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Abstract: This paper deals with the purely magnetic attitude control problem. Nonlinear equations of 
attitude motion under environmental disturbances are presented. It is observed that the environmental 
disturbances affecting the control system appear as unmatched uncertainties. The controlled dynamic 
system can be represented in regular state-space form, which allows appropriate controller design. 
Attenuation of the disturbance effects on the steady-state behavior of the attitude angles is still an 
important problem in small satellite missions. Therefore, the integral sliding mode control method is used 
to solve the purely magnetic attitude control problem. The control torque vector at the output of the 
controller acts on the spacecraft after successive manipulations in magnetic actuation and interaction steps. 
The magnetic attitude control system is designed by using Lyapunov’s direct method in the framework of 
sliding mode control theory. The performance of the resulting control system is evaluated through realistic 
simulations, and it is seen that the integral sliding mode controller has a superior steady-state performance 
with respect to the nominal controller. 

 

1. INTRODUCTION 

Since the beginning of the eighties, small satellites have been 
increasingly preferred for space missions. These platforms 
are restricted in terms of size, mass, and power, so they 
require attitude control actuators that are smaller in size, 
weigh less, and consume less energy than the conventional 
ones. Consequently, the attitude control problem of small 
satellites has become a topic of interest, on which many 
solutions have been proposed in literature. One of them is the 
purely magnetic attitude control method, which enables 
controlling the attitude in three axes by using only 
electromagnetic actuation. 

The magnetic actuators are highly suitable for small satellites 
employed in missions with relatively low pointing accuracy 
requirements because they are low mass electromagnetic 
coils or rods fitting small volumes easily, and they require 
less energy during the nominal operation mode. They are free 
of degradation thanks to their non-mechanical structure. In 
addition, they are driven by controlled currents, which makes 
them much more suitable than mechanical momentum 
exchange devices for use with discontinuous control 
algorithms such as sliding mode control. 

Although the magnetic torquers have been considered as 
auxiliary actuators since 1961, it has been also worked on 
benefiting from them as primary actuators in the last twenty 
five years. One of the first important papers that deal with 
purely magnetic attitude control was published in 1989 
(Musser et al.). In that work, an infinite-time horizon linear 
quadratic regulator is proposed. In a Ph.D. thesis dated to 
1996, many linear and nonlinear control laws, one of which is 
based on sliding mode control method, are designed to 

control a small satellite in low Earth orbit by using only three 
mutually perpendicular magnetic actuators (Wisniewski, 
1996). In that study, the controller is designed based on a 
continuous reaching law, which eventually leads to the loss 
of disturbance rejection capability of the sliding mode 
controller (Wisniewski, 1998). Another example of 
application of sliding mode control method to purely 
magnetic attitude control problem can be found in (Wang et 
al.). Two more of the fewer nonlinear solutions to purely 
magnetic attitude control problem are given in (Lovera et al., 
2001) and (Lovera et al., 2004), where nearly global 
asymptotic stability is achieved by designed nonlinear 
controllers. In a similar work (Gravdahl), uniformly global 
stability result is obtained for the nonlinear problem. 
(Bolandi et al.) provides the problem with a solution also by 
using sliding mode control method. In a recent attempt to 
solve the problem, a nonlinear sliding manifold and a second-
order sliding mode controller are used (Janardhanan et al.). In 
(Sofyalı et al.), it is shown that the nonlinear attitude 
dynamics can be stabilized asymptotically by using the 
classical discontinuous reaching law on the contrary to the 
result in (Wisniewski, 1996), and a new modified 
discontinuous sliding mode controller is designed, which is 
shown to be superior to the continuous one. 

