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Abstract: All process measurements are corrupted by the presence of measurement error to some degree. 
The attenuation of the measurement error, especially large gross errors, can increase the value of the 
process measurements. Gross error detection has typically been performed through rigorous statistical 
hypothesis testing. The assumptions required to derive the necessary statistical properties are restrictive, 
which lead to investigation of alternative approaches, such as artificial neural networks. This paper 
reports the results of an investigation into the utility of classification trees and linear and quadratic 
classification functions for resolving the gross error detection and identification problems. 
Keywords: gross error detection, identification, classification trees, classification functions 

1. INTRODUCTION 

The monitoring, control and optimization of modern 
industrial processes require the use of measurements of 
process variables in order to determine process states (Mah, 
1990: 385). 

All process measurements are corrupted to some degree by 
the presence of measurement error, so that measurement data 
do not conform to principles of mass and energy 
conservation, or other physical constraints pertaining to a 
particular system. A distinction is made between random 
noise that can only be described probabilistically and has no 
assignable cause, and gross or systematic errors (GE’s) 
caused by events such as fouling or poor calibration of 
instruments, mechanical or electrical failures, etc. (Madron, 
1992: 66-74). It is typically accepted that the GE component 
will have larger magnitude than the random error component, 
and be non-random to some degree. Depending on the 
intended use of process measurements, the presence of 
measurement error may impact adversely on the utility of the 
measurements, and cause suboptimal or even unsafe process 
operation. Methods of attenuating the measurement error, 
especially GE’s, are therefore required. 

The usual approach to the above problem is to find the 
adjustments to the process measurements required for the 
reconciled measurements to verify an imposed process model 
– typically mass or energy conservation laws. Mathematical 
programming techniques are used to find the adjustments that 
are optimal based on the assumed random error model 
(Narasimhan and Jordache, 2000: 60). GE’s are detected 
based on statistical distributions derived from the random 
error model for the measurement adjustments or process 
constraint residuals and the data reconciliation (DR) may 
have to be performed iteratively until no more GE’s are 
detected. Several difficulties exist with this approach. First, 
the statistics derived for gross error detection (GED) are 
strictly valid only for linear process constraints. Second, large 

systems or dynamic processes may require considerable 
computational effort to solve. 

These difficulties have led to alternative approaches to the 
DR and GED problems, primarily the application of artificial 
neural networks (ANN’s) (Terry et al., 1993; Aldrich et al., 
1994a). While ANN’s have been found useful in resolving 
the DR and GED problems, they are typically difficult to 
interpret, and only applicable to the systems used to develop 
them. The GED problem is inherently a classification 
problem. The success of ANN’s in resolving this 
classification problem poses the question whether other 
classification methodologies can be applied successfully to 
the gross error detection and identification problem. This 
study investigated the utility of two classification 
methodologies, classification trees and classification 
functions, in resolving the gross error detection/identification 
problem. 

The layout of this report is as follows: Section 2 introduces 
classical data reconciliation theory, while section 3 presents 
theoretical aspects of the classification methods employed. 
Section 4 provides a description of the case study 
methodology, and section 5 summarizes the observed results. 

2. CLASSICAL DATA RECONCILIATION 

Measurement errors are typically assumed to be additive and 
Gaussian, with zero mean value and known covariance 
structure, so that the measurement vector is given by 
(Romagnoli and Sanchez, 2000: 76): 

 = +y x ε  (1) 
Where: y  is the vector of process measurements, x  is the 
associated vector of state variables and ~ ( , )N εε 0 Q  is a 
vector of random measurement errors with covariance matrix 

εQ . For linear systems with all variables measured, the 
process constraints are given by: 
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 ⋅ =A x 0   (2) 
In this paper it is assumed that A  has m  rows and n  
columns, with m n< , and ,y x and ε  are 1n ×  vectors. The 
process constraints are typically not satisfied by the raw 
measurements due to the presence of measurement error, and 
the vector of residuals of the constraint equations is given by: 

 = ⋅r A y   (3) 
The Global Test tests for the presence of GE’s by 
constructing 1 2( ) ~T T

mτ χ−= εr AQ A r  which follows a chi-
square distribution with m  degrees of freedom under the null 
hypothesis of no GE’s present (Romagnoli and Sanchez, 
2000: 112). Under the measurement model of (1)  the 
residuals are distributed as ~ ( , )TN εr 0 AQ A . The Nodal 
Test evaluates each individual constraint: 

 ( )
( )

j
r j T

jj

r
z =

εAQ A
  (4) 

Under the null hypothesis of no GE’s present, ( ) (0,1)r jz N=  
(Crowe, 1989). These tests can be completed before data 
reconciliation is performed. 

