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Abstract: As one of the copper recovery processes, hydrometallurgy has gain impact due to
its ability to process ore with average low grades at competitive prices compared with other
metallurgical processes. Among hydrometallurgical processes the leaching stage, a process that
is characterized by its significant temporal and spatial scale of operation, is critical. In spite
of extensive developments in instrumentation in pyrometullurgical and concentrators plants,
developments in heap leaching instrumentation has not reached the required level for a fully
automated control system and furthermore for a stable operation. Computational tools, such
us dynamic simulators, can help operators achieve the best performance of the heap using
the available instrumentation. This paper presents the development and implementation of
an integrated dynamic simulator and a decision support system (DSS) for hydrometallurgical
processes with emphasis in heap leaching process. The dynamic simulator uses two dimensional
models of fluid transport, transport of solutes and dissolution of copper in the leaching heap,
to analyse the effects produced in the variables of interest, such as the consumption of acid,
copper concentration in the PLS (Pregnant Leach Solution) and leaching times. The DSS, which
is connected to the real time plant information system, gathers the information by sensors and
laboratory analyses to perform an automatic on-line parameter estimation of the process and
makes predictions to recommend to the operator both curing and leaching rates. Results show
that the DSS achieves the identification and prediction with less than 6% of error, allowing the
metallurgist to predict the leaching behaviour and take decisions with better information.
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1. INTRODUCTION

As an alternative to pyrometallurgy, hydrometallurgy is
being used in an increasing number of copper mining
operations extracting copper from average low grades ores.
This recovery process represents 20% of the primary cop-
per production, and has experienced high use intensity and
a significant impact. The main reason is due to the ability
to extract mineral at low cost, mainly due to the use of
the leaching process, in which the previously crushed and
agglomerated ore is stacked to be irrigated with an acid
solution to extract the copper from the ore. Although, the
leaching process has lower extraction efficiencies than more
conventional methods, mostly because its high temporal
and spatial extent.
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hydrometallurgical processing”.

The operational difficulties has forced the need for auto-
mated tools for improving productivity. In dynamic sys-
tems with distributed, time-varying and uncertain param-
eters such as heap leaching, usage of simulators becomes
a powerful tool for predicting the system behaviour and
optimising the operation. Although optimization driven by
simulators often is a time consuming process, in this case
the system evolves slowly and samples are taken every 12
hours. Therefore, sufficient time is available to perform the
optimization by simulation. The optimization results are
shown in the Decision Support System (DSS) to assists
the operator in daily decision making.

Dynamic simulators are tools that facilitate the study of
complex processes. This allows the study of the interaction
between process variables and the assessment of their im-
pact on the final product. Examples of simulators are listed
in Nikkhah and Anderson (2001), which shows how each
simulator is useful in various stages of completion of the
projects. In general ore preparation process and leaching
have been studied separately, omitting the interactions
that occur between processes. The developed simulator
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allows the dynamic simulation from the crushing process
to the leaching stage in an integrated manner.

According to Nof (2009), a DSS is an auxiliary system
that is intended to help human decision-makers, while
a control system makes the decision and implements it
by itself using actuators. The main characteristics of a
DSS are: 1) designed specifically to facilitate decision pro-
cesses, 2) should support rather than automate decision-
making and 3) should be able to respond quickly to the
changing needs of decision-makers. DSS can be categorized
in communication-driven, data-driven, document-driven,
knowledge-driven and model-driven depending on their
capabilities and components. This paper presents a model-
driven DSS which uses real time data and both dynamic
and optimization models to assist operators in their de-
cisions. An example of a model-driven DSS is presented
by Kozan and Liu (2012). They developed a demand-
responsive DSS that solves the transport problem for coal.
The system integrates, using simulation, coal shipment,
coal stockpiles and coal railing providing better decision
making on how to assign rail rolling-stocks and how to
upgrade infrastructure. Dengiz et al. (2006) developed
a DSS that uses a simulator for the optimization of a
process using a meta-model Monte Carlo simulation and
the optimization methodology presented in Madu (1990).

This paper is structured as follows: Section 2 describes the
plant under study. Section 3 describes the dynamic simu-
lator for hydrometallurgy, with emphasis in the leaching
modeling. Section 4 describes the DSS for hydrometallurgy
and its implementation. The results are presented in Sec-
tion 5 and conclusion remarks and future work avenues are
summarized in Section 6.