To the best knowledge of the authors, there has been only one 
attempt in (Das et al.) to propose solutions to the nonlinear 
robust attitude control problem by using only electromagnetic 
actuation, where by using neural network approach, the 
stabilization is achieved for the nonlinear system with 
parameter uncertainties and under disturbance effects. 
Variable structure controllers have the theoretical potential to 
provide that problem with solutions insensitive to external 
disturbances and model parameter uncertainties. 
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In this study, nonlinear equations of attitude motion subject 
to environmental disturbances are presented because the 
considered mission phase is the attitude acquisition, in which 
the spacecraft are carried from an initial state that is quite 
distant from the equilibrium state. It is observed that the 
environmental disturbances affecting the control system 
appear as unmatched uncertainties. The controlled dynamic 
system can be represented in regular state-space form, which 
allows appropriate controller design. Integral sliding mode 
control method is employed to attenuate the environmental 
disturbance effects on the steady-state behaviour of the 
attitude angles, which is an important problem in small 
satellite missions. The control torque vector produced by the 
controller acts on the spacecraft after successive 
manipulations in magnetic actuation and interaction steps. 
The magnetic attitude control system is designed in the 
framework of sliding mode control theory. The performance 
of the resulting control system is evaluated through 
simulations employing realistic disturbance models. 

2. SPACECRAFT ATTITUDE DYNAMICS 

2.1  State Equations of Attitude Motion 

For a rigid spacecraft in a circular orbit, the controlled and 
disturbed rotational motion can be described in state-space as 
follows: 

 
( ) ( ) ( ) ( ) ( )= + +

 

   

x t f x b t u x d t .                                         (1) 

 
Here, the state vector is /

4 ω =  
 

TB Ax q q  consisting of 

the quaternion vector [ ]1 2 3

Tq q q q=
 , the scalar 

quaternion component q4, and B Aω
 , the 3x1 angular velocity 

vector of the satellite’s body (principal) reference system B 
with respect to the orbit reference system A (Fig. 1). The 
quaternions define the orientation of B with respect to A 
(Wie). In Fig. 1, N is the Earth-centred inertial (ECI) 
reference system 

 

Fig. 1. Reference axis systems A, B, N (Wie) 

The terms on the right-hand side of (1), which can be easily 
derived from kinematic and dynamic attitude equations in 
(Wie), are the 7x1 nonlinear system vector 
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the 7x3 control matrix (Calloni et al.) 
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which is explicitly dependent on time and where ( )B t  is the 
skew-symmetric matrix corresponding to the local 

geomagnetic field vector ( ) ( ) ( ) ( )[ ]1 2 3=
 T
B t B t B t B t , 

the 3x1 control vector ( ) u x  evaluated by the proposed 
control law, and the 7x1 disturbance vector 
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J
 is the diagonal inertia matrix. ( )



dT t  is 

the 3x1 environmental disturbance torque vector consisting of 
the components due to the aerodynamic drag and the solar 
radiation pressure, which are represented in the simulation 
environment by realistic mathematical models that take 
satellite’s attitude and geometry into account. 

2.2  System Analysis 

The rank of the control matrix (3) is equal to 2, which implies 
that the system is underactuated. This is in coincidence with 
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the physical interpretation of the magnetic torque production 
law (Martel et al.) 

 

( ) ( ) ( ) ( ) ( )
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where ( )



mcT t  is the 3x1 magnetic control torque vector and 

( ),


M x t  is the 3x1 magnetic control moment vector having 
the magnetic moment components produced by the three 
magnetic actuators as its elements. Fortunately, the 
underactuated direction continuously changes with respect to 
the body reference system when the spacecraft move along 
the orbit. If the change is quasi-periodic, the purely magnetic 
control approach becomes adequate for three-axis regulation 
of attitude dynamics. This fact makes the engineering 
application of the purely magnetic attitude control method 
possible (Wisniewski, 1996). 

The integral sliding mode control method requires that the 
considered system is affine (a nonlinear system with right-
hand side as linear function of the control input u) (Utkin et 
al., 2009), and the system’s time-independent control matrix 
has a rank equal to the control input number m (Utkin et al., 
2009). On the considered problem, the control matrix is time-
dependent, and accordingly, the uncontrolled direction varies 
continuously with respect to the body reference system B, 
which is the frame the control moment and torque are 
produced in. This fact provides the control system with the 
property of being instantaneously underactuated. It may be 
asserted that the difference between the properties of being 
underactuated and being instantaneously underactuated 
allows the application of the integral sliding mode control 
method to the purely magnetic attitude control problem. 

