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Abstract:
Estimation and control of unmeasurable performance variables in complex large-scale systems
is an important issue in systems and control. The preferred solution to this problem is to have a
relatively low-order and accurate standard plant model which can be used for control purposes.
For this purpose, a two-step procedure is proposed. The first step is to generate a reduced Finite
Element (FE) model based on the selection of desired Degrees Of Freedom (DOFs), resulting
in reduced-order mass, damping, and stiffness matrices. The second step is updating of the
reduced-order FE model that is carried out to minimize the differences between the model and
the measurements from the structure with the focus on input-output behavior. The presented
approach helps to create sufficiently accurate reduced-order dynamic models which can be used
for control purposes. The approach will be examined on a planar plate FE model.

Keywords: Model updating, model reduction, finite element model, identification, model-based
control.

1. INTRODUCTION

A wafer scanner lithography machine is the state-of-the-art
equipment for the automated production of ICs. During
the production, a wafer stage must track a predefined
reference trajectory in six motion DOFs with a very high
accuracy. Due to the developments in lithographic produc-
tion processes, next-generation wafer stages are expected
to be lightweight. Reasons for this are: (a) market viability
requires a high throughput of the wafers demanding high
accelerations in all six motion DOFs; high acceleration
requires a reduction of the mass, motivating a lightweight
system design, and (b) the wafer diameter is expected to
increase from 300 to 450mm to increase productivity. This
requires increased dimensions of the wafer stage, which
again underlines the importance of a lightweight system
design. As a result of a lightweight system design, next-
generation wafer stages predominantly exhibit flexible dy-
namical behavior at lower frequencies, see Fig. 1. This has
important consequences on the positioning performance of
the wafer stage.

Next-generation wafer stages are: (a) inherently multivari-
able, since the flexible dynamical behavior is generally
not aligned with the motion DOFs, (b) are envisaged to
be designed with many actuators and sensors to actively
control flexible dynamical behavior, whereas traditionally
the number of inputs and outputs equals the number of
motion DOFs. In next generation wafer stages, a dynam-
ical relation exists between measured and performance
variables, since the sensors are generally located at the
edge of the wafer stage, while the performance is required

Fig. 1. Schematic of a light-weight wafer scanner, van
Herpen (2014).

on the die under exposure on the wafer, which we call the
Point Of Interest (POI). In contrast, the flexible dynamical
behavior is often neglected in traditional wafer stages,
leading to an assumed static geometric relation between
measured and performance variables.

The application of lightweight wafer stages motivates the
usage of model based control and observer design, since:
(a) a model-based design provides a systematic control
design procedure for multivariable systems; (b) a model
is essential to investigate and achieve the limits of perfor-
mance; (c) a model-based observer design procedure en-
ables the estimation of unmeasured performance variables
at POI from the measured variables through the use of a
model (Oomen et al., 2014).
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For estimation of the position at POI, we need an accurate
standard plant model which has disturbance (w), perfor-
mance (z), input (u) and output (y) channels, see Fig. 2.
There are two different approaches to obtain the model
of a wafer stage. The first approach uses identification
techniques. However, identification techniques can at best
identify a model from measured inputs to measured out-
puts i.e. Gyu in Fig. 2. So identification techniques cannot
identify performance channels in the standard plant i.e
Gzu and Gzw in Fig. 2. Furthermore, to the best of the
authors knowledge, a reliable Multi Input-Multi Output
(MIMO) parametric identification approach to fully and
precisely identify a high-dimensional MIMO system with
many Input-Output (IO) channels and many state vari-
ables is not available. This is caused by several reasons
like difficulty in model order selection, in criteria selection
and complexity of finding a computationally reliable iden-
tification model. Oomen et al. (2011), present and apply a
framework for system identification for robust inferential
control that can deal with unmeasured performance vari-
ables at POI, but their goal is not to create an accurate
standard plant model.

Fig. 2. Standard Plant diagram.

The second approach uses analytical FE models, but also
here there are some issues: (a) FE models are generally
of high order, so the resulting FE dynamic model is not
directly useful, (b) there are differences between dynamic
properties of the real structure and the FE model. Despite
the aforementioned issues, the second approach seems
more promising because with a FE model we have access
to a complete standard plant, i.e. Gyu, Gyw, Gzu and Gzw

in Fig. 2. In order to overcome the mentioned issues, we
need to reduce the order of the model and then, update
the model based on real structure measurements.

