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Abstract: Electronic auscultation is an efficient technique for capturing lung sounds and analysis of
these sounds permits to evaluate the health condition of the respiratory system. Since the lung sound
signals are non-stationary, the conventional method of frequency analysis is not highly successful in
diagnostic classification. This paper presents a method of analysis of lung sound signals using the
Wavelet Packet Transform (WPT), and classification using artificial neural network (ANN). Lung sound
signals were decomposed into the frequency sub-bands using the WPT and a set of statistical features
was extracted from the sub-bands to represent the distribution of wavelet coefficients. An ANN is trained
and then applied to classify the lung sounds into one of three categories: normal, wheeze or crackle.
This classifier was embedded in a microcontroller to provide an automated and portable device that will
provide support for research and diagnosis in the evaluation of the respiratory function.
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1. INTRODUCTION

Pulmonary auscultation via a stethoscope is an inexpensive and
noninvasive method widely used by clinicians for the evaluation
of respiratory disorders. However, application of the stetho-
scope in research studies has been limited due to the inherent
inter-observer variability and subjectivity in the interpretation
of lung sounds. The diagnostic value of auscultation in detect-
ing abnormal lung sounds in clinical research could be much
improved if implemented using an objective and standardized
method of interpretation.

Computerized analysis of recorded lung sounds may offer a
systematic approach to the diagnosis of different respiratory
conditions via automated classification of acoustic patterns.
Adventitious sounds can be generally classified in Crackles
and Wheeze sounds. Crackles are discontinuous, adventitious
non-musical respiratory sounds which are attributed to sudden
bursts of air within bronchioles. Their duration is less than 20
ms and their frequency range is between 100 to 2kHz. Wheezes
are described as relatively "continuous" sounds as compared to
crackles; they usually last for more than 200 milliseconds and
have a musical quality - Serbes et al. (2011).

Significant efforts have been directed toward the application
of signal processing techniques and artificial intelligence in
attempting to classify lung sounds - Kandaswamy and Ku-
mar (2004), Charleston-Villalobos et al. (2011) and Matsunaga
et al. (2009), among others. Some of these works combine the
Wavelet Transform and Artificial Neural Networks (ANNSs),
with promising results: Kandaswamy and Kumar (2004), Mat-
sunaga et al. (2009). This combination has been shown to be
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quite effective for classifying lung sounds in two categories:
normal vs. adventitious.

In this paper we propose the use of Wavelet Packet Transform
(WPT) for feature extraction, combined with ANN'’s for clas-
sification based on these features. We present a system that
classifies lung sounds in three classes: normal, wheeze and
crackle. The system was implemented in a microcontroller for
real-time lung-sound monitoring and classification. The main
purpose of embedding the classifier in a microcontroller is to
provide a portable device for clinical support, to be applied as
shown in Figure 1. In this schema, one microphone is placed
on the patient’s chest, so the sounds can be captured, processed
and then sent to a working station or via internet to the doctor.
The best design choices for this system were determined by
means of extensive studies comparing the different choices for
various design parameters - Wavelet function, number of hidden
neurons, activation function, etc. This comparison took into
account both the classification performance and the adequacy
to the practical limitations imposed by the embedded imple-
mentation.

The paper is organized as follows. In the next Section we
briefly describe the Wavelet Packet Transform and ANNs used
in this work. The Database is also presented in this section, as
well as the implementation features. The numerical results are
presented in Section 3, along with a comparative analysis of
these results for different design choices and their implications.
Finally, Section 4 presents concluding remarks, also pointing
out future work.
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Fig. 1. System scheme: sensors are placed on the patient to cap-
ture lung sounds and process them using a microcontroller.
The results are transmitted by a radio-frequency module to
a work station.

2. MATERIALS AND METHODS
2.1 Wavelet Packet Transform

The Wavelet Transform has become a major tool in signal
processing along the past decades, with applications for feature
extraction as well as to its analogue problem of data com-
pression, even for 2-D signals, as in Mallat (1989), Coifman
and Wickerhauser (1995), Parraga et al. (2002). The Wavelet
Packet Transform is a generalization of the Discrete Wavelet
Transform which is defined by the inner product of a signal
x(t) with the Wavelet function ws ¢y (%):

[e.°]
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In equation (1), As¢(p) are the coefficients of the signal ex-
panded into the dilated and normalized Wavelet Packet func-
tions wsfp(t) = wp(27% —p), s € Z is the scale index (or
dilatation), p € Z is the translation index and f € R is the
frequency index related to the oscillations, with s > 0, p > 0,
f = 0. Figure 2 shows a Wavelet Packet Transform (WPT) until
the third level of decomposition.

