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Abstract: This paper deals with the modeling and identification of a fuel cell system using two models. 

It presents a comparative study between a conventional impedance model based on an equivalent 

electrical circuit and a fractional order model of fuel cell. In the first case, a least square method is used 

to identify the parameters of the model. While the second case considers a fractional order model and 

proposes a parameter identification approach based on the least square method adapted to fractional order 

models. By using these two models, this study aims to characterize the fuel cell impedance and identify 

the model’s parameters in the objective of establishing a diagnosis method of the flooding state of the 

fuel cell. Experimental results, obtained from measurements made using a single PEM fuel cell, show 

that fractional order impedance models describe the real system behavior better than the impedance 

models of integer order. The goal of this work is to develop models and identification methods in view of 

implementing a diagnosis methodology of the fuel cell internal state in order to apply this technology to 

automotive sector. 
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1. INTRODUCTION 

Proton Exchange Membrane Fuel Cell (PEMFC) is presently 

the subject of several studies and many industrial projects. 

One reason for the increasing interest in FC is that new 

environmental standards are becoming more and more 

stringent leading for instance to the development of electric 

vehicles market around the world. Research conducted in this 

field tends to remove some locks that prevent the system 

from being fully operational. Monitoring precisely the FC 

internal state is one way to improve the operating of a fuel 

cell. Diagnosis methods, which allow this, need reliable 

models able to accurately describe the behavior of the 

system. Diffusion phenomena occurring in a fuel cell are 

described by partial differential equations. This suggests that 

the most suitable model for this kind of system is a fractional 

order model.  

A conventional method to characterize the PEMFC is the 

Electrochemical Impedance Spectroscopy (EIS). In this 

method, a small current variation is applied around the 

nominal operating point. Using the voltage measurement, the 

FC electrical impedance can be deduced over a wide range of 

frequencies, typically between 0.1 (Hz) to 1 (kHz). Several 

studies had used impedance spectroscopy as a tool for 

characterization of the fuel cell as in Fouquet,N.(2006), 

Sadli,I. (2006). Fontes,G. (2005). 

The PEMFC models proposed are based on the identification 

of equivalent circuit parameters. Many works have already 

been done in this direction: Fouquet,N.(2006), Sadli,I. 

(2006). Fontes,G. (2005)., Philippoteau, V. (2009)., Turpin, 

C., Jorcin, J.B.,  Aglzim,E.H., 

This article deals with the fuel cell model’s parameters 

estimation. It compares the identification results of two Fuel 

cell models. The first one is a conventional integer order 

impedance model. The second one is a fractional order fuel 

cell impedance model. The aim of this paper is to prove that 

fractional order models are more reliable than classical 

impedance models which use integer order transfer functions. 

With this objective in mind, a methodology of fractional 

order model’s parameters estimation is proposed. The results 

are validated using experimental measurements, current-

voltage time-series, obtained on a single fuel cell. 

The second section of this paper will consider the fuel cell 

modeling. In the first part of this section, a brief overview of 

a fuel cell is introduced before presenting the fuel cell integer 

order impedance model. Its parameters are identified in this 

sub-section using the least square method. Subsequently, a 

fuel cell fractional order model (FOM) is developed. The first 

part of this sub-section explains the development which leads 

to a fractional order fuel cell transfer function. The third 

section, presents more precisely the identification method of 
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fractional order models. In the fourth section, the 

identification results are presented and compared. And 

finally, some conclusions and perspectives are proposed in 

section five.  

2. FUEL CELL IMPEDANCE MODEL 

Fig. 1 shows the structure of a fuel cell. Each unit cell is 

composed of an electrolyte (polymer membrane), sandwiched 

in between two electrodes (cathode and anode). The current I 

and the voltage CellV  characterize the fuel cell electrical 

impedance.  

 

Fig. 1. Key components of a single fuel cell equivalent 

electrical circuit model 

2.1  Equivalent electrical circuit model 

In this type of model, every phenomenon occurring in the 

fuel cell is studied independently and represented by 

equivalent electrical circuit using active or passive 

components. The voltage of a fuel cell is the sum of the 

theoretical cell voltage and the voltage drops due to the 

activation phenomena, the diffusive phenomena and the 

membrane resistance. 