In practice, there are always differences between a Finite
Element (FE) model of a system and the real system.
The differences could be due to simplification of the model
structure, additional facilities in the real hardware, uncer-
tainty in the physical properties, discretization errors, and
so on. The area known as model updating is concerned
with the correction of FE models by processing records
of dynamic responses from real structures, (Mottershead
and Friswell, 1993). FE model updating is often required
to identify and correct the uncertain parameters of a FE
model and is usually posed as an optimisation problem,
(Jaishi and Ren, 2007). In many cases, the dynamics of
the hardware will be examined by performing an experi-
mental modal analysis, to see how much the true hardware
complies with the numerical FE model.

In literature, model updating techniques are presented
which try to update the physical parameters of the FE
model like parameters in discrete mass, damping, stiffness
elements, plate thickness, and so on. A survey has been

given in Mottershead and Friswell (1993). Friswell and
Penny (1990) studied updating model parameters from fre-
quency domain data via reduced order models constructed
from a Taylor series expansion of the model differential
equation. Imergun et al. (1995b) further investigated the
FE model updating based on frequency response measure-
ments. The approach is studied on a medium-sized FE
model of a plate-beam structure which is modeled using
about 500 DOFs in Imergun et al. (1995a). This work has
been completed later in the comprehensive work of Grafe
(1998). Jaishi and Ren (2005) demonstrate a comparative
study on the influence of different possible residuals in the
objective function. Frequency residual only, mode shape
related functions only, modal flexibility residuals only, and
their combinations are studied independently. D’Ambrogio
and Fregolent (2000) present an updating technique that
includes anti-resonances in the definition of the output
residuals.

Most techniques have been applied and verified on non-
industrial FE models with a limited number of DOFs.
In fact, they become computationally expensive for large-
scale system models. However, Jaishi and Ren (2005)
applied model updating on a model of a bridge with 14060
DOFs and Mottershead et al. (2011) applied sensitivity-
based model updating technique on a helicopter air-frame
model.

The goal of this research is to obtain an updated Reduced
order FE model of a wafer stage, which can be used for
POI estimation and model-based control. The original FE
model of a wafer stage has a large number of DOFs. In our
approach, first the FE model is reduced, and then some
physical parameters of the reduced FE model are updated
based on the eigenvalue sensitivity technique. Having
a reduced FE model, and model updating technique,
facilitates the investigation of the dynamic influence of
changing for example the location of actuators and sensors
in the structure. Since even small differences in hardware
properties in similar lithographic machines may already be
relevant for high-performance motion control design, it is
useful to be able to obtain machine-specific models. This
also relaxes the robustness requirements in the control
design, paving the way to improved machine performance.

The remainder of this paper is organised as follows. In
Section 2, a modal-based approach to construct the re-
duced FE model is described. Then, formulation of the
model updating technique, which has been used in this
research, is discussed in Section 3. To illustrate our ap-
proach, a FE model of a plate instead of a real wafer
stage is introduced in Section 4.1 which will be reduced in
Section 4.2. The results on the updated reduced plate FE
model are discussed in Section 4.3. An outlook regarding
controller and observer design is given in Section 5 and
finally, conclusions are given in Section 6.

2. FINITE ELEMENT MODEL REDUCTION

Updating a FE model has several complexities: (a) it is
computationally expensive to update a complex FE model
of an industrial problem, which typically has a number
of DOFs in the order n ≈ 106, (b) assuming a correct
model structure, in order to update a FE model, the
updating parameters i.e. design parameters have to be
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selected; this means we have to find parameters in the
FE model, which cause the discrepancy between the real
structure and the analytical model, which is not easy
most of the times. (c) Moreover, the updated parameters
should preferably have some physical interpretation, so
that we can understand the result of the mathematical
updating process. A possible solution to (a) is to reduce
the size of the FE model by selecting only modes in a
frequency band of interest, see (3). Then, the reduced set
of generalized DOFs should be replaced by desired physical
DOFs where physical properties of the FE model can be
updated. Desired DOFs can also include DOFs, which are
involved in the location of the actuators/sensors or DOFs
associated with the POI in the performance channel, see
(6).