Signal

Fig. 2. Wavelet Packet Transform - multiresolution decomposi-
tion.

The WPT can be efficiently implemented by means of digital
filters using multi-resolution analysis, which is a method that
represents signals in multiple frequency bands. These digital
filters are called Quadrature Mirror Filters (QMF), which filter
and then decimate the signal - Mallat (1989). The Wavelet
Packet decomposition can be calculated from the QMFs, H and
G, on the coefficients Asf(p) , according to:

Aerrzs(p) = D h(D)Ass (20 = j) = HAyp(p) @)
JEz
Aepr2p+1(0) =D g()Asf(2p — §) = GAes(p)  3)
JEL
where H and G consist in a low-pass and a high-pass filter,
respectively.

Feature Extraction In order to quantify the information con-
tent in each subband, a function must be defined that represents
concisely the information at each node. The use of such a
function reduces dimension, at the same time that it represents
efficiently the contents of the signal decomposition. Among the
most commonly used functions for such information measure-
ment are the Shannon entropy and the energy log - Coifman
and Wickerhauser (1992). In this paper we present results using
these two functions for feature extraction, besides mean and
standard deviation.

Wavelet Bases A wide variety of different Wavelet basis
functions are available in the literature and the performance
of the classification obviously depends on the basis function
chosen. The choice and order of the wavelet to be used must
depend on the dominant features of the signal being analysed.
The basis functions should match the signal as closely as
possible.

Nine different basis functions have been tested in this paper:
Daubechies (DB) 1, 5, 8 and 12, Digital Meyer (Dmey), Sym-
let (Sym) 4 and 10, Coiflet (Coif) 2 and 4. More details on
Wavelets Basis can be found at Daubechies (1992). The per-
formance of the classifier has been assessed for each basis
function, and a detailed comparison is presented later on.

For each Wavelet basis the signal will be decomposed down
to the fifth level of the Wavelet tree, which corresponds to a
decomposition into 32 frequency sub-bands. The bandwidth of
each node of the Wavelet tree is 172Hz. Since the lung sounds
don’t carry relevant information at frequencies above 2.5kHz,
as seen in the spectrograms of Figure 3, we used only the first
16 nodes of the wavelet decomposition. After the last level of
decomposition, a feature extraction function will be applied to
each node in order to reduce dimensionality, creating a 16th-
order vector to feed the input layer of the Artificial Neural
Network.

2.2 Artificial Neural Network

Aurtificial Neural Networks (ANNSs) are conceived to mimic the
behavior of biological neural networks. ANNs are composed
of devices capable of capturing, transforming, storing and ex-
changing data, in such a way that they can learn to recognize
data or to make decisions in the same way as a biological neural
network. The main abilities of an ANN, which are explored in
our implementation, are pattern recognition, decision making
and extrapolation. These are consequences of the ANN’s mas-
sive and parallel structure that allows it to learn by experience
Acharya et al. (2003).

The learning process is finished when an ANN reaches a
general solution to a class of problems. Like the human being,
ANNSs learn from input (training) data. Learning algorithms are
divided into two classes: supervised learning, when an external
agent tells the network the correct output corresponding to a
certain input data, and unsupervised learning, where there is
no such external agent. The knowledge obtained by the ANN
is stored in weights of the connections among the neurons.
Once the training is completed, the ANN should be able to
extrapolate its recognition and decision making ability to new
input data (different front the training data), in other words, new
situations of the real world.

There are three important decisions to make when constructing
an ANN for a given application: (1) the network topology,
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(2) the learning algorithm and, (3) the activation function.
These decisions have to be taken according to the available
input data and the nature of the final classification. Many
learning algorithms are found in the literature, as well as in
practical applications, the most commonly favored being the
Backpropagation, described in Hasson (1995). The process to
determine the appropriated topology, learning algorithm and
activation function for this work is described in the following.