2. PLANT DESCRIPTION

Mantoverde Operation is part of Anglo American Copper
Business Unit. Mantoverde hydrometallurgical operation
is located 900 meters above sea level and 56 kilometers
close to Chañaral port, III region, Chile. It includes an
open pit mine, crushing plants and processing facilities
for oxidized copper. In 2012 it produced 62,239 tons
of copper as high grade cathodes, approx. 6% more in
comparison with 2011, and has an approximated staff of
800 workers, considering own personal and contractors for
main operations and projects. Figure 1 shows a simplified
flowsheet from primary crushing to heap leaching.

The ore extracted from the pit is carried directly to the
primary crusher by trucks of 90 tons capacity. The primary
crusher circuit consist of one Fuller Traylor crusher with
1,380 T/h design capacity and its product size is 92%
under 12.7 cm. One variable speed feeder and a fixed speed
conveyor belt carries the product to the fines crushing
plant.

The fine crushing plant includes the secondary and tertiary
crushing circuits in a traditional recycle configuration. The
secondary crusher circuit consists in one primary screen
and a secondary crusher (Nordberg Corp Standard, 800
T/h, close side setting 25 mm). The tertiary circuit in-
cludes 4 screens (same model as primary screens, different
deck opening) and 3 Norberg shorthead crushers (close
side setting of 8 mm). The secondary screen undersize is

Fig. 1. Plant flowsheet: Primary crushing, secondary and
tertiary crushing, agglomeration, and heap leaching.

sent to the two fine silos. The ore from the fines silos is
conveyed through two belts, which feed two agglomerating
drums operating in parallel arranged with an inclination of
7.3 degrees and variable speed. In the agglomeration pro-
cess the curing begins adding sulphuric acid and raffinate
solution, depending on the amount of carbonate present
in the ore.

The agglomerated ore that has an average p80 of 15 mm,
is carried by a conveyor belt followed by several moving
belts towards a radial stacker to build up the heap. The
leaching process uses seven areas, whose dimensions are
90 m wide and 900 m long, for the assembly of heaps.
Each heap is divided into ten modules and each module
is irrigated independently first with ILS to generate PLS
and then with Raffinate (from SX process) to generate ILS.
The heap drainage flow is capture in two separate piping
systems (one for the first 4 modules and the other for the
remaining 6 modules). The Pregnant Leach Solution (PLS)
is delivered to the next stage (solvent extraction, SX) and
the Intermediate Leach Solution (ILS) is used to irrigate
the heaps. After the appropriate leaching time (around
170 days), the heap is disassembled with a bucket wheel
excavator, and the material disposed through a train of
conveyor belts into a dump.

3. HYDROMETALLURGICAL DYNAMIC
SIMULATOR

The simulator considers dynamic first principles models to
describe in general terms the behaviour of the real plant.
The following section briefly describes the models used and
indicates the simulated variables in the leaching process.
For more information of the other simulated processes the
reader is referred to Reyes et al. (2013).

The leaching process has long temporal and big spatial
scales. The temporal scale makes decision making difficult
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(results are obtained days later) and the spatial scale needs
the use of partial differential equations models (Cariaga
et al., 2005). In Equation 1, θ represents the water content
of the heap, D is the diffusion tensor, K is the hydraulic

conductivity in the z-axis (unity vector k̂). In Equation 2,
Ci stands for the concentration of solute i (copper or acid)
in the leaching solution and φi represents the rate of solute
added or removed from the solution and q is the Darcy’s
velocity of the solution.

∂

∂t
θ = ∇ ·

(
D∇θ +Kk̂

)
(1)

∂

∂t
Ci =∇ · (D∇Ci − q∇Ci) + φi (2)

An unsolved problem in mineral processing simulation is
the interconnection between the processes of ore prepa-
ration and operation of the heap leaching plant. The
simulator uses assembling and dismantling algorithms for
the operation of dynamic heap leaching process of oxide
coppers, which allows the output variables of the agglom-
eration process to take effect on the construction and
operation of the heaps. The leaching process simulation
and modeling considers the following operation variables
and parameters, as shown in Table 1.