IRUV mdiffactthCell  ||  (1) 

Theoretical Fuel Cell voltage is deduced from the Nernst 

equation and given by: 
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The voltage drops are given by: 
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The model presented in this section is based on the work of 

Fontes,G. (2005) and Fontes,G and al (2004). Using these 

relations, Fontes proposed a FC (Fuel Cell) nonlinear 

dynamic model valid even in the cases of high signal 

variations. The schematic of Figure 2 shows the equivalent 

electrical circuit of FC representation. The voltage drops due 

to activation and diffusion losses are represented by voltage 

generator controlled by current. Fontes defines a two-layer 

diffusion model. (Gas Diffusion Layer (GDL) and Active 

Layer (AL) are two different parts). Whereas, for simplicity, 

we only consider that diffusion is uniform in both GDL and 

AL. 

 

Fig. 2. One diffusion layer high signal dynamic model of 

Fuel Cell. Fontes.G (2006) 

The linearized model around a steady state operating point is 

represented by the Fig3 with: 

;
diff act

diff act
diff act

R R
I I

  
 

 
 (4)  

 

Fig. 3. Linearized one diffusion layer dynamic model of Fuel 

Cell. Fontes.G (2006) 

This model’s parameters are identified using the least square 

method. 
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The main incoherence of the conventional integer order 

models (IOM) is that the phase shift at high frequencies is 

multiple of 90, which doesn’t match the real behavior of the 

impedance fuel cell. Indeed, many studies show that the fuel 

cell impedance at high frequencies is characterized by a 

phase shift of 45°, Fouquet,N.(2006), Sadli,I. (2006)., 

Iftikhar, M.U., and al (2006) and Sailler,S, which IOM can 

reproduce only on a limited frequency band. For a better 

representation of this property, a formulation of the 

impedance according to a FOM is considered in the 

following. 
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2.2  Fractional order model of fuel cell 

This section develops a fractional model of the fuel cell based 

on the work of Fouquet,N.(2006), Sadli,I. (2006). 

Fontes,G.(2005)., Phlippoteau, V. (2009)., and some works 

of CRONE- IMS-Bordeaux which deal with the fractional 

order derivatives and identification methods of non-integer 

order models, like: Oustaloup,A. (1983)., Malti,R., and al. 

(2003). Victor,S.(2010)., Cois,O. (2002)., Le Lay,L.(1998). 

This model should describe better the diffusion phenomena 

than the linear model. Its representation by a transfer function 

can be adapted for the parameters identification. 

2.2.1  Derivative of non-integer order 

A model of non-integer order described by a fractional 

differential equation, where the derivation orders are real 

numbers, is given by:  
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D  is a generalized fractional order derivative (FOD) 

operator, defined by Riemann and Liouville as an integer 

order derivative of   1 m  order of an non integer order 

integral (where     is the integer part). Cois,O. (2002). 
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The next section will present a fractional order impedance 

model of fuel cell. The derivative orders of this model will be 

described by the generalized fractional operator defined 

above. 

2.2.2  Fractional model 

As mentioned before, gas diffusion phenomena are not 

properly represented by integer order. Indeed, the 

phenomenon of diffusion is described by a partial differential 

equation given by (9) 

2

2 ),(),(
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


 (9) 

Using Laplace transform, diffusion phenomena can be 

described in small signal approach by the diffusion 

impedance named “Warburg impedance”. 
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A small signal model can be deduced. It is represented by an 

equivalent electrical circuit, where the principal characteristic 

element is the Warburg impedance (Fig.4). 

 

Fig. 4. Equivalent electrical circuit of Fuel Cell with Warburg 

impedance 

Then, the transfer function which models the fuel cell is 

given by: 

mem
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The main problem in this expression resides in the Warburg 

impedance which is a function of a hyperbolic tangent of 

fractional order. This can cause numerical instability. To 

remedy this problem, we propose to approximate the 

Warburg impedance.  

In Iftikhar, M.U., and al (2006).and Sailler,S., a comparison 

between a model type "RC circuit" of 20 cells and the 

fractional model previously defined is presented. For this 

second model, the authors propose to approximate Warburg 

impedance (10) by decomposing the hyperbolic tangent as a 

truncated Taylor series to second order to simplify the 

expression of the impedance. This approximation, valid in the 

vicinity of zero, is nevertheless valid for high frequencies. 

