
The Information Structure of Feedforward/Preview
Control Using Forecast Data

Robert H. Moroto ∗ Robert R. Bitmead ∗ Bram Sleegers ∗∗

∗ Department of Mechanical and Aerospace Engineering, University of
California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0411,

USA. (email: rmoroto@ucsd.edu, rbitmead@ucsd.edu)
∗∗ Department of Mechanical Engineering, Technical Universiteit Eindhoven,

Postbus 513, 5600 MB Eindhoven, The Netherlands. (email:
b.sleegers@student.tue.nl)

Abstract: Preview control using a fedforward imperfect forecast measurement of a disturbance signal
is investigated in the context of discrete-time linear quadratic Gaussian (LQG) control. A new approach
for incorporating such forecast measurements is built directly on established preview control models and
results. The calculation of the optimal control gain, for which an efficient computation has already been
derived, is found to be independent of the stochastic forecast measurements, implying that the optimal
state estimator is where performance improvements in this problem set-up occur. Most significantly, the
forecast data model is shown to equip the problem with a nested information structure whereby any
forecast feedforward control problem of a fixed horizon length is always equivalent to a problem with
a longer horizon and infinitely unreliable forecast measurements beyond the smaller horizon length. A
numerical example illustrates the effect of forecast horizon length and data quality on the closed-loop
system performance.
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1. INTRODUCTION

We formulate the feedforward problem using the (by now)
traditional technique of including a delay line, fed by future
disturbance values, into an augmented plant structure. This
approach dates back, at least, to Tomizuka and Whitney [1975].

We then pose a standard linear quadratic Gaussian (LQG)
control problem using this structure, which incorporates the
feedforward into the state feedback. This follows closely the
H2-optimal method of Hazell and Limebeer [2010] and yields
an LQ feedback gain and a state estimator, along with a closed-
loop performance calculation. The separation theorem shows
that the LQ gain and the state estimator are designed separately.

The central novelty of the paper rests in the incorporation of
separate measurement noises into the feedforward signal, which
consists of the entire state of the delay block and not just
of its input, as in earlier treatments. This is able to capture,
via the associated measurement noise covariances, the forecast
phenomenon of diminishing reliability with preview horizon.
This is our method for addressing the information structure.

From the linear Gaussian formulation, we prove a well-known
(but perhaps unproven) feature that the absence of data can be
accommodated through taking infinite variance of that data’s
measurement noise. This is used to prove, by construction, that
the N -step-ahead feedforward controller with forecast infor-
mation can be precisely embedded within the (N + k)-step-
ahead feedforward (for k ≥ 0) with the final k steps having
infinite variance measurement noise. This approach also simply
addresses the presence of both previewed and unpreviewed
disturbances acting on a controlled system.

1.1 Literature

Feedforward or preview control deals with the application of
measurements in advance of a disturbance process impinging

on a regulated system. These advance measurements are incor-
porated into the feedback control signal to aid in the rejection
of the effects of the disturbance. At its core, feedforward deals
with information in control. In this paper we explore this infor-
mation structure in detail for the case of discrete-time Linear
Quadratic Gaussian (LQG) or H2 control. The study is moti-
vated by control issues in the so-called Smart Grid, such as de-
mand response and consumption forecasting, where data from
the grid and/or from the external environment (such as weather
and irradiance) provide information regarding the demand. A
feature of this data is that its quality often varies with horizon
of availability. Thus, one-hour-in-advance weather predictions
are inherently less reliable than five-minute-in-advance values.
Our analysis seeks to explore how such data quality issues can
be incorporated into the calculation of feedforward control and,
more importantly, how their quality (or lack thereof) affects
eventual regulation performance. In this fashion, the results
should prove useful for examining the possible impact of cap-
ital expenditure on improving the quality of measurements in
advance.