ANN Classification and Feature Extraction  The artificial
neural networks are widely used in biomedical signal analysis,
for modelling and diagnosis, as in Arbib (2003). An ANN has
to be trained to adjust the weights, to find the correct mapping
from the entries to the outputs.

All the nine Wavelet bases cited in Section 2.1 will be tested
using the following four feature extraction functions for each
node of the wavelet decomposition: Shannon entropy, absolute
mean values, mean power and standard deviation. The output
of the ANN will be coded as:

1 0 0
VNormal= | 0|, Vcrackies= | 1], VWheeze = |0 .
0 0 1

The ANN used in this work is also the most commonly ap-
plied for classification: the Backpropagation network. There
are various kinds of implementation of Backpropagation al-
gorithms, so we have performed tests with four different al-
gorithms: Resilient Backpropagation (RP) (which, according
to Kandaswamy and Kumar (2004), is the best), Levenberg-
Marquardt Backpropagation (LM), Scaled Conjugate Gradient
Backpropagation (SCG) and the Gradient Descent with Adap-
tive Learning Rate backpropagation (GDA). For error function
we used mean squared error (MSE) and the activation functions
we tested: log-sigmoid (logsig), Hyperbolic tangent sigmoid
(tansig) and step.

The database we used contains 92 lung sounds (see 2.3), of
which 60 sounds will be used for training the ANN, 7 for test
and 7 for validation as part of training process. The remaining
18 sounds in the database will be used to assess the performance
of the trained ANN.

2.3 Database and Preliminary Lung sounds Analysis

For this work, we used a Database provided by Lehrer (2002).
The database has 92 lung sounds recorded and diagnosed by a
doctor, 27 of which are normal and the remaining recordings
have been diagnosed as pathological, featuring two types of
abnormality: crackles (31 cases) and wheezes (34 cases). Each
sound has a single respiratory cycle and duration of about 3 sec-
onds. These sounds have the sampling frequency of 44.1kHz.
The whole database was downsampled by 4 in order to reduce
the number of samples and consequently the memory and signal
processing requirements. The anti-alias filter used previously
to downsampling was a Chebyshev of order 8 with cutoff fre-
quency of 5.5kHz.

To illustrate the spectral difference between these 3 classes
of lung sounds, a spectrogram was found for each sound, as
seen in Figure 3. These spectrograms were calculated using
512 FFT-points with a 50% overlap hamming window. The
adventitious lung sounds can be divided in continuous and
discontinuous. Crackles, for instance, are discontinuous adven-
titious sounds, which present a short explosion, usually lasting

no more than 20ms. We can see in Figure 3(b) that crackles have
long and high lines in the spectrogram (red colour). Wheeze
sounds, on the other hand, are continuous sounds and have
a visible signature in the spectrogram, presenting continuous
frequencies with high magnitudes, as shown in Figure 3(c). We
also confirmed that the frequencies of interest lie in the range
40Hz to 2.5kHz, as reported in Gurung et al. (2011).

These spectrograms indicate that there are indeed feature dif-
ferences among the various lung sounds classes, suggesting that
these features could be used to automatically distinguish these
classes from one another. The extraction of these features will
be performed by Wavelets since it can represent the signal in
frequency subbands in a concise way.

Bronchial

Crackles

Frequency (Hz)

o 08 1 15 2
Time (s)

(b)

Wheeze

05 1 - 15 2 25 3
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©

Fig. 3. Spectrogram of 3 breathing Lung Sounds: (a) normal (b)
crackles (c) wheeze.

2.4 Signal Normalization

The signals must be normalized in amplitude in order to account
for variability in the data collecting process and this normaliza-
tion can be performed in different ways. The influence of the
normalization procedure on the performance of classification
has also been analyzed. We compared the results of the sound
without normalization, and also using normalization by L'-
norm, L?-norm and L>-norm.