There is no such a ( )tγ  vector satisfying the following 
relation 

 
( ) ( ) ( )γ=


d t b t t                                                                  (6) 

 
because the matrix 
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in (3) has no inverse. Therefore the matching condition is not 
satisfied (Utkin et al., 2009). That means that disturbances 
enter the system at different points with inputs thus they are 
described as unmatched. 

If a system can be divided into two blocks, the first one with 
row number of n-m including no control terms and the second 
one with m rows including the control inputs, it means that 
the system is in so-called regular form (Utkin et al., 2009). In 
our case, it can be concluded from (1) together with (2)-(4) 
that the considered system is in regular form. 

3.  MAGNETIC INTEGRAL SLIDING MODE 
CONTROLLER 

3.1  Integral Sliding Mode Control 

The integral sliding mode control method is introduced in 
(Utkin et al., 1996) to remove the reaching mode that exists 
in the conventional sliding mode control method. In the 
reaching mode preceding the sliding mode, the invariance 
with respect to the disturbances and parametric uncertainties 
is not valid. Under the integral sliding mode control, the 
sliding mode starts at the initial time instant t0, and the 
invariance is guaranteed for the whole closed-loop control 
process. The order of the motion in integral sliding mode is 
equal to the original system’s order n whereas the motion in 
conventional sliding mode has an order equal to n-m. It 
theoretically provides the system under perturbations with the 
same performance as under no perturbations. 

When first proposed, the integral sliding mode control 
method required that the perturbations acting on the 
considered system are matched (Utkin et al., 2009). 
However, approaches enabling its application on systems 
with unmatched perturbations have been developed in the last 
ten years. As asserted in (Rubagotti et al., 2011), it is 
possible to reject matched disturbances completely and to 
avoid the amplification of unmatched disturbances by 
defining a proper sliding manifold and guaranteeing sliding 
mode. As a result, the effect of disturbances on the system 
can be kept at a minimum level. 

In this study, the approach presented in (Rubagotti et al., 
2011) is applied on the purely magnetic attitude control 
problem by benefiting from the fact that the closed-loop 
system is in regular form in the light of (Utkin et al., 2009) 
and (Rubagotti et al., 2010). 

The vectorial control signal is divided into two parts: 

 
( ) ( ) ( )0 1u x u x u x= +
      .                                                      (8) 

 
Here, ( )0u x   is the law designed to regulate the system that is 
not disturbed as desired and is named as nominal control law. 

( )1u x   is the discontinuous control law responsible to keep 
the system in sliding mode by counteracting to disturbances 
(Utkin et al., 2009, Rubagotti et al., 2010, 2011). 

It is necessary to assume that the disturbance vector is 
bounded for t≥t0: 
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The sliding manifold with the dimension number of m=3 is 
defined as follows: 

 
( ) ( ) ( )s x g x z x= −
     .                                                       (10) 

 
As aforementioned, in this method, ( ) ( )0 0 0 0s x t s x s  = = = 



      
holds, and the sliding vector is forced to be equal to zero for 
t≥t0. Here, g  is equal to the sliding vector defined in the 
conventional sliding mode control method. z  is the integral 
term, and it is obtained by the integration of the equation 
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which is derived from the equation (10) that holds for t≥t0. 
The result of the integration is 
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Here, ( )G x  is the mxn Jacobian matrix. Although it is 
generally assumed to be dependent on the state vector, it can 
be a constant in accordance with the definition of g  
(Rubagotti et al., 2010, 2011). 

Regarding systems in regular form, it is claimed in 
(Rubagotti et al., 2011) that the most proper selection for g  
is a linear function of the state vector: ( )g x Gx=

   . 