Technically, the paper demonstrates that, for LQG control,
the information aspects are captured by the state estimator
and hence both the feedforward control horizon and the data
quality can be divorced from the state feedback gain calculation
entirely. This separates the consideration of the informational
data properties into just the development of the appropriate
Kalman filter. Our approach is to demonstrate that the LQG
feedforward control signal with horizon N can be constructed
as that of horizon M ≥ N and with a related but distinct
information structure; the state estimator changes, but all the
feedback gains except the M th value remain fixed and this
terminal value (as noted by Hazell and Limebeer [2010]) tends
to zero exponentially with M . Once this is established, the
analysis of the effect of data quality on the performance of LQG
feedforward control can take place through the analysis of the
state estimator alone.
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We rely on four recent lucid papers dealing with the formu-
lation of feedforward and preview control for: LQG systems
Hazell and Limebeer [2010] and Roh and Park [1999], Model
Predictive Control for linear systems with constraints Carrasco
and Goodwin [2011], and H∞ control Hazell and Limebeer
[2008]. Each of these papers provides a survey of the literature
in the field and we shall draw from particularly Hazell and
Limebeer [2010] for the underlying problem formulation. Since
we are dealing with linear systems, we omit the consideration of
reference tracking aspects. For simplicity, the term feedforward
control will refer to a control law which relies on both a feed-
forward measurement of the disturbance signal and a feedback
measurement from the output of the plant.

The paper unfurls as follows. The underlying problem state-
ment is developed in Section 2, where we adopt the construction
from Roh and Park [1999] and Hazell and Limebeer [2010]
where the plant model is augmented by a set of delay elements
acting on the disturbance before it reaches the plant output.
In section 3, feedforward data is incorporated into a standard
LQG design and analysis through the provision of measure-
ments from some of the upstream delays. In this section we
also describe the informational properties of the feedforward
data, notably that of multiple-horizon forecast data, through the
incorporation of measurement noise processes into the LQG
design. Unlike Hazell and Limebeer [2010], this covers both
fedforward and unfedforward disturbance channels in the same
breath. The formulation of LQ feedback gain, Kalman state
estimator, and LQG performance follow directly. Section 4
constructs the explicit solution of the state feedback gain ma-
trix of feedforward control for horizon N and specializes and
improves the solution properties from Hazell and Limebeer
[2010]. This is followed in Section 5 by the explicit solution
of the associated state estimator with a given information struc-
ture and culminates in the demonstration that the N -step-ahead
feedforward control signal can be generated by the M -step-
ahead solution with any M ≥ N and the appropriate informa-
tion structure. This is the core theoretical analysis of the paper
and permits the restriction of the consideration of information
structure for feedforward to the design of the state estimator
alone. Section 6 provides a brief numerical example.

The contribution of this paper is to provide the analysis of in-
formational aspects of feedforward control, exploiting forecast
data, which were not evident in the solution derived in Hazell
and Limebeer [2010], where the dependence of disturbance
rejection control on the feedforward horizon of exact distur-
bance data is the prime focus and were not explored in Roh and
Park [1999], where only a single noise-corrupted disturbance
value is fedforward, as opposed to an entire forecast affected
by additive noises of possibly non-uniform covariances. For
this current paper, the effect of the data quality of a forecast
measurement is of paramount interest. This has not been studied
earlier and provides insight into the performance effects of im-
provements in feedforward data. This information-centric view
of feedforward control admits new insights into the solution
structure and into the role of the horizon, notably with the
application of imperfect forecast data.

2. PROBLEM DESCRIPTION

The system depiction in Figure 1 below contains three sub-
systems: the plant G, the disturbance model Gd, and the dis-
turbance delay line block G∆ with discrete-time state-space
realizations

G :=

[
A B I

C 0 0

]
, Gd :=

[
Ad Bd
Cd 0

]
, G∆ :=

A∆ B∆

C∆ 0

I 0

 ,
where the disturbance model Gd is assumed to be stable.

G
K

G∆Gd

wd,t d?t = dt+N dt

yt
wt

ut
yf,t

vf,t x∆,t

vt

Fig. 1. A feedforward regulator problem with forecast data.