2.5 Embedding the Algorithm

The microcontroller chosen to implement the system is the
Atmel ARM Cortex-M3 CPU. This is a low-cost microcon-
troller with a core of 32-bit. Its clock is at 8¢ MHz, with a one
clock per instruction for 4 byte instructions. It has two DAC
(digital to analog conversion) with 12 bits, a SRAM memory
of 96 KBytes, a 512 KBytes flash memory for code, and a SPI
interface to save data in the SD card. It can also manipulate
floating pointing instructions with 32 bits.

Before embedding the ANN, we first found the best design
parameters using Matlab (MATLAB (2010)). Training of the
ANN has also been performed in Matlab. After the ANN was
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designed, trained and validated, its weights and Bias were
exported to the Microcontroller. The Wavelet Packet Transform
were implemented in the microcontroller using convolution
operation.

3. RESULTS

This section presents the results of design choices for the clas-
sification of lung sounds in 3 different classes: normal, crack-
les and wheeze. The design choices comprise normalization
function, Wavelet basis, feature extraction function, number of
neurons at the hidden layer and activation functions.

Normalization of the signal is an important factor as a prelim-
inary signal treatment. Table 1 shows the performance of the
classification with three normalizations: normalization by L*-
norm, L?-norm and L>°-norm and without normalization. The
assessments were done for 3 Wavelet Basis, using a ANN with
19 neurons.

Sym10 DBS Coif2
L%2norm  9889% 97,41% 96,30%
L'-norm  8741% 89,63%  84,44%
L*°-norm 8296% 84,81%  80,00%
None 75,56%  79,26%  13,70%

Table 1: Classification results for different normalization func-
tions.

The importance of using normalization is clear in Table 1, since
the results obtained without normalization are significantly
poorer than with any kind of normalization. Moreover, the best
results are obtained with the L?-norm, which for this reason
we’ll be used from now on.

The presentation of the results is divided into two sections.
Section 3.1 presents how the ANN was generated. Section 3.2
verify the reliability of the results obtained with the microcon-
troller and also a discussion about the parameters that impact
the classifier performance.

3.1 Analysis of Parameters Effect on the classification

Activation Function

A parameter that has a major effect on the classification per-
formance is the choice of activation function for both layers
of the ANN. To study this effect we fix the remaining design
parameters of the ANN as follows: 19 neurons in the hidden
layer, Shannon entropy as the feature extraction function, the
Resilient Backpropagation algorithm, and MSE for the error.
Table 2 shows the results of the combinations of log-sigmoid,
Hyperbolic tangent sigmoid and step for both the hidden and the
output layers. The best results have been obtained using log-
sigmoid (logsig) for the hidden layer and Hyperbolic tangent
sigmoid (tansig) for the output layer, hence this combination of
activation functions will be the choice kept in all further results.

Output
Hidden Layer step tansig logsig
Layer
step 0.00% | 33.33% | 33.33%
tansig 3333% | 89.26% | 57.04%
logsig 0,00% | 98.89% | 47.41%

Table 2: Classification results for different activation functions
for output and hidden layers.

Number of Neurons

There is not a magic number of how many neurons will yield
the best results, but it is possible to find a good compromise.
An ANN with little or too many neurons can lead to a wrong
mapping, because of the underfitting and overfitting, according
to Guyon and feng Yao (1999), respectively. Moreover, we
would like to keep the number of neurons to a minimum in
order to facilitate its embedding in a low cost microprocessor
board.

The classification performance of the ANNs with each one of
the basis functions is shown in Table 3. This table shows, for
the data which were left out from the training process (unbiased
data), the percentage of mean classification success for several
number of neurons at the hidden Layer of the ANN for all
Wavelet Bases used in this work. Observing these results, it
is seen that Symlet was the Wavelet Basis that provided the
highest accuracy for almost all the numbers of neurons, so
this will be the basis of choice to proceed. Between Symlet
4 and Symlet10 we adopt the first one because of its smaller
complexity, which is an important factor since the filters will
be implemented in a microcontroller.

Feature Extraction

In the results presented thus far in this paper, the Shannon en-
tropy was used as the feature extraction function. Other feature
extraction functions were also analyzed and compared, namely
mean absolute value, mean power and standard deviation. For
this comparative analysis, we fixed randomly 10 different num-
ber of neurons. Figure 4 shows the performance for each fea-
ture extraction function associated with Symlet 4. The standard
deviation presented the best results for all number of neurons
tested. Similar experiments were done with all Wavelet Bases
and have driven to a similar conclusion.