There are a number of approaches for model order reduc-
tion, see Besselink et al. (2013) and see Schilders et al.
(2008). In this paper, we follow a standard modal model
reduction by selecting only low frequency dominant modes
and then reconstruct the FE mass, stiffness and damping
matrices based on the selected desired DOFs. In future
research, we will include the compliance of the truncated
higher modes in the model.

A linear flexible structure with viscous damping can be
represented by the following second-order matrix differen-
tial equation:

Mq̈n +Dq̇n +Kqn = f, (1)

where qn ∈ Rn×1 is a vector with n DOFs, with M ∈ Rn×n

positive-definite mass matrix, D ∈ Rn×n a positive semi-
definite damping matrix, and K ∈ Rn×n a positive semi-
definite stiffness matrix.

Assuming proportional damping, the following eigenvalue
problem can be solved:

(
− ω2

iM +K
)
φi = 0. (2)

We select a subset of the eigenvector matrix φ to include
the k dominant mass normalized low frequency modes:

φ(n,k) = [φ1 φ2 · · · φk] . (3)

These may include rigid body modes. By applying the
transformation,

qn = φ(n,k)pk, (4)

a low-order modal form of the original dynamical model
can be generated:

I(k,k)p̈k + 2Z(k,k)Ω(k,k)ṗk + Ω2
(k,k)pk = φT(n,k)f, (5)

where Ω and Z are diagonal matrices with angular eigen-
frequencies and dimensionless modal damping factors, re-
spectively. Assume that qn is partitioned as qn = [qTk qTs ]T ,
where qk contains the desired DOFs and qs contains the
remaining DOFs. Then, the eigenvector matrix φ(n,k) will
be partitioned accordingly,

qn =

[
qk
qs

]
= φ(n,k)pk =

[
φ(k,k)
φ(s,k)

]
pk. (6)

From (6), it follows that

pk = φ−1
(k,k)qk. (7)

By substituting (7) into (5), followed by pre-multiplication

with φ−T
(k,k) we obtain

M∗︷ ︸︸ ︷(
φ−T
(k,k)I(k,k)φ

−1
(k,k)

)
q̈k+

D∗︷ ︸︸ ︷(
φ−T
(k,k)2Z(k,k)Ω(k,k)φ

−1
(k,k)

)
q̇k+

K∗︷ ︸︸ ︷(
φ−T
(k,k)Ω

2
(k,k)φ

−1
(k,k)

)
qk =

f∗︷ ︸︸ ︷
φ−T
(k,k)φ

T
(n,k)f,

(8)

which contains the reduced mass, damping, and stiffness
matrices: M∗, D∗, and K∗, relates to qk. As a results,
a reduced FE model of a dynamical system has been
generated, which has almost the same dynamic input-
output behavior as the original model in the frequency
range ω ∈ [0, ωk]. Using this reduced-order FE model
strongly improves the efficiency of the subsequent model
updating compared to using the original high-order FE
model.

It has to be mentioned that the interpretation of the en-
tries of the reduced mass, damping, and stiffness matrices
in general is not straightforward. However, since input-
output behavior is often more important for control, this
need not be problematic.

3. MODEL UPDATING

Having a reduced FE model in hand, we can start updating
the model based on experimental measurements. Motter-
shead et al. (2011) claim that the sensitivity methods are
probably the most successful among the many approaches
to the problem of updating FE models of engineering
structures. The claim is partly based on the successful ap-
plication to a large-scale FE model of a helicopter airframe.
The sensitivity method is based on the minimization of
modal residuals in an iterative procedure based on the
following equation,

[S]
i

{
∆p
}
i

=
{
ε}i, (9)

where [S] is the sensitivity matrix, {∆p} represents the
changes in the updating parameters, {ε} are the residuals,
i.e. the differences between the measured and predicted
dynamic properties and i indicates the iteration. Here, ex-
isting differences in the eigenvalues and possibly eigenvec-
tors are contained in the residual vector {ε}, whereas the
sensitivity matrix [S] embodies the first-order sensitivities
of eigenvalues or eigenvectors or both with respect to the
selected updating parameters.