All noises are assumed stationary. The plant output is corrupted
by an additive disturbance dt ∈ Rp and an unmeasured,
additive measurement noise vt ∈ Rp. This new output, yt ∈ Rp,
is then fedback to controller block K , which also contains
an estimator. Future disturbance d?t = dt+N is the result of
Gaussian white noise wd,t ∈ Rmd feeding into the known
system Gd. The current disturbance dt is generated when d?t
is fed into the N -step delay block G∆, the state of which
x∆,t ∈ RNp is the sequence of current and future disturbances
up to horizon length N .

x∆,t =
[
dTt dTt+1 . . . d

T
t+N−1

]T
.

At time t, a preview or forecast of the disturbance, dt+n, is
available for n = 0, 1, . . . , N − 1 in the form of yf,t ∈ RNp.
The reliability of this forecast diminishes with the advancing
horizon of the data, i.e. with increasing n. This is incorporated
into our model through the inclusion of additive measurement
noise vf,t ∈ RNp onto the forecast signal , which includes the
whole state of the delay line instead of its input signal dt+N as
is typically done in preview control.

Hence, the preview signal available to the controller, K , is
yf,t = x∆,t + vf,t,

where vf,t is assumed zero mean, white, and Gaussian with
cov(vf,t) = blockdiag [Vf,0, Vf,1, . . . , Vf,N−1] , (1)

and Vf,j ∈ Rp×p.
Vf,0 ≤ Vf,1 ≤ · · · ≤ Vf,N−1. (2)

The delay structure is captured by taking

A∆ =


0 I · · · 0
...

...
...

0 0 · · · I
0 0 · · · 0

 ∈ RNp×Np, B∆ =


0
...
0
I

 ∈ RNp×p,

C∆ = [I 0 · · · 0] ∈ Rp×Np,
with I, 0 ∈ Rp×p. We denote the state of the plant G and
disturbance model Gd as xt ∈ Rn and xd,t ∈ Rnd respectively.
wt ∈ Rn is an unmeasured, additive process noise on the plant.

Our approach, as in Hazell and Limebeer [2010], is to apply
Linear Quadratic Gaussian (LQG) control to this problem and
to develop the controller information architecture by study-
ing the separation into optimal state-variable feedback for a
given performance criterion and the optimal state estimation.
Specifically, we demonstrate that the LQG solution for this
problem possesses an underlying structure where the entire in-
formational aspects of the control reside completely within the
estimator design and the state-variable feedback remains fixed.
This fixed decomposition holds even when the horizon of the
forecast changes. While separation is a well understood aspect
of LQG, the existence of a horizon-independent decomposition
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is new and extends the work of Hazell and Limebeer to provide
a distinct analysis of the information aspects of performance.

2.1 Development of the Augmented System

We develop the augmented model for this system by defining
the augmented state Xt, exogenous process noise Wt, output
Yt, and measurement noise Vt as follows:

Xt =

[
xt
x∆,t
xd,t

]
, Wt =

[
wt
0

Bdwd,t

]
,

Vt =

[
vt
vf,t

]
, Yt =

[
yt
yf,t

]
.

(3)

Using these signals, the augmented system has a state variable
realization given by

Xt+1 = AXt + But +Wt,
Yt = CXt + Vt,

(4)

where

A =

[
A 0 0
0 A∆ B∆Cd
0 0 Ad

]
, B =

[
B
0
0

]
, C =

[
C C∆ 0
0 I 0

]
.

We will also define the set of measurements from time zero to
t as Yt := {Y0, . . . ,Yt}. We note that although the augmented
system is uncontrollable from ut, it is stabilizable since the
disturbance model Gd is assumed stable and is non-interacting
by construction. The above augmented system is now in the ap-
propriate form to synthesize the LQG controller and estimator
pair directly.

3. THE LQG PROBLEM, SOLUTION, AND
PERFORMANCE

The augmented system (4) describes the feedforward prob-
lem withN -step-ahead forecast disturbance measurements cor-
rupted by noise capturing their reliability via (1-2). The com-
plete state of the delay line, x∆,t, is available to the controller
but corrupted by zero-mean measurement noise vf,t. By ma-
nipulating the covariance structure of this noise, we are able to
accommodate the forecast data properties. We do this by pos-
ing an LQG optimal feedback control design problem, whose
solution comprises linear state estimate feedback.