The final result of the analysis of the effect of the design
parameters on the ANN performance led to the following
choices: the wavelet Basis Symlet 4, standard deviation as the
feature extraction function, log-sigmoid and tangent-sigmoid
as the activation functions of the hidden and output layers
respectively, and 74 neurons in the hidden layer. The ANN
so configured, corresponding to the highest bar in Figure 4,
provided a correct classification of 99.26%.

Symlet 4

CLASSIFICATION ACCURACY

(=
n
n
]
o
=]

67 (] 70 74 77

|
)
o
)

NUMBER OF NEURONS

standard devigtion mean values mean power shannon entropy

Fig. 4. Performance results using four different feature extrac-
tion functions for 10 different number of neurons.
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Num. of Neurons  Coif2 Coif4 DB1 DBS DBS DB12 Dmey Sym4 Sym10
6 89.26%  86.67%  81.11%  88.15% 84.81% 91.48%  82.59%  91.85%  90.00%
9 91.48%  91.11%  89.63%  89.63% 90.00% 88.89%  84.07%  92.59%  96.30%
11 94.44%  94.81%  89.63%  92.59% 96.30% 92.96%  8556%  96.67%  95.56%
19 95.18%  96.30%  92.97%  91.85% 91.85% 95.56%  90.71%  9593%  93.33%
25 96.30%  91.48%  88.52%  91.48% 95.19% 95.19%  91.85%  96.67%  95.93%
28 9481%  95.19%  91.11%  95.19% 95.93%  9593%  90.00%  94.07%  97.04%
29 95.93%  9593% 94.81%  91.11% 95.93% 94.07%  81.41%  97.04%  95.56%
33 97.04%  94.07% 91.11%  95.93% 96.30% 9481%  90.74%  94.81%  94.81%
35 94.44%  95.19%  86.30%  94.07% 95.56% 9593%  88.89%  95.19%  96.67%
42 96.30%  95.56%  85.93%  95.93% 91.85% 95.56%  92.96%  94.44%  92.96%
45 9593%  92.22%  93.33%  92.22% 94.81% 95.19%  91.48%  94.81%  97.04%
50 95.56%  93.710%  92.22%  94.81% 96.30% 9556%  91.11%  94.44%  93.33%
54 97.78%  92.59%  90.37%  96.67% 96.30% 95.19%  90.74%  96.30%  97.78%
60 97.04%  97.78%  90.74%  92.22% 92.96% 97.78%  90.74%  97.04%  94.81%
64 95.19%  97.04% 91.85%  96.30% 97.04% 96.67%  92.59%  94.44%  97.04%
67 96.30%  96.67%  87.718%  97.41% 94.07% 95.56%  91.85%  95.56%  98.89%
69 96.30%  95.56%  88.52%  94.81% 94.81% 94.07%  94.81%  95.19%  96.67%
70 95.56%  94.81%  88.89%  95.93% 96.30% 9481%  92.22%  96.67%  96.67%
74 96.30%  97.41%  90.74%  96.67% 96.67% 98.15%  90.00%  96.67%  97.41%
77 96.67%  97.04%  87.78%  96.67% 91.85% 96.30%  92.59%  96.67%  98.52%
83 97.41%  96.30% 9333%  97.78%  95.93% 9481%  91.11%  94.81%  95.56%
85 94.44%  95.19%  91.85%  97.41% 95.56% 9778%  89.26%  96.67%  95.56%
89 94.44%  9741%  93.70%  94.44% 95.19% 95.93%  88.52%  92.96%  94.81%
90 97.41%  96.67%  89.26%  96.30% 92.22% 94.44%  91.85%  96.67%  98.52%
96 96.67%  97.41%  92.22%  96.67% 95.93% 96.67%  90.00%  96.67%  96.30%

104 95.56%  92.96%  92.96%  91.48% 97.41% 9296%  91.85%  95.56%  97.04%
111 18.52% 18.89%  17.78%  18.89% 19.63% 19.63%  17.78%  19.26%  19.63%

Table 3: Mean Average percentage of correct classification with nine wavelet Basis and several number of neurons at the hidden
Layer. Numbers in bold indicate the best results achieved for each number of neurons. Data used for training were not included in

these measurement.