When multiple tests are performed, as in the case of the 
Nodal Test, it is necessary to modify the univariate level of 
significance in order to preserve the overall level of 
significance. The Sidak correction (Sidak, 1967) can be used 
to calculate the required univariate level of significance from 
the desired overall level: 

 1
01 (1 ) m

iα α= − −   (5) 

Where m  univariate tests are conducted in the case of the 
Nodal Test, iα  is the univariate level of significance, and 0α  
is the desired overall level of significance. This correction is 
conservative, i.e. the actual level of significance should be 
smaller than 0α . 

The optimum estimates of the true process states are obtained 
by solving the following optimization problem: 

 

1min ( ) ( )

. .

TJ

s t

−= − −

⋅ =

εx
y x Q y x

A x 0
  (6) 

The solution to (6), which is the maximum likelihood 
solution under the assumption of Gaussian error, is given by: 

 1ˆ [ ( ) ]T T −= − ⋅ε εx I Q A AQ A A y   (7) 
The vector of measurement adjustments are given by: 

 1ˆ ( )T T −= − = ε εa y x Q A AQ A Ay   (8) 
Under (1) the vector of adjustments are distributed as 

~ ( , )N aa 0 Q  where 1( )T T −=a ε ε εQ Q A AQ A AQ . The 
Measurement Test (MT) evaluates the standardized elements 
of the adjustment vector: 

 ( )
( )

i
a i

ii

a
z =

aQ
  (9) 

Under the null hypothesis of no gross errors present, 
~ (0,1)az N  (Mah and Tamhane, 1982). Since the elements 

of a  are dependent, it is typical that only l n<  unique values 
are obtained when applying (9). 

The measurement test is commonly applied in commercial 
software packages used for data reconciliation, and was 
therefore selected as the benchmark for classification 
methods in this study. 

There are four elements to a GED strategy (Narasimhan and 
Jordache, 2000: 175), namely: detection of the presence of 
one or more GE’s; identification of the type and location of a 
detected GE; estimation of the magnitude of GE’s; and 
handling multiple GE’s. This study focussed on the first two 
elements, that is on the Detection (DET) and Identification 
(ID) problems of GED. 

3. CLASSIFICATION METHODS 

This section will briefly summarize the relevant information 
regarding the classification techniques investigated in this 
study. 

3.1  Classification Trees 

Classification Trees (CT’s) are classification rules that are 
constructed by finding successive disjoint partitions of the 
input space X  that improves the purity of the class 
membership in each partition. The input space consists of 
vectors of measurements that can be used to discern class 
separation. For classification trees, X  can contain both 
ordered and categorical variables. 

A tree T  therefore consists of a set of nodes { }it  where each 
node represents a partition of the input space, such that 

it X⊂  and i
i
t X

∀
= . Construction of the tree T  requires a 

finite number of training vectors , 1, 2,...,k k
j jX j n∈ =x  with 

known class membership 1,2,..., kk n= . The purity of a node 
is a function of the proportion of the different classes 
contained in the node, i.e.: 

 ( )
i i

k
i t ts k t n n=   (10) 

Where 
i

k
tn  is the number of vectors with class membership k 

in node it  and 
it

n  is the total number of vectors in node it . 

Measures of purity on a partition it  can take various 
functional forms ( )φ ⋅ , but needs to meet the following 
criteria [Breiman et al., 1984: 32]: ( )φ ⋅  should be 
nonnegative; ( )φ ⋅  should reach a maximum when 

( ) 1 ,i k ip k t n k t= ∀ ∈ ; ( ) 1, ( ) 0i ip k t k t φ= ∀ ∈ ⇒ ⋅ = , i.e. 
( )φ ⋅  is zero when any node proportion equals unity; ( )φ ⋅  

should be symmetric; ''( )φ ⋅  exists and ''( ) 0φ ⋅ < , i.e. the 
second derivative exists and the purity function is concave. 
One example of a purity function that meets these criteria is 
the Gini index: 
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1 2

1 2( ) ( ) ( )
k k

g t p k t p k t
≠

= ⋅∑   (11) 

Tree construction proceeds by recursively finding the 
partition of each parent node that maximises the increase in 
purity of the two child nodes, starting at the root node 0t X=  
which contains the complete input space. Partitioning of a 
node it  terminates when the node is pure or when some a 
priori criteria for minimum node size are met. The class of a 
terminal node can be assigned based on the maximum class 
proportion present in the node, or based on a 
misclassification cost function. 