The criterion to be optimized in this disturbance rejection
problem is

J = lim
T→∞

1

T
E

{
T−1∑
i=0

{
yTi Qyi + uTi Rui

}}
, (5)

whereQ andR are user-specified performance penalty matrices
which determine the disturbance rejection problem.

To complete the infinite-horizon stochastic LQG design, we
also specify

Q =

[
CT

CT∆
0

]
Q [C C∆ 0] ,

W = cov(Wt) =

[
W 0 0
0 0 0
0 0 Wd

]
, V = cov(Vt) =

[
V 0
0 Vf

]
.

We make the following assumptions to ensure the existence of
a stabilizing optimal control.

(A1) The matrix Ad has all its eigenvalues strictly inside the
unit circle and [A,B] is stabilizable. This, together with the

property that, by construction, the eigenvalues of A∆ are all
zero, ensures that [A,B] is stabilizable.

(A2) The LQ state penalty matrix Q ≥ 0 and the control
penalty matrix R > 0.

(A3) The pair [A,Q1/2C] is detectable, which together with
(A1) implies that [A,Q1/2C] is also detectable. It also im-
plies that [A,C] and therefore [A, C] are detectable.

(A4) The covariances satisfy V > 0, Vf > 0,W ≥ 0,Wd ≥ 0.
(A5) The pair [A,W 1/2] is stabilizable, which implies that

[A,W ] is stabilizable.

Under these assumptions, the LQG optimal control 1 for system
(4) with criterion (5) is given by

X̂t+1|t = (A− BK − LC)X̂t|t−1 + LYt, (6)

ut = −KX̂t|t−1. (7)

Since Yt =
[
yTt yTf,t

]T
, this implements both the feedback and

feedforward control, where the feedforward control potentially
uses the disturbance predictions from every horizon up toN−1.
The state-feedback matrix, K, and the output-injection matrix,
L, are computed by solving the two algebraic Riccati equations

P = ATPA−ATPB(BTPB +R)−1BTPA+Q, (8)
Σ = AΣAT −AΣCT (CΣCT + V )−1CΣAT + W , (9)

for P and Σ and then taking

K = (BTPB +R)−1BTPA, (10)
L = AΣCT (CΣCT + V )−1.

Closed-Loop LQG Performance

Denote the augmented state-estimate error as

Et = Xt − X̂t|t−1.

Substituting the control input signal ut from (7) into the aug-
mented system dynamics in (4) and into the augmented state
estimate dynamics from (6), the closed-loop system can be
written as[
Xt+1
Et+1

]
=

[
(A− BK) BK

0 (A− LC)

] [
Xt
Et

]
+

[
Wt

Wt − LVt

]
.

The closed-loop covariance matrix can be found by solving the
following Lyapunov equation:[

E{XtX Tt } E{XtETt }
E{EtX Tt } E{EtETt }

]
=

[
(A− BK) BK

0 (A− LC)

] [
E{XtX Tt } E{XtETt }
E{EtX Tt } E{EtETt }

]
×
[
(A− BK) BK

0 (A− LC)

]T
+ cov

([
Wt

Wt − LVt

])
.

Using the properties of the trace of a matrix and noting that the
covariance of the estimation error is simply the Kalman filter
covariance, E{EtETt } = Σ, it can be verified that the closed-
loop LQG performance criterion can be computed as

J = trace
(
(Q+KTRK)E{XtX Tt }

+KTRK(Σ− E{XtETt } − E{EtX Tt })
)

+ trace (QV ) .
(11)

For the remainder of this paper, we shall refer to the above
problem as the forecast feedforward control problem. In the
subsequent sections, we refine the structures of K and L,
1 We have chosen, for notational clarity only, to use the LQG optimal control
with the prediction estimator even though the plant itself is strictly proper and
the filtered estimator is truly optimal. See Ishihara and Takeda [1986]
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extending the observations of Hazell and Limebeer [2010]
concerned with “efficient computation,” which in turn extended
those of Bitmead et al. [1990] for the control only. Then the
detailed structure of Vf , the feedforward measurement noise
covariance, will be introduced, since this is the embodiment of
the problem’s Information Structure.