The constant Jacobian matrix is defined as 
( )0m x n m m xmG N− =   , where N is any full-rank matrix 

(Rubagotti et al., 2011). Note that the mx(n-m) block 
corresponding to the first block with n-m=4 rows, which is 
defined in the previous section, is taken as zero to avoid 
possible amplification of disturbances entering that block. 
However, in the considered problem, there is no disturbance 
entering the first block as seen from (4). Therefore, the 
selection of a g  vector that leads to a G matrix with nonzero 
elements in its first n-m columns is allowable. 

It is shown in (Vadali) through the minimization of a 
quadratic performance index consisting of the quaternions 
and the angular velocities that the sliding motion on the 
selected manifold 
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is optimal. Here, qk  is the sliding manifold design parameter. 
The resulting Jacobian matrix is as follows: 

 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

q

q

q

k
G k

k

 
 =  
  

.                                  (14) 

3.2  Controller Design 

The employed nominal control law 
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is first proposed in (Wisniewski, 1996). Here, gk  is the 
nominal controller design parameter, and the equivalent 
control vector is 
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The discontinuous control term can be taken as 
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with ssk  being the controller design parameter. 

The resulting control vector is 

 
( ) ( ) ( ) ( )0 1 eq g ssu x u x u x u K g K sgn s= + = − −
         .         (18) 

 
The control term 1u  is designed by using Lyapunov’s direct 
method. The following Lyapunov function candidate is 
chosen: 
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2 2
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Its time derivative along the state trajectories can be written 
as 
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which leads to 
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after appropriate substitutions and simplifications. 

There are three marginal cases for the matrix BC , which 

occurs when B


 is directed instantaneously along the ith (i = 
1,2,3) principal body axis of the spacecraft. Then BC  
becomes diagonal with its ith element equal to zero while the 
other two are equal to one. For this particular case, it can be 
concluded from (21) and (17) that ssk  has to be infinite to 

guarantee that 0V < . However, further investigation of the 
control torque production equation (5) indicates that the 
component of mcT



 that is responsible for disturbance rejection 

1
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ssk  to 
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∞

> =
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                                               (22) 

 
because at that moment the disturbance counteraction occurs 
only along the other two body axes. 

For the general case of [ ]1 2 3

T
B B B B=


, 
1mcT



 has 

components along all of the three body axes. ssk  is required 

to be infinite when 2 3B B= − , 3 1B B= − , or 1 2B B= − , 

however it can be shown that the component of 
1mcT



 along 
the ith (in respective order: i = 1,2,3) axis also becomes zero 
then. This means that the physical interpretation given above 
for the marginal cases is also valid for the general case. 
While B



 changes its orientation with respect to the body 
reference system along the orbit, there are moments when 
high ssk  values are required to counteract the disturbance 
torques. Even at those moments, the uniform ultimate 
boundedness of the system is maintained, which means that 
the stability condition 0V ≤  is satisfied. 

4. SIMULATION RESULTS 

The spacecraft model used in simulations belongs to the 
satellite Oersted of Denmark, and the properties of the 
satellite are found in (Wisniewski, 1996). The model 
consisting of satellite’s three principal moments of inertia is 

2
1 2 3; ; 2.904; 3.428; 1.275 kgmJ J J = . 

The simulations are carried out along Oersted’s orbit. The 
geomagnetic field vector is obtained by the highly accurate 
spherical harmonic model, IGRF. Oersted’s mean motion is 

equal to 26.02 10 deg s−×  while its orbital period is equal 
to 35.98 10 s 99.6 minT = × = . 

The initial Euler angles, which are the respective rotation 
angles around the three body axes and can be calculated from 
the four quaternion components, and the initial angular 
velocities are [ ] [ ]

0

180 0 0T T

t t
φ θ ψ

=
= ° ° °  and 

[ ]
0

/ 0 /s 0 /s 0 /s TB A
t t

ω
=

= ° ° °
 , respectively. The initial state 

is the stationary upside down state. The equilibrium state is 
represented by [ ] [ ]0 0 0T T

equilibrium
φ θ ψ = ° ° °  and 

[ ]/ 0 /s 0 /s 0 /s TB A
equilibrium

ω = ° ° °
 . 