This mode of construction typically results in large trees that 
are prone to overfitting of the training data, i.e. the trees fail 
to generalize the classification relationship, and will perform 
poorly on similar data not employed for tree construction. It 
is therefore required to prune the tree so that overfitting is 
minimized. Pruning is typically achieved by selecting the 
smallest tree (i.e. least number of nodes) for which the 
estimated error of misclassification falls within one standard 
error of the minimum estimated misclassification rate 
achieved. Details regarding estimation of misclassification 
rates can be found in Breiman et al. (1984). 

No assumptions regarding the distribution of the 
, 1, 2,...,k k

j jX j n∈ =x  is made during construction of the CT, 
therefore it is a non-parametric classifier. 

3.2  Classification Functions 

Classification functions assign vectors to a class based on the 
standardized distance of the vector from the known or 
estimated class mean. Whereas CT’s can handle any data 
type, classification functions require ordered data. 

A training sample of vectors with known class membership 
, 1, 2,...,k k

j jj n=x  is required so that estimates of the mean 
group vectors ; 1, 2,...,k kk n=x  can be obtained. The sample 
covariance for each group is calculated by: 

 
1

1 ( ) ( )
1

k
jn

k T k
k j k j kk

jjn =
= − −

−
∑S x x x x  (12) 

 The pooled covariance estimate S is estimated from: 

 
1

1 ( 1)
kn

k
j k

kk

n
N n =

= −
−

∑S S   (13) 

Where: 
1

kn
k
j

k
N n

=
= ∑  and kS  is the sample covariance matrix 

from (12). The pooled covariance S  is an estimate of the 
population covariance matrix, and its use in the classification 
function implies that all classes have a common covariance 
matrix, that is: 
 ( ) ( ) ( ) .... ( )E E E E= = = =1 2 kS S S S   (14) 

The distance from x  to each kx  is estimated with a distance 
function: 

 2 1( ) ( ) ( )T
k k kD −= − −x x x S x x   (15) 

Rencher (2002: 304) shows that selecting the minimum of 
(15) is equivalent to selecting the maximum of a linear 
classification function of the form: 

 ,0( )
k

T
k kL c= ⋅ +x c x   (16) 

Where: T
k k= -1c x S  and 1

,0 0.5 T
k k kc −= − ⋅ x S x  . When prior 

probabilities ; 1, 2,...,k kp k n=  are associated with each 
group, the classification rule in (16) becomes: 

 ,0( ) ln( )T
k k k kL c p= ⋅ + +x c x   (17) 

Since the classification rules derived in (16) and (17) are 
linear functions of the vector x , they are referred to as linear 
classification functions (LCF). 

The use of a linear classification function depends on the 
assumption that the groups all have the same covariance 
matrix. When this is not true, the distance function in (15) 
can be modified by replacing the pooled estimate of the 
covariance matrix with the sample estimate of the group 
covariance matrix: 

 2 1( ) ( ) ( )T
k k k kD −= − −x x x S x x   (18) 

The classification rule remains to assign a vector x with 
unknown class membership to that group for which (18) is a 
minimum. This classification rule is a quadratic function in x, 
and hence is called a quadratic classification function (QCF) 
(Rencher, 2002: 306). 

If it is assumed that the k
jx  follow multivariate normal 

distributions, and that each group has a known prior 
probability kp , the optimum classification rule is to assign x 
to the group that maximises: 

 1ln( ) 0.5 ln 0.5 ( ) ( )T
k k k k k kQ p −= − ⋅ − ⋅ − −S x x S x x   (19) 

Although classification functions were first derived without 
any distributional assumptions, the classification rules of (17) 
and (19) are optimal only for when x  follows a multivariate 
normal distribution, hence classification functions are 
parametric classifiers. 