4. STRUCTURE OF THE STATE-ESTIMATE FEEDBACK
GAIN AND FILTER GAIN

Before we can analyze the information structure of the forecast
feedforward control problem, we must first apply an important
result from Hazell and Limebeer [2010] which gives explicit
formulæ for the augmented control gain K and its constituent
components. Prior to this, we develop an appropriate partition.
After establishing the efficient computation of K in the context
of this paper, we summarize why the analogous results, from
Hazell and Limebeer [2010], for the efficient computation of L
and Σ do not apply to the case of an uncertain forecast as the
feedforward measurement.

Consider the conformable partitioning of the augmented state-
estimate feedback gain K for multiplication by the augmented
state estimate X̂t|t−1 (which inherits its partition from (3)) as

K = [K K(0) K(1) . . . K(N−1) KdN ] , (12)
where, to form controller ut, −K multiplies the estimate of
plant state xt, −Kn, with 0 ≤ n ≤ N − 1, multiplies the
estimate of the delay line state x∆,t, and −KdN multiplies the
estimated disturbance model state xd,t.

We partition the associated algebraic Riccati equation solution
P from (8) in similar fashion as

P =

 P P∆ Pd
PT∆ P∆∆ P∆d

PTd PT∆d Pdd

 . (13)

4.1 Efficient Computation for P andK of Hazell and Limebeer

The following theorem is the direct application of the results
of Hazell and Limebeer [2010] in the context of the forecast
feedforward control problem, and is therefore stated without
proof.
Theorem 1. (Efficient Formulae for K and P). Define the ma-
trix Ac as

Ac = A−BK.
The components of the augmented, unique, stabilizing control
gain K in (10), with P partitioned as in (13), are given by

K = (BTPB +R)−1BTPA, (14)
K∆ = (BTPB +R)−1BT

×
[
0 (CTQ) (ATc C

TQ) . . . (ATc
N−2

CTQ)
]
, (15)

KdN =
(
BTPB +R

)−1
BT

(
ATc

N−1
CTQCd

+ATc
N
∞∑
j=0

{
ATc

j (
CTQCd

)
Ajd

}
Ad

 . (16)

where P , the solution to the discrete-time algebraic Riccati
equation (DARE) associated with pure feedback to the plant
state, is found by solving
P = ATPA−ATPB(BTPB +R)−1BTPA+ CTQC.

We offer the following comments.

• The plant state-estimate feedback control gain, K, and
its associated algebraic Riccati equation solution, P , are
unaffected by the presence of feedforward.

• The first block element of K∆ is zero because, in our
predictor feedback case, it represents a past disturbance,
which is subsumed by current and future information.

• As noted by Hazell and Limebeer, as the feedforward
horizon N → ∞, the tail elements ofK∆ and KdN tend
to zero exponentially fast. Likewise, the block elements
of K apart from the tail elements KdN are fixed. Thus, as
N →∞ the feedback control gain tends to a semi-infinite
block vector, which is simply precomputed.

In Hazell and Limebeer [2010], the feedforward signal is pro-
vided exactly, i.e. is noise free, and hence Vf = 0 above. In
this case the combined state estimate covariance Σ in (9) is
zero except for the upper left corner corresponding to the plant
state estimate. Accordingly, Hazell et al. are able to derive a
structure of L which mirrors with that of K, the feedback gain
matrix. This yields their “computationally efficient” approach
to calculating these feedforward estimator gain values.

When the feedforward noise, Vf , is not zero, this efficiency
disappears and the elements of the state estimate, the plant
state estimate and the disturbance/delay state estimate, are
coupled through the output measurement yt. That being said,
the case of Vf > 0 is precisely that dealing with forecast
data and at this point our treatment deviates significantly from
that of Hazell and Limebeer [2010]. Indeed, the effect of
feedforward reliability is our prime focus, since it encapsulates
the information structure of the problem. We next develop
analytical tools for this.

