optimum.
The unconstrained solution is found with

q∗ = q0 −
(
∂z

∂q

)−1
z(q0), (29)

where q∗ is the optimal initial condition, and q0 an
arbitrary guess for the initial condition.

The unconstrained optimal solution is presented in Fig. 1.
It can be seen that both p1(0) < 0 and p2(0) < 0. Clearly,
the constraint function is violated. In the next subsection,
Algorithm 2 is applied to derive the constrained optimal
solution.

3.3 The constrained solution

The first step in Algorithm 2 is to find the time instance
where the constraint is exceeded the most, i.e. to solve

τ1 = max
t∈[0 1]

x2(t)− 8
(
t− 1

2

)2
+ 1

2 , (30)

where x2(t) is a solution of (22). Optimization (30) is
concave if x2 is concave in the domain t ∈ [t0 t1]. State
x2 is strictly concave in t iff ẍ2 < 0. Differentiating (9)
and using (14), (19) and again (9) leads to the following
condition:

201x2(t) + 100p1(t) < 0. (31)

It can be verified that the condition (31) holds for t ∈
[t0 t1] in the unconstrained solution. Hence, it can be
concluded that (30) is a concave optimization problem.

Following step 2 from the algorithm, time instance τ1 is a
contact point on the constraint where the state x2 and the
control u are prescribed:

x2(τ1) ≡ 8
(
τ1 − 1

2

)2 − 1
2 . (32)

Next, a multipoint boundary value problem is obtained
with the following boundary conditions:

x1(0) = 0, x1(1) = free, (33)

x2(0) = −1, x2(1) = free, (34)

p1(0) =??, p1(1) = 0, (35)

p2(0) =??, p2(1) = 0, (36)

p2(τ1) =??, x2(τ1) = 8
(
τ1 − 1

2

)2 − 1
2 . (37)

The objective is then to find the three unknown costate
values p1(0), p2(0), and p2(τ1). The multipoint boundary
value problem can be solved in a similar way as the
unconstrained solution with the difference that the number
of boundary conditions of problem (28) has grown with
one, so vector q has length 3. Nevertheless, the Jacobian
in (29) remains constant and a one step Newton iteration
results in the solution of the multipoint boundary value
problem.

The resulting trajectories that solve the multipoint bound-
ary value problem are shown in Fig. 2. Note that the jump
direction of the costate p2 meets the jump condition, i.e.
p2(τ−1 ) > p2(τ+1 ) and η(τ1) < 0 which is in line with (15)
and (16). As can be seen, the constraint is still exceeded.

Another iteration can be performed to find the time
instance, both before and after τ1, where the constraint
is exceeded the most, i.e. to solve

τL = max
t∈[0 τ1]

x2(t)− 8
(
t− 1

2

)2
+ 1

2 , (38)

and
τR = max

t∈[τ1 1]
x2(t)− 8

(
t− 1

2

)2
+ 1

2 , (39)

here, τL is the time instance before τ1 and τR the time
instance after τ1. Again, using condition (31), it can be
verified that optimization (38) and (39) are concave. In
the general application of Algorithm 2 the number of
boundary conditions will grow with each iteration. Fol-
lowing Algorithm 2 this results in a multipoint boundary
value problem with boundary conditions at τL, τR, and
τ1 in addition to (33) to (37). However, for this particular
example, it can be shown that the subtrajectory inbetween
τL and τR is part of the boundary interval such that the
number of unknown boundary conditions remains limited
to three.

The reasoning hinges on concavity of x2 in t. If x2 for
t ∈ [τL τR] is concave than it exceeds the constraint for
all t ∈ [τL τR]. Concavity of x2, of the solution with
a boundary condition at τ1, can be checked with (31).
Given Lemma 1, it follows that if x2 is concave in the first
iteration, x2 will also be concave for all further iterations
of the algorithm. Therefore, if x2 is concave for t ∈ [τL τR]
than x2 for t ∈ [τL τR] must be a boundary interval.