3.2 Embedding the system in a ARM Microcontroller

The WPT was implemented in the microcontroller using the
convolution equations (2) and (3). The memory capacity of
the microcontroller is not enough to store all the Wavelet Tree
decomposition, so a SD memory card has been used as an
auxiliary memory. At each decomposition level the results are
saved as a new file in the SD card. As we move along the tree,
like in Figure 2, this file is opened, convolution is performed
and its result is written back to SD memory.

To validate the microcontroller implementation, we have com-
pared its results with the results obtained using Matlab, which
is considered as the gold standard. This comparison was per-
formed using the first 3 values and the last 3 values of the
fifth level of decomposition. The highest error found between
the results of the signal decomposition using Matlab and the
microcontroller was 0.000046%, showing the correctness and
the numerical robustness of the embedded implementation.

Classification Results

The ANN was trained and generated using Matlab and the
weights and biases of the layers were exported to the micro-
controller board. Figure 5 illustrates the functions implemented
in the microcontroller. The variables R,S,b,f refer to the size of
the input vector, the number of the neurons, bias and the activa-
tion function, respectively. IW (Initial Weights) and LW (Layer
Weights) refer to the weights for both layers, where each one is
connected to the inputs, accordingly to the Figure 6.

The classification results were then compared to those obtained
with Matlab, taken again as gold standard. The results matched
up to five significant digits, as illustrated by the example below,
which refers to the classification for Wavelet Symlet 4 with 50
neurons.

Stx1

a1 = flAW11p +b1) a2 = f2(LWa1 a1 +b2)

y =12 (LW2ufl @Wip +b1)+b2)

Fig. 5. ANN used (Figure from Neural Network toolbox users
guide MATLAB (2010) ).

0.072628095746040
0.716208159923553 | .
0.188396885991096

0.072628596201170
0.716207817578748 | , VMicrocontroller=
0.188396990642668

VMatlab=

Processing Time

We have performed the analysis of the impact on the number
of neurons on the processing time. The embedded ANN was
tested with six different numbers of neurons in the hidden layer:
10, 30, 50, 70, 80 and 90. The difference in processing time
between the classification using 10 and 90 neurons is only 7.3
miliseconds, which leads to the conclusion that the number of
neurons does not impact significantly the processing time, even
though it does critically impact the allocated memory.

The classifier takes 20 to 50 seconds to perform the whole
classification, including all stages of the process: opening the
signal file in the SD card, calculating the WPT decomposition,
writing to the SD card and finally entering the ANN. The use of
the SD card is the dominant block regarding processing time,
which depends strongly on the signal size. The writing and
reading rate at the card is around S00KBytes/s.
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Fig. 6. A detail of one layer of the ANN (Figure from Neural
Network toolbox users guide MATLAB (2010) ).

4. CONCLUSIONS

The sounds coming from the lungs can provide important infor-
mation about the respiratory system of a patient. The electronic
sound acquisition analysis can be used to support medical diag-
nosis. Thus a system allowing the easy acquisition and analysis
of lung sounds has the potential of being a substantial aid in
clinical diagnosis, particularly if implemented in a portable
platform.

In this paper we have described the development and the per-
formance assessment of such a system. We have applied the
Wavelet Packet Transform and an Artificial Neural Network to
classify real lung sounds into three classes, one normal and
two pathological. The various design choices that have to be
made have been described and justified, and the best performing
choices have been kept. The design that gave the best perfor-
mance was the use of Symlet 4 as the Wavelet basis, standard
deviation as the feature extraction function, an ANN with 2 lay-
ers and 74 neurons trained using the Resilient Backpropagation
algorithm, and different activation functions for the hidden and
output layers: log-sigmoid logarithm and Hyperbolic tangent
sigmoid, respectively. With these design choices we have ar-
rived at a 99.26% success rate in the classification. The classi-
fier thus designed has been fully and successfully embedded in
a low cost microprocessor board.

As future work, the embedded classifier will be integrated into a
fully automated and interfaced acquisition system, as depicted
in Figure 1.
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