5. NESTING OF FEEDFORWARD CONTROLLERS

Consider two forecast feedforward problems with respective
forecast horizon lengthsN andM , where we takeM > N . Our
aim in this section is to demonstrate that the N -horizon feed-
forward controller is identical to the M -horizon feedforward
controller with the information structure with

Vf,N = Vf,N+1 = · · · = Vf,M−1 = ξI,

for ξ > 0, so that as ξ → ∞, these noise variances become
infinite.

First, we need a lemma concerned with jointly Gaussian pro-
cesses with possibly infinite covariances.
Lemma 1. Consider the jointly Gaussian distributed random
vectors[

X
Y
Z

]
∼ N

([
mX
mY
mZ

]
,

[
ΣX ΣXY T ΣXZT

ΣY XT ΣY ΣY ZT

ΣZXT ΣZY T ΣZ

])
,

and let ΣZ = ξI , with ξ > 0. Then
lim
ξ→∞

E{X|Y = y, Z = z} = E{X|Y = y},

lim
ξ→∞

cov(X|Y = y, Z = z) = cov(X|Y = y).

Proof: For jointly Gaussian random variables[
A
B

]
∼ N

([
mA
mB

]
,

[
ΣA ΣABT

ΣBAT ΣB

])
,

E{A|B = b} = mA + ΣABT Σ−1
B (b−mB) ,

cov(A|B = b) = ΣA − ΣABT Σ−1
B ΣBAT .

We apply this result with A = X and B =
[
Y T ZT

]T
.

Using ∆ = A−BD−1C,[
A B
C D

]−1

=

[
∆−1 −∆−1BD−1

−D−1C∆−1 D−1(D + C∆−1B)D−1

]
.
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Whence, as ξ →∞, Σ−1
Z → 0 yielding[

ΣY ΣY ZT

ΣZY T ΣZ

]−1

=

[
Σ−1
Y 0

0 0

]
.

Applying these results to the conditional expectation E{X|Y =
y, Z = z} as ξ →∞ produces the result. 2

We now proceed to the main result of this paper, which demon-
strates the information structure of the forecast feedforward
control problem.
Theorem 2. (Data Nesting Property). Consider two forecast feed-
forward control problems with the same plant model, distur-
bance model and driving noise covariance, LQ criterion, and
plant process and measurement noise covariances,

[A,B,C,Ad, Bd, Cd,Wd, Q,R,W, V ],

but with differing forecast horizon lengths N and M with
N ≤ M . Let the feedforward information structure of the N -
horizon problem be described by the forecast noise covariance

cov(vNf,t) = blockdiag[Vf,0, . . . , Vf,N−1] (17)

and result in control signal {uN,t : t ≥ 0}. Further, let the
feedforward information structure of the M -horizon problem
be described by forecast noise covariance

cov(vMf,t) = blockdiag[Vf,0, . . . , Vf,N−1, ξI, . . . , ξI︸ ︷︷ ︸
M−N terms

], (18)

with ξ > 0 and corresponding control signal {uM,t : t ≥ 0}.
Then,

uN,t = lim
ξ→∞

uM,t, for all t ≥ 0.

Proof: The case where N = M is trivially satisfied: assume
M > N . From (12) the N -horizon control gain is given by

KN = [K K(0) . . . K(N−1) KdN ] ,

and the M -horizon control gain is given by
KM = [K K(0) . . . K(N−1) K(N) . . . K(M−1) KdM ] ,

From (15-16), the first N + 1 block elements of these control
gains are identical (i.e. up to K(N−1)).

These control gains multiply the following augmented state
estimates. For the N -horizon problem,

X̂Nt|t−1 =


E{xt|Yt−1

N }
E{dt|Yt−1

N }
...

E{dt+N−1|Yt−1
N }

E{xNd,t|Y
t−1
N }

 ,

and for the M -horizon problem, as ξ →∞,

X̂Mt|t−1 =



E{xt|Yt−1
M }

E{dt|Yt−1
M }

...
E{dt+N−1|Yt−1

M }
E{dt+N |Yt−1

M }
...