4. CASE STUDY: TWO-PRODUCT SPLITTER 

The process unit selected for this case study is a two-product 
splitter: 

 

Figure 1 : Two-product Splitter for Case Study 

F, f1, f2 C, c1, c2

T, t1, t2

Process Unit
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Many process units can be described as two-product splitters, 
such as hydrocyclones, flotation cells, screens, filters and 
more. The constraints applied to this unit are given by: 

 1 1 1

1 2 1 2 1 2

( )
F C T

F F f C c T t
F f f C c c T t t

− − 
 = ⋅ − ⋅ − ⋅ = 
 ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ 

x 0   (20) 

The constraints in (20) are more complex than the usual 
bilinear constraints commonly assumed in simulated studies 
such as these, and can arise when assay-in-size analysis is 
conducted. 

Measurement vectors were generated from a fixed steady-
state operating point, defined below in Table 1:  

Table 1 : Nominal Steady-State Magnitudes of Variables 

 
Random noise was added to each measurement value 
generated, with the coefficients of variation indicated in 
Table 1. Gross errors were simulated to a subset of the 
simulated measurement vectors, with gross error magnitudes 
controlled between [-5.0, 5.0] of the random error standard 
deviation in increments of 0.5. A total of 10 data sets, each 
containing 11 000 simulated measurement vectors of which 1 
100 contained only random errors, was generated. 

A naïve objective function for data reconciliation (DR) was 
assumed as: 

 

1min ( ) ( )

. .
( )

TJ

s t
F

−= − −

=

yx
y x Q y x

x 0
  (21) 

Where: cov ( )diag= ⋅y yQ y , where ( )diag y  is a matrix of 
appropriate size with the elements of y  on the diagonal and 
zero’s elsewhere,  assumes that each measurement has 
exactly the same relative standard deviation cov y  . This 
assumption played an important part in the comparison of 
classifier results with that of the MT, as it allowed 
manipulation of the type I error rate of the MT to match that 
of each classifier, so that statistical power of the methods 
could be compared directly. Data reconciliation was 
performed using successive linearization of the system in 
(21).  

Constructing the CT and LCF/QCF classification functions 
requires a set of input vectors to be presented to each method. 
Two input vectors were developed for this problem, the first 
containing 14 elements derived from the DR results, and the 
second 16 elements. The first set of input vectors for each 
data set was defined as: 

 * * *
1, ( )

T
i T T

j j j j j j j
 =  z r r r a a a   (22) 

Where: 1, 2,...,10i =  denotes the ith data set, 
1, 2,....,11000j =  denotes the jth set of DR results for data set 

i, jr  is the constraint residuals defined in (3), and 

* 1100 ( )j j jdiag −= ⋅ ⋅a y a  is the normalized measurement 
adjustments, where ˆj j j= −a y x . The second set of input 
vectors was defined as: 

1

* 1
2, 1, , 1, 1, 1, 1,sup ( ) ( )

T
i i i i T i i

j j l j j j j j
l

a − = − Σ −  zz z z z z z   (23) 

Where: 1,
i

jz  is the jth element of the ith set of original input 
vectors defined in (22). That is, the second input vector 
contained all the elements of the first input vector, as well as 
two additional elements; the maximum absolute value 
contained in each *

ja  , as well as the Mahalanobis distance 
for each of the original input vectors. Since ten data sets of 
simulated measurement data were created, a classifier of each 
type (classification tree, linear/quadratic classification 
function), for each problem (gross error 
detection/identification), could be developed for each data 
set, and tested on the remaining nine data sets. A separate 
classifier was developed for each of the Detection and 
Identification problems, with the classifier outputs for each 
problem defined as: 

 
,

,

: {0,1}
: {0,1,...,9}

j i

j i

Detection Y
Identification Y

∈

∈
  (24) 

Where: , 0j iY =  corresponded to training exemplars 
containing only random errors and the other values of ,j iY  
correspond to either the presence (DET) or location (ID) of a 
gross error. In order to compare the results of the classifiers 
with that of the MT, the McNemar test for correlated 
proportions (McNemar, 1947) was used. The test is best 
illustrated by referring to the layout of Figure 2: 

 

Figure 2 : The McNemar Test for Correlated Proportions 

The McNemar statistics is given by: 

 
2( )

M
b cT
b c
−

=
+

  (25) 

Under the null hypothesis that no difference in performance 
exists between two methods compared, that is