Table 1. Input and output variables in leaching
process model

Name Unit Parameter
/ Variable

Initial Copper concentration % Parameter
Initial Solute copper concentration % Parameter
Initial Carbonate concentration % Parameter
Hydraulic conductivity m/h Parameter
Copper extraction m3/kg h Parameter
Acid consumption 1/h Parameter
Mean feed size distribution mm Input
Mean humidity in heap % Output
ILS irrigation rate L/h/m2 Input
ILS copper concentration gr/L Input &

Output
ILS acid concentration gr/L Input
Raffinate irrigation rate L/h/m2 Input
Raffinate copper concentration gr/L Input
Raffinate acid concentration gr/L Output
PLS flow m3/h Output
PLS copper concentration gr/L Output
PLS acid concentration gr/L Output
Copper recovery % Output
Leaching rate m3/ton Output

The hydraulic balance between irrigation and drainage
flows is important to the heap leaching operation (HL)
because it guarantees the future availability of irrigation
flow. Figure 2 shows an interconnection diagram between
the flows to the Dump operation (Dump N and S), Ag-
glomerators (AGL) and ponds of PLS, ILS and raffinate.
Solvent extraction (SX) simulation is carried out using
a simplified model based on copper extraction efficiency
(Komulainen et al., 2006).

4. HYDROMETALLURGICAL DECISION SUPPORT
SYSTEM

This section describes the main and specific objectives,
as well the implementation of the heap leaching DSS.

HL
SX

PLS

ILS

Raffinate

Acid

Water

Dump N

Dump S

AGL

Dump S

Dump N

Fig. 2. Hydraulic flows and pools simulation diagram.
The Heap Leaching (HL) process generates PLS and
ILS flows, the first one is transferred to the Solvents
Extraction (SX) process to generate Raffinate and the
second one is used to irrigate the heaps in a recycle
configuration.
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Fig. 3. DSS implementation flow diagram

For more information about the DSS for crushing and
agglomeration the reader is referred to Tejeda et al. (2013).
The first objective of the DSS is to assist metallurgical
personnel defining cure rates and acid concentration for
heap leaching irrigation.

The implementation diagram is shown in Figure 3. Each
user (operator or metallurgist) has a Human Machine In-
terface (HMI) connected to the plant information network.
These interfaces show the key performance indicators
(KPI). Having read the new measurements, the DSS gen-
erates KPIs based on predictions made with the dynamic
simulation, optimization models and expert systems. After
reviewing the DSS predictions the metallurgist can decide
with better information how to irrigate the heaps and then
communicate to the operators to enter the action through
the automation system.

A correct characterization of heap ore enables appropriate
selection of acid concentration for agglomeration and heap
irrigation. However, this characterization varies among
heaps, and differs from the mineralogical and metallurgical
studies by problems of representation and scalability. To
overcome this, the DSS characterizes the heap by param-
eter identification methods, and generates predictions of
recovery and other variables of interest. These predictions
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support, through economic analysis based on water and
acid consumption and copper extraction, the actions that
has to be taken.

Data measurement Measured variables in each heap are
the PLS or ILS acid concentration, copper concentration
and flow. Furthermore, the irrigation acidity is measured
and laboratory measurements are performed every 12
hours to obtain the copper concentration in the irrigation.
Mineralogy information is also obtained at the laboratory
and used by the dynamic simulator.

Model identification Following Moving Horizon Estima-
tion (MHE) with a square error minimization algorithm,
the identification module uses the measurements of input
and output variables to adjust the model parameters of the
simulator, these and other parameters are listed in table
2.

Table 2. Heap parameters to be calibrated

Parameter Units Measured/Calculated

Irrigation area m2 Measured
Heap mass ton Measured
Total copper content % Measured
Soluble copper content % Measured
Calcium carbonate content % Measured
Hydraulic conductivity m/h Calculated
Copper extraction m3/kg/s Calculated
Acid consumption 1/s Calculated