E{dt+M−1|Yt−1
M }

E{xMd,t|Y
t−1
M }


→



E{xt|Yt−1
N }

E{dt|Yt−1
N }

...
E{dt+N−1|Yt−1

N }
E{dt+N |Yt−1

N }
...

E{dt+M−1|Yt−1
N }

E{xMd,t|Y
t−1
N }


,

where we have invoked Lemma 1 and (17) to alter the condi-
tioning and a notational convenience has been used to indicate
that the disturbance state xd,t is further in the future for the M
problem versus the N problem.

Now note that the latter M − N elements in X̂Mt|t−1 are pre-
dictions of the disturbance process without the aid of further
feedforward measurements. Thus, as ξ →∞,

E{dt+N+j |Yt−1
N } = CdA

j
dE{xNd,t|Yt−1

N },

for j ≥ 0. Further,

E{xMd,t|Yt−1
N } = AM−Nd E{xNd,t|Yt−1

N }.

With these observations, plus the formulæ (15-16), it is appar-
ent that

uN,t = −KN X̂Nt|t−1 = −KM lim
ξ→∞

X̂Mt|t−1 = lim
ξ→∞

uM,t. 2

6. NUMERICAL EXAMPLE

We consider three variants of the feedforward control prob-
lem which illustrate the effect of information structure on the
closed-loop performance and permit comparison to Hazell and
Limebeer [2010]. The plant and disturbance models are charac-
terized by the following.

A =

[
1 0.0.7869
0 0.6065

]
, B =

[
0.4261
0.7869

]
, C = [1 0] ,

Ad = 0.999, Bd = 0.5, Cd = 0.4,
W = 0.001 I2, V = 0.001, Wd = 1,
Q = 10, R = 0.001.

We note that this plant-disturbance pair exhibits low observabil-
ity in that an eigenvalue of the plant dynamics A is relatively
close to the eigenvalue of the disturbance dynamics Ad, reflect-
ing the amplified benefits of disturbance feedforward. We take
feedforward horizon N = 10 and consider the following three
cases, plotted in Figure 2.
1. (Almost) perfect feedforward: Vf,i = 10−6, i = 1, . . . , 10.
This corresponds to a disturbance feedforward noise level
which is negligible in terms of its effect on closed-loop perfor-
mance. This is the case studied in Hazell and Limebeer [2010].
2. Moderate reliability: Vf,i = 0.01× 1.85i.
3. Diminished reliability: Vf,i = 0.01× 2.3i.
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Fig. 2. Forecast noise covariances for the three cases: no noise,
moderate reliability and diminished reliability.
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Fig. 3. Closed-loop performances.

Figure 3 depicts the closed-loop performance achieved with
feedforward control for the three information structures.

All three curves demonstrate the performance benefit from
feedforward and are: monotonically non-increasing in horizon
n, and convergent to a limiting value as the horizon becomes
large. The closed-loop performance without feedforward for
each is identical. Further, they demonstrate the role played
by forecast data reliability. Improved reliability is linked to
improved performance at every horizon and therefore in the
limit.

7. CONCLUSION

We have developed the analysis of a feedforward control design
problem which incorporates the information structure associ-
ated with longer term imperfect forecast data having dimin-
ished reliability. This involved the inclusion of measurement
variances into the standard H2 feedforward design of Hazell
and Limebeer [2010] and the use of multiple-horizon forecasts
for the disturbance acting on the system, extending the single-
valued stochastic feedforward measurement of Roh and Park
[1999]. We found that the LQ control gain K is completely
unaltered by, and thus independent of, the inclusion of forecast
data quality into the feedforward problem, and thus could still
be calculated by means of the efficient computation derived in
Hazell and Limebeer [2010]. This observation revealed that the
improvements in performance due to the reliability of feed-
forward are more specifically a consequence of an improved
state estimate. Although the inherently coupled structure of the
augmented Kalman estimator gain and covariance prevented
their efficient computation, we instead showed that a horizon-
N forecast feedforward problem can always be equivalently
considered to be a horizon N + k problem by assigning the
final k forecast covariances to be infinite, thereby elucidating
the information structure inherent in the forecast feedforward
control problem.
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