0 0: :a b a c b cH Hπ π π π+ += ⇒ = , the McNemar statistic 
follows a chi-square distribution with one degree of freedom, 
which allows formal inference on the null hypothesis. The 
level of significance used for hypothesis testing throughout 
this study was 0.05. A statistical test may commit two 
different kinds of error: Type I error, which consists of 
rejecting the null hypothesis when it is true, and Type II error 
which consists of failing to reject the null hypothesis when it 
is false. These concepts are illustrated in Figure 3: 

F C T f 1 c 1 t 1 f 2 c 2 t 2
TRUE 100.0 75.0 25.0 10.0% 5.0% 25.0% 10.0% 0.1% 15.9%
COV 2.0% 5.0% 5.0% 2.0% 2.0% 2.0% 1.0% 1.0% 1.0%

Success Failure Total

Success a b a + b

Failure c d c + d

Total a + c b + d n

Classifier

M
T
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Figure 3 : Type I and Type II Error associated with 
Hypothesis Testing 

5. RESULTS AND DISCUSSION 

The empirical Type II and Type I error rates for the MT and 
classifiers are presented below in Figure 4 for both the 
Detection and Identification problems: 

 

Figure 4 : Comparison of overall Type II vs. Type I Error 
Rates – First Input Vector 

The low power (high Type II error) for both the Detection 
and Identification problems is apparent and is indicative of 
the complexity of this trilinear constraints. In general the 
classification methods performed similar to or better than the 
MT.  

The classifiers’ results exhibit a wide range of Type I error 
rates, both within the same classification methodology, and 
between different methodologies. The QCF seems to have the 
optimal trade-off between power and Type I error for the 
Detection problem, and the LCF for the Identification 
problem, although in practice what is ‘optimal’ in terms of 
this trade-off depends on the particular situation, e.g. a 
nuclear power plant would need to ensure a very low Type II 
error rate, while a mineral processing plant may want to have 
fewer false alarms, i.e. lower Type I error rate. 

The McNemar Test as used to determine the significance of 
differences in power between the MT and each classifier on 
each of the 90 test sets, where the difference is defined as: 

 Classifier MT MT ClassifierP P P β β∆ = − = −   (26) 

Where: P represents statistical power, and β  is the 
corresponding Type II error rate. That is, a negative P∆  
indicates that the MT was superior, and vice versa. The 
number (Counts) and average values (Means) of differences 
determined to be significant are displayed in Table 2 and 

Table 3 respectively for different gross error magnitudes and 
locations: 

Table 2 : Mean Values and Counts of differences in Power 
for different GE magnitudes determined to be significant by 
McNemar Test (upper half shows MT outperforming 
classification methods; lower half shows classification 
methods outperforming MT) 

 

Table 3 : Mean Values and Counts of differences in Power 
for different GE locations determined to be significant by 
McNemar Test (upper half shows MT outperforming 
classification methods; lower half shows classification 
methods outperforming MT) 

 
There is a general trend of the difference in power increasing 
with increasing GE magnitude, with the MT being superior 
for smaller magnitudes (1.0 – 2.0), and the classifiers 
superior for larger magnitudes (>2.0), which applies to both 
the Detection and Identification problems. Although the 
mean magnitude of outperformance of the MT at smaller GE 
magnitudes is fairly consistent for the different classifiers, the 
repeatability of this outperformance (as measured by the 
counts associated with the means) is markedly different for 
both the Detection and Identification problems. The 
repeatability of the QCF is generally highest, followed by the 
LCF and CT classifiers. This trend of repeatability also holds 
at larger magnitudes where the classifiers are superior. 

The results for different gross error locations also exhibit 
general patterns; the MT is consistently superior for location 

TRUE FALSE

Fail to Reject H0 Correct Type II Error

Reject H0 Type I Error Correct

Te
st

H0

DETECTION IDENTIFICATION
Means Counts Means Counts

CT LCF QCF CT LCF QCF CT LCF QCF CT LCF QCF
0.5
1.0 -2.8% -4.6% 1 16
1.5 -3.5% -3.9% -3.5% 6 31 90 -2.2% -1.5% -4.2% 5 35 72
2.0 -6.0% -4.6% -3.7% 3 4 37 -2.8% 9
2.5
3.0
3.5
4.0
4.5
5.0
0.5
1.0
1.5 3.7% 1
2.0 2.6% 3.4% 3 12 2.2% 3.3% 1 14
2.5 4.5% 4.7% 8.5% 35 64 90 3.5% 11.0% 16.2% 31 90 90
3.0 5.8% 5.9% 15.7% 66 77 90 5.3% 20.1% 24.8% 76 90 90
3.5 7.0% 6.5% 19.1% 77 81 90 6.5% 26.1% 30.7% 86 90 90
4.0 8.2% 6.9% 21.1% 80 87 90 7.0% 28.7% 34.1% 85 90 90
4.5 8.7% 6.7% 21.8% 83 85 90 7.2% 28.4% 35.5% 71 90 90
5.0 10.0% 7.3% 22.5% 80 83 90 6.9% 28.7% 35.0% 51 90 90