Moving Horizon Estimation (MHE) raises the state es-
timation of a system as a problem of optimization to
be solved at each iteration and seeks to minimize errors
between the measurements and model outputs. The es-
timation optimization occurs in a backward time span
(horizon) of N steps. Equation (3) shows the structure of a
problem of MHE applied to a system where x are the state
variables, y are the measurements and w and v are the
disturbances that affect the system and the measurements,
respectively. J(xt), where xt refers to x(t), is a quadratic
function that penalizes the model’s output error and the
variations in the estimated variables, ensuring the system
observation and the stability of the optimization problem.
In the specific case of the leaching process the measure-
ments are the ones mentioned in the previous subsection
and the state variables are the heap humidity, acid con-
centration in the solute, copper concentration in the solute
and solid state. The horizon length is a tuning parameter,
a long horizon generates a more stable estimation with
smooth variations in the parameters and a short horizon
allows the detection of fast changes in the parameters.
By trial and error a value of 10 measurements, 5 days
of operation, was chosen.

min
xt

J(xt)

subject to

x̂(t+ k + 1|t) = Ax̂(t+ k|t) +B1u(t+ k) + w(t+ k)

ŷ(t+ k|t) = Cx̂(t+ k|t) +D1u(t+ k) + v(t+ k)

, using k = −T . . .− 1
(3)

Predictions The DSS uses the calibrated models to make
predictions of the heap leaching process behaviour and
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Fig. 4. Example of identification. The dynamic model re-
sponds accurately providing a powerful tool to predict
the system behaviour.

the hydraulic balance between leaching and solvents ex-
traction processes. The prediction routine uses a prede-
fined leaching cycle (provided by the user) and algorithms
to model the stacking and disassembling of the heaps.
Also, using statistical analysis the parameters recently cal-
ibrated are projected in the future, giving a more reliable
prediction.

5. RESULTS

As a first step the dynamic model and its implementation
are validated with real industrial data. Figure 4 shows the
results for the identification process over the life-cycle of
the heap. The identification process achieves the necessary
fit to validate the algorithms and therefore the dynamic
simulator models.

To validate the prediction stage, input and output data
of ended heaps are partitioned in two sets. The first
25 days (inputs and outputs) are used to calibrate the
parameters. The rest of the operation days are used to
check the goodness of the prediction. To achieve this only
the future inputs are passed to the DSS which predicts the
future outputs. Figure 5 show the prediction for the copper
recovery, a key indicator for metallurgists which normally
is available only at the end of the heap operation. Figure 6
show the average Root Mean Square Error (RMSE) of the
copper recovery prediction in six heaps. The predictions
are made in four different times of the heap operation
(days 20,30, 45 and 60) and in each day a prediction of
different length is made (3, 7, 15 and 30 days). It must be

Using the prediction routine the metallurgist also has
access to the hydraulic balance of the leaching plant and
solvents extraction pools. Figure 7 shows an example of the
results that are given to the user considering only 45 days
of prediction for display purposes. The main information
includes a prediction of the level in the ILS, PLS and
raffinate pools, which are the main resources metallurgist
have to consider. In the example the prediction shows
how the ILS pool level is decreasing, while the PLS is
increasing. This result indicates to the metallurgist that
an action has to be taken, such as transferring PLS to the
ILS pool, to avoid future pool imbalance. Also, Figure 7
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Fig. 5. Prediction of the copper recovery. The dynamic
model is calibrated with the first 25 days (red), and
then using only the inputs the DSS predicts the future
outputs (green).
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shows the additional information given to the metallurgist,
the total drainage and irrigation flow in the heap leaching
plant. With this information the metallurgists can analyze
how the assembling and disassembling of the heaps, i.e.
changes in irrigation flows, affect the hydraulic balance,
clearly seen in the sawtooth behavior of the output flows.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the development of an
integrated dynamic simulator and a model based DSS for
the heap leaching process. We describe the simulated vari-
ables and parameters to be adjusted. These developments
seek to reduce the technological gap between hydrometal-
lurgical and concentrator operations.

The use of simulation tools allows the study of the re-
lationships between process variables, generating a better
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Fig. 7. Example of hydraulic balance. The DSS makes
prediction of the pool’s level in order to assist the
metallurgist in the decision of how to irrigate the
heap.

understanding of the process and its behavior. The simula-
tion example presented shows that simulation can be used
as a predictive tool for the support of decision making
personnel, bringing future key performance indicators to
the present.

Future lines of development are related to the validation
of the DSS with on-line data. Also, to implement different
set of rules for helping the planning of new irrigation
cycles. Finally, it is considered the future developments in
modelling and assisting-oriented algorithms of the solvents
extraction and electrowinning processes.
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