The sliding manifold design parameter and the nominal 
controller design parameter respectively have the values 

32.5 10  rad sqk −= ×  and 31 10  Nms radgk −= × . The 

value of the controller design parameter ssk  is selected to be 

higher than ( ) 72.222 10  NmdT t −
∞

= ×


 according to (22) as 
72.3 10  Nmssk −= × . 

 

Fig. 2. Euler angles by nominal controller (15) 

 

Fig. 3. Euler angles by integral sliding mode controller (18) 
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To be able to evaluate the superiority of the integral sliding 
mode controller to the nominal controller, the time responses 
of Euler angles and angular velocities are presented in Fig. 2-
3 and in Fig. 4-5, respectively. Fig. 3 shows that the integral 
effect reduces steady-state errors for each of the three Euler 
angles by forcing them to oscillate around the horizontal axis 
rather than an axis with an offset as seen in Fig. 2. The used 
spacecraft model corresponds to a configuration that is 
gravity-gradiently stable in terms of rolling and pitching 
motions. Thus the integral sliding mode control method’s 
superior performance is best observed on the yawing motion. 

 

Fig. 4. Angular velocities by nominal controller 

 

Fig. 5. Angular velocities by integral sliding mode controller 

The comparison of Fig. 4 and Fig. 5 shows that the steady-
state oscillation band is made narrower by the integral sliding 
mode control law. On the other hand, oscillations with high 
frequency and low amplitude appear in the angular velocity 
responses (Fig. 5). 

It is seen from Fig. 6 that the components of the sliding 
vector defined in (10) can be kept in the vicinity of zero. 

The magnetic control moment components produced by the 
nominal and integral sliding mode controllers are given in 
Fig. 7 and Fig. 8, respectively. 

 

Fig. 6. Sliding vector’s magnitude by integral sliding mode 
controller 

 

Fig. 7. Magnetic control moments by nominal controller 

 

Fig. 8. Magnetic control moments by integral sliding mode 
controller 

Signals in both figures are far from the saturation limit of 
Oersted’s magnetic actuators, which is ±20 Am2 
(Wisniewski, 1996). The effect of the discontinuous control 
term is observed as chattering in Fig. 8. Chattering is not an 
important issue for the considered problem because the 
actuators are driven by current, which’s direction can be 
changed with high frequency by proper circuit design. The 
oscillations in the angular velocity responses emerging from 
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chattering in the inputs have negligible amplitudes, however 
their possible degenerating effects especially on optical 
sensing can be eliminated by low-pass filtering. 

5. CONCLUSIONS 

The designed integral sliding mode controller increases the 
steady-state performance of the nominal controller under the 
effect of environmental disturbances. The available approach 
specific to systems in regular form and with unmatched 
uncertainties is applied to the considered problem with an 
allowable modification in the structure of the Jacobian matrix 
G. 

The complete rejection of the disturbances cannot be 
achieved because there is difference between the orientations 
of the control torque vector computed by the controller and 
the applied control torque vector. This is due to the inclusion 
of BC  in the control matrix, which mathematically models 
the effects of magnetic actuation and interaction on the 
controller output. To solve this fundamental problem specific 
to the purely magnetic attitude control problem, there seems 
to be a need for novel approaches. A related study is 
currently carried out by the authors. 

A source of model uncertainty in the attitude control problem 
of a rigid spacecraft is the fact that, in reality, the principal 
body axes mostly do not coincide with the body axes that are 
orthogonal to the body surfaces. Therefore, modelling the 
spacecraft with a diagonal inertia matrix may lack accuracy. 
For further studies, model uncertainty should be taken into 
consideration. 
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