G
E 

M
ag

ni
tu

de
 - 
b*

G
E 

M
ag

ni
tu

de
 - 
b*

DETECTION IDENTIFICATION
Means Counts Means Counts

CT LCF QCF CT LCF QCF CT LCF QCF CT LCF QCF
F -8.1% -3.6% 85 20 -13.2% 90
C -8.4% -7.8% -8.7% 88 90 90 -8.9% -4.2% -8.0% 66 18 76
T -4.5% 28
f 1
c 1
t 1 -5.1% 4 -7.7% 90

f 2 -1.0% 2
c 2 -3.2% 2

t 2
F 3.5% 14.7% 1 90 25.2% 18.2% 90 90
C
T 4.5% 3.3% 10.1% 17 17 90 13.6% 20.8% 16.5% 89 90 90
f 1 12.3% 10.1% 20.2% 86 90 90 21.7% 32.2% 25.2% 90 90 90

c 1 16.7% 15.8% 26.8% 90 90 90 11.3% 31.5% 35.3% 82 90 90

t 1 5.4% 4.4% 7.2% 16 30 90 6.8% 9.6% 88 84

f 2 12.4% 7.6% 16.4% 89 87 90 6.8% 20.8% 30.2% 72 90 90

c 2 19.8% 90

t 2 12.2% 6.2% 10.7% 87 72 90 5.1% 2.0% 23.2% 71 54 90

G
E 

Lo
ca

tio
n

G
E 

Lo
ca

tio
n
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C for all classifiers, and consistently superior to the CT 
classifier for locations F and 1t  (for the Identification 
problem). Location 2c  presented unique results with none of 
the classifiers being able to resolve the Detection problem 
with higher power than the MT, while the MT achieved 
greater power than the LCF on this location with low 
repeatability. No significant results for the CT and LCF 
classifiers solving the Identification problem occurred, while 
the QCF achieved significantly higher power than the MT 
with high repeatability for the location. 

In general then it can be concluded that the performance of a 
classifier relative to the MT is dependent on both the 
magnitude and location of a GE, as well as the type of 
classifier. This is true for both the Detection and 
Identification problems. The significance of type of classifier 
in determining performance must be due to the different 
principles employed to achieve classification. Although the 
classifiers collectively performed superior to the MT for the 
majority of GE magnitudes and locations, this does not 
guarantee superiority in general, as the MT may be superior 
for the particular requirements of an application, i.e. detecting 
and/or identifying GE’s of a particular magnitude or in a 
particular location. 

The low power achieved by classifiers lead to the application 
of a second input vector, as described in the section on 
methodology. The overall Type II error rate vs. Type I error 
rate for the classifiers using the second input vector is 
displayed in Figure 5, along with the results for the first input 
vector: 

 

Figure 5 : Comparison of overall Type II vs. Type I Error 
Rates – Second Input Vector 

The overall performance for the LCF and QCF classifiers for 
both the Detection and Identification problems using the 
second input vector remained virtually unchanged. The CT 
classifiers developed on the second input vector appear to 
have improved overall performance, i.e. lower Type II error 
rates for similar Type I error rates. This improvement in 
power is greater for the Detection problem than for the 
Identification problem. In addition, the variation in Type I 
error rates for the Detection problem decreased, i.e. the 
various CT classifiers developed for this problem seem to 
have more consistent performance. The detailed results of 

significant differences for the second input vector follows the 
same general trends as that of the first input vector, and is not 
presented. 

6. CONCLUSIONS AND RECOMMENDATIONS 

This investigation has shown that classification 
methodologies may be applied successfully to the Detection 
and Identification problems of GED, that is, classification 
methodologies may achieve lower Type II error rates than the 
Measurement Test for similar Type I error rates. However, 
future work on more complex (and simpler!) case studies 
would be required for a more definitive conclusion. 
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