Along the boundary interval the system of ordinary differ-
ential equations is completely prescribed and an analytical
solution can be obtained. From (10)

x2(t) ≡ 8t2 − 8t+ 3
2 , ∀t ∈ [τL τR]. (40)

Differentiating (40) gives

ẋ2(t) ≡ 16t− 8, ∀t ∈ [τL τR]. (41)

Hence, using (3), a condition for the control is obtained

u ≡ 8t2 + 8t− 13
2 , ∀t ∈ [τL τR]. (42)

Furthermore, using (8) and (40) conditions for the other
states and costates follow:

x1(t) = x1(τ−L )+

∫ τR

τL

8
(
t− 1

2

)2− 1
2dt, ∀t ∈ [τL τR]. (43)

Here, τ−L indicates the time instance just before τL. The
integral can be solved analytically providing a solution for
x1 at the constraint exit time τR:

x1(τR) = 8
3

(
τ3R − τ3L

)
−4
(
τ2R − τ2L

)
+ 3

2 (τR − τL)+x1(τ−L ).
(44)

Using (13) we obtain

p1(t) = p1(τ−L )− 2

∫ τR

τL

8
3

(
t3 − τ3L

)
− 4

(
t2 − τ2L

)
+

3
2 (t− τL) + x1(τ−L )dt, ∀t ∈ [τL τR]. (45)

Again, the integral can be solved analytically providing a
solution for p1 at the constraint exit time τR:

p1(τR) = − 4
3

(
τ4R − τ4L

)
+ 8

3

(
τ3R − τ3L

)
− 3

2

(
τ2R − τ2L

)
−

2
(
− 8

3τ
3
L + 4τ2L − 3

2τL + x1(τ−L )
)

(τR − τL) + p1(τ−L )
(46)

From (19) and (42)

p2(t) = − 8
100 t

2 − 8
100 t+ 13

200 ,∀t ∈ [τL τR]. (47)

Using (14) and the results above, it follows that the
Lagrange multiplier is described with the function:

ν(t) = 2x2(t)− p1(t) + p2(t) + 16
100 t+ 8

100 ,

∀t ∈ [τL τR]. (48)
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To summarize, the constrained solution consists of a multi-
point boundary value problem with a boundary condition
at the touching point of the constrained path.

x1(0) = 0, x1(1) = free, (49)

x2(0) = −1, x2(1) = free, (50)

p1(0) =??, p1(1) = 0, (51)

p2(0) =??, p2(1) = 0, (52)

p2(τR) =??, x2(τL) = h(τL). (53)

The Jacobian in (29) for this problem is also constant.
The results of four iterations of the algorithm are shown
in Figs. 3 to 6. It can be seen that the necessary conditions
of optimality, including the jump conditions, are met.
The error in constraint exceeding after five iterations
eh < 5 · 10−5 indicating that the algorithm converges fast
to the constrained optimal solution. The only numerical
operation for this example is the concave maximization to
find the time instance where the constraint is exceeded the
most.

Since x2 is concave in t it follows also that at the touch-
ing points of the constraint the time derivative of the
constraint and x2 are identical. Moreover, p2 is continues
but nonsmooth at touching points τL and τR. The exact
solution of the problem is described with τL and τR by the
following equalities.

dh(τL)

dt
− ẋ2(τL) = 0, (54)

dh(τR)

dt
− ẋ2(τR) = 0. (55)

4. CONCLUSION AND DISCUSSION

This article presents an infinite dimensional numerical
solution for optimal control problems with a scalar pure
state constraint based on the necessary conditions for
optimality.

The algorithm is demonstrated with a classical optimal
control problem which has often been applied to evaluate
direct numerical solutions for state constrained optimal
control problems. It is shown that in just five iterations
the algorithm converges to the optimal solution.

This example has computational advantages that do not
apply to general optimal control problems of the type P. In
general, an analytical solution for the initial value problem
ẋ(x0), Lx(p0) can not be found. Discretization of the time
space is required and the boundary value problem requires
a numerical solution.

Also, in the example, the constraint state is a concave func-
tion of time which gives two numerical advantages. First,
finding the maximum exceeding of the constraint becomes
a concave optimization (see optimization (6)). Second, the
number of boundary conditions in the example remained
limited for all iterations. In the general application of the
algorithm the number of boundary conditions grows with
one with each iteration. This could lead to a more involved
multipoint boundary value problem.

Nonetheless, the algorithm presented in this paper does
not require a priori assumptions on the structure of the
costate dynamics and the advantages of indirect solutions

that are known for unconstrained optimal control prob-
lems are available; quantization of the state and control
space can be avoided.
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Fig. 1. Unconstrained solution.
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Fig. 2. Constrained solution after the first iteration.
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Fig. 3. Constrained solution after the second iteration.
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Fig. 4. Constrained solution after the third iteration.
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Fig. 5. Constrained solution after the fourth iteration.
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Fig. 6. Constrained solution after the fifth iteration.
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