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Abstract: Efficient online state estimation of dynamic dispersion processes plays an important
role in a variety of safety-critical applications. The use of mobile sensor platforms is increasingly
considered in this context, but implies the generation of situation-dependent vehicle trajectories
providing high information gain in real-time.
In this paper, a new adaptive observation strategy is presented combining state estimation
based on partial differential equation models of the dispersion process with a model-predictive
control approach for multiple cooperating mobile sensors. In a repeating sequential procedure,
based on the Ensemble Transform Kalman Filter, the uncertainty of the current estimate is
determined and used to find valuable measurement locations. Those serve as target points
for the controller providing optimal trajectories subject to the vehicles’ motion dynamics and
cooperation constraints. First promising results regarding accuracy and efficiency were obtained.

Keywords: Environmental monitoring, Adaptive observation, State estimation, PDE model,
Mobile sensors, Cooperative control

1. INTRODUCTION

Whenever hazardous