In this research, we formulate the model updating problem
based on the sensitivity method and minimization of the
eigenvalue residuals (de Kraker, 2013). Assume that we
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want to update p ∈ Rq×1 design parameters in the FE
model and that we have experimental information about
m eigenvalues, i.e. λexp ∈ Cm×1, then we define the
deviation from the corresponding numerical eigenvalues
λnum ∈ Cm×1, in each iteration, as follows:

εi = ∆λi = λexp − (λnum)i. (10)

Then, entries Sab of the sensitivity matrix S in (9) are
defined as,

(Sab)i =
∂λanum
∂pb

|pi
, (11)

which are derivatives of the numerical eigenvalues with
respect to the design parameters pb for a specific value
of these design parameters in the corresponding iteration.
In fact we are dealing with complex equations with real
unknowns. Since [S]i is a rectangular matrix, (11) in
general cannot be solved directly, so we apply a least
squares approach based on minimization of the scalar real
error measure,

ei = ∆λHi W∆λi, (12)

where a real positive definite diagonal matrix W is added
for the possibility of different weighting of the errors in the
eigenvalues. Then, minimizing (12) leads to

Re
[
SH
i WSi

]
∆pi = Re

[
SH
i W∆λi

]
, (13)

and a new estimate for the updating parameter is found
by

pi+1 = pi + ∆pi. (14)

Recalculation of (13) based on the newly obtained param-
eters in several iterations will result in convergence of the
design parameters to the optimal values.

4. ILUSTRATIVE EXAMPLE

To better illustrate our approach, a FE model of a planar
plate instead of a real wafer stage is introduced in the next
section.

4.1 A Planar Plate Finite Element Model

Fig. 3 shows the FE model of an isotropic aluminum
plate, which is a very simplified model of a wafer stage
in lithography machines. It consists of 8 × 8 Kirchhoff
plate elements. Each element has four nodes, and each
node has three DOFs: transversal displacement Z, and
rotations Rx, Ry. The system mass, damping, and stiffness
matrices have dimension 243×243. Geometric and physical
properties of the plate are listed in Table 1. The original
nodes are indicated by the dark grey dots in the picture.
The green circles indicate the locations of the four out-of-
plane actuators u1, · · · , u4 while the four blue crosses at
the corners of the plate indicate the locations of the four
out-of-plane sensors y1, · · · , y4. A modal damping of 0.1%
is assumed for all modes in the model.

Planar Plate layout

x

y

u1

u2

u3

u4

y1

y2

y3

y4

z1 z2 z3 z4 z5

z6 z7 z8 z9 z10

z11 z12 z13 z14

z15 z16 z17 z18 z19

z20 z21 z22 z23 z24

Fig. 3. FE plate model.

4.2 Reduction of Plate Model

A reduced modal model (5) of the plate is created by
selecting the lowest k = 24 modes including the rigid body
modes. Subsequently, a reduced FE model (8) based on
24 desired DOFs indicated by purple crosses in Fig. 3 is
created. From each desired node the z-DOF is selected.

As an example, in Fig. 4, a comparison between a Bode
magnitude plot based on the original FE model and on
the reduced FE model is made. Clearly, up to 2.7kHz
the reduced FE model has almost the same input-output
behavior as the original FE model. The model has 3
rigid body modes. The torsion mode shape, which is the
fourth mode and the first elastic mode, of both original
and the reduced FE model are depicted in Fig. 5 and
Fig. 6, respectively. Both the eigenfrequency (see the first
resonance in Fig. 4) and the mode shape are obviously
identical.

4.3 Model Updating Of The Reduced Plate Model

Given the reduced plate model, assume that an extra
actuator with a point mass is added to the original plate
at the location indicated by z8 in z direction, see Fig. 3.
We would like to examine its influence on the dynamic
behavior of the plate. One way is to include the added
actuator in the original high-order FE model, but this
approach is generally expensive and time-consuming. The
alternative examined here is to update the reduced FE
model. This also better mimics a practically realistic
situation where an actuator is added to existing hardware
and an accurate model for control of the modified system
must be made. Note that the added mass does not affect
the first elastic torsional mode, because it is located on the
nodal line of this mode.

Table 1. Aluminum Plate Properties

Property Quantity Unit

Plate Length 0.6 m
Plate Width 0.6 m

Plate Thickness 0.0272 m
Plate Density (ρ) 2702 kg/m2

Plate Youngs Modulus (Ep) 70e9 Pa
Plate Poisson Ratio (ν) 0.35 −
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Fig. 4. Bode plot of the original FE model (green) and
the reduced model (blue) with input u1 and output
y1 = z1. 0 dB ∼ 1 m/N .