The Warburg impedance is then given by:  
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To formulate a fractional transfer function of the impedance 

model, the square root in the Warburg impedance expression 

can also be approximated by a Taylor series expansion. 

Retaining the first three terms of the expansion: 
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the approximation error is less than 3% and its average value 

is 0.09%. Figure 5 shows the error between the real 

expression of Warburg impedance and its approximation. 

Using (15), (12) and (10), the equation (11) leads to the new 

fractional transfer function given by: 
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where ia  and jb are functions of the physical parameters. 
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Fig. 5. Error between the Warburg impedance and its 

approximation 

3. PARAMETER IDENTIFICATION OF THE 

FRACTIONAL ORDER IMPEDANCE MODEL 

3.1  Identification of fractional order model’s parameters 

This section deals with the parametric identification of a 

fractional order model. The method used is based on the least 

square method adapted to non-integer order models. This 

method was developed by CRONE- IMS-Bordeaux, in 

Oustaloup,A. (1983)., Malti,R., and al. (2003). 

Victor,S.(2010)., Cois,O. (2002)., Le Lay,L.(1998).  

In the case of IOM, derivation orders are implicitly 

distributed by a unit step between two successive orders. The 

classical identification methods, used in linear system cases, 

estimate only the differential equation coefficients. However, 

in the case of fractional order models, it is necessary to 

estimate the orders and coefficients of derivation .Three 

identification strategies can be used: 

 The first one involves having a prior knowledge of 

derivation orders and therefore estimating only the 

coefficients of the derivative operators by Least 

Square method for example. 

 The second approach consists in estimating the 

coefficients and orders of the derivative operators, 

when unknown, by non-linear algorithms. 

 The third method estimates the derivative operators 

coefficients and only one derivation order named 

“commensurate fractional order”, as all other orders 

are integer multiples of the commensurate order. 

In this paper, the first case is considered and the Least Square 

identification method adapted to fractional order models is 

used to estimate the model’s parameters. 

3.2  Equation error method: Least square method adapted to 

fractional order Models 

This section will develop a method of parametric estimation, 

based on optimization approach, applied to the model 

described by (18) where the derivative orders are a prior 

known and the coefficients are estimated. 
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ml ba nn ,  are reals positives numbers, integers or no-integers 

(fractions) and supposed known. 

ml ba ,  are the coefficients of the derivative operators 

supposed unknown. 

Relation (18) is a continuous time model but the 

identification method implementation is realized in discrete 

time. So, the optimization method is composed of four parts:  

 Discretization of the continuous time fractional 

model 

 Linear formulation of the model by a change of 

variables.  

 Estimation of the new parameters using the least 

square method. 

 Return to the initial parameters by reversing the 

variable change. 

3.2.1  Model discretization 

Equation (18) is discretized using the Grünwald 

approximation of the FOD given by (19) 
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where h  is the sample period and k
nC  is given for all 

integers 0k  by: 
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and 1k
nC  for 0k .  

The continuous time model is described by the next equation: 
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with 10 a . In the next part, the sampled signals, at the 

sampling period h , are noted as ))((][ hkKxkKx  . 

After discretization using the Grünwald approximation, the 

model becomes: 
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3.2.2  Linear form of the model 

The objective of this step is to express the model output at 

Kh  as a function of the previous inputs and outputs. This 

formulation allows us to define the FOM identification as a 

problem of linear model identification. Relation (22) can be 

written as:  
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This relation is not linear with respect to parameters. So a 

linear form can be obtained using a variable change and 

define a new parameters set ),...,,,...,( 00 ML bbaa  : 
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3.2.3  Parametric estimation 

The new set of parameters )ˆ,...,ˆ,ˆ,...,ˆ(ˆ
00 MLr bbaa   is 

estimated from the constraint (28) which 
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0 1 . Using this constraint, we can 

express the model output linearly with respect to the vector of 

parameters r̂ . 
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For N  measurement points between Kh  and hNK )(  , 

linear matrix equation is given: 
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The estimation problem consists to search an optimal vector 

of parameters, r̂  using the least square method, where the 

solution is given by:  
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3.2.4  Inversion of the variable change 

Initial coefficients, la  of the differential equation (18) are 

obtained from the estimated parameters by the linear system 

resolution (32): 
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while the coefficients mb  are expressed by: 

lamb nn
L

l
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 (31)  

Knowing the derivative orders of the transfer function, we 

can estimate its coefficients using the previous method.  