Fig. 5. Torsion mode of the
original FE model.

Fig. 6. Torsion mode of the
reduced FE model.

Two simulated experimental eigenvalues have been ex-
tracted from the original FE model, after adding the
extra actuator to the model, which are λ12 = −2.85e +
01 − 2.87e + 03i and λ14 = −3.93e + 01 − 3.97e + 03i
corresponding to the 6th and 7th mode, which are saddle
and bending modes, respectively. Note that The 5th mode
is not observable in the transfer function from u1 to z1.
Then, we can construct ∆λi in (10) after calculating the
corresponding eigenvalues of the reduced model without
the extra mass. Since the extra actuator mass has been
added to the original plate at the location indicated by z8,
the design parameter to be updated is M?

(8,8): the mass

element corresponding to z8 in the reduced model.

By solving (13) in 8 iterations, the numerical eigenvalues
converge to the experimental eigenvalues. Fig. 7 shows the
convergence of the real and imaginary part of the 12th and
14th numerical eigenvalues to the measured eigenvalues.
The residual error ei defined in (12) converges to zero,
see Fig. 8. As a result of least squares optimization, the
delta-mass ∆M?

(8,8) corresponding to the mass of the extra

actuator located at z8 converges to the optimal value of
0.5 kg, see Fig. 9. It is also shown in the figure that an
artificial introduced delta-damping ∆B?

(8,8) corresponding

to the location of the extra actuator converges to the
optimal value of 0 Ns/m, which means the extra actuator
did not change the damping at the location which was
added, as it should.

From a control perspective, the input-output behavior of a
system is crucial, since it characterizes the main properties
for control design. Fig. 10 shows three FRF’s: (a) for the
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Fig. 7. Convergence of the numerical eigenvalues: λ12 and
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initial reduced FE model in blue, (b) for the updated
reduced FEM model in red, and (c) for the simulated FRF
measurement in green. The FRF of the updated reduced
FE model matches quit good with the measurement (see
Fig.11) up to the frequency range of interest which means
the effect of the extra actuator has been compensated in
the updated model. So, the updated reduced model can
very well simulate the behavior of the planar plate with
the extra actuator.
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Fig. 10. Bode plot of the reduced and updated reduced
FE model vs simulated FRF measurement when the
input and output channels are u1 and z1, respectively.
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Fig. 11. Zoomed plot of Fig. 10 containing second and third
resonances, saddle and bending modes, respectively.

As a result of adding an extra actuator mass to the
system, eigenfrequencies and mode shapes have changed.
For instance, the damped eigenfrequency corresponding
to the 6th mode, which is the saddle mode, is changed,
see the first resonance in Fig. 11. It has changed from
461Hz to 455Hz. The corresponding mode shape has also
changed. The saddle mode shape of the updated reduced
FE model is slightly different than the saddle mode shape
of the original or reduced FE model due to the added extra
actuator.

The modes of the reduced updated FE model now can be
used to update the mode shapes of the original FE model
via (7) and (4). Then, the updated original FE model can
be used as an accurate standard plant to analyze responses
at the POI.

5. OUTLOOK FOR CONTROL

Nowadays, high precision motion control systems like the
wafer stages in lithography machines are confronted with
servo specifications in the order of sub-nanometers. This
means that highly accurate motion control systems are
needed which heavily rely on state-of-the-art model-based
control design, requiring accurate plant models. The ap-
proach presented here helps to create sufficiently accu-
rate reduced-order machine-specific dynamic models which
can be used for: (a) robust controller tuning and model-
based design, (b) advanced observer design for point-of-
interest (POI) estimation, and (c) actuator/sensor place-
ment where the optimal locations of the possible additional
actuator/sensor need to be calculated.

6. CONCLUSION

An approach has been described that uses model updating
techniques for complex systems with a large number of
DOFs. A reduced FE model is constructed, which con-
sists of reduced-order mass, damping, and stiffness matri-
ces. Model updating is conducted for this reduced-order
model. For a planar plate FE model, it is shown that an
extra actuator mass can be accounted for. In this way,
machine-specific updated parametric models are obtained
that preserve the input-output behavior of the real system.
This paves the way for machine-specific and model-based
control design, towards sub-nanometer wafer stage perfor-
mance.
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