4. EXPERIMENTATION AND RESULTS 

This section presents the results of the FOM identification. 

These results will be compared to the identification of an 

IOM using the classical least square method  

The measures used to identify the model’s parameters were 

made at LGEP (Laboratoire de Genie Electrique de Paris) on 

a single PEM fuel cell of a 100(cm
2
) active area with a 

capacity of 0.5(A/cm
2
). The fuel cell operates with open 

anode and cathode. It is powered with a constant air and 

hydrogen flow.  
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The data used to identify the two models are current-voltage 

time-series. Input signal used is a Pseudo-Random Binary 

Sequence (PRBS) sequence of length 1023 with 

amplitude )(1 AI  , applied around a nominal 

current 7(A)avrI . The measurements are the cell output 

voltage. 

The fuel cell voltage variations within 30-35 millivolts are 

the response to the current variations type PRBS of 1A 

around an operating point of 7A. 

The parameters vector to be identified is (1 11)  dimension, 

while 5L   and 6M    

Figures 6 and 7 show results obtained with respect using the 

identified IOM and the identified fractional order model. 

These results are compared to experimental measurements. 

Figure 8 shows the estimation errors of the identified IOM 

and the identified fractional order model. The FOM error is 

about half less than the integer order model error.  

 

Fig. 6. Simulation results of the identified integer order 

model by the least square method: with input PRBS, nominal 

current 7(A)avrI and perturbation )(1 AI  . 

 

Fig. 7. Simulation of the identified fractional order model by 

the least square method adapted to fractional order models: 

with input PRBS, nominal current 7(A)avrI and 

perturbation )(1 AI  . 

 

Fig. 8.  Estimation error: (a)-with integer order model (b)-

with fractional order model 

5. CONCLUSIONS 

In order to exploit the fuel cell on a large scale, it is necessary 

to be able to monitor its operating state. Diagnosis methods 

allowing this need reliable model capable of an accurate 

characterization of the system behavior. The analysis of the 

fuel cell impedance compared to its nominal value allows to 

characterize the fuel cell hydration state and to diagnose its 

possibly flooding or drying. Indeed, impedance general shape 

in the Nyquist plan and its deformations allow detection and 

isolation of malfunctions of the fuel cell.In this paper, using 

Warburg impedance, a fractional order fuel cell transfer 

function formulation was proposed. This model was 

transformed to implement FOM identification. The method 

used to identify the model’s parameters was based on the 

least square method extended to fractional order models. 

The proposed approach was validated using experimental 

measurements on a single PEM fuel cell. The obtained results 

had shown that FOM better characterize the real system 

behavior than conventional IOM. This can be explained by 

the diffusion phenomena which are described by a partial 

differential equation. Thereafter, the experimental 

measurements will be performed on a fuel cell stack of 

500(W). 

In this paper, to simplify the identification, the estimated 

parameters are functions of the real physical parameters. The 

next step will be dedicated to finding these physical 

parameters and implementing identification methodology of 

fuel cell FOM in real time to diagnose the system state: 

flooding, drying..., particularly in automotive transport 

applications. 
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Appendix A. FIRST APPENDIX 

Table 1. Definition of variables 

22
, OH PP [Pascal] Partial pressure of oxygen and 

hydrogen 

8.314 [J/K/mol]R   Molar gas constant  

T (K) Temperature 

2n  Number of exchanged electrons 

(C/mol) 96485F  Faradays constant 

actI [A] Activation current 

limI [A] The limit current of diffusion 

)1( i  Measurement vector  

1an
D  Derivative operator 

)(  m  Gamma distribution 

tR [Ohm] Charge transfer resistance 

memR [Ohm] Membrane resistance 

dcC [F] Double layer capacitors 

wZ  Warburg impedance 

),( txCi [Mole/L] Gas concentration 

iD  Diffusion constant 

dcI [A] Double layer current 

fI [A] Faradic current 

  Transfer coefficient 

  Diffusion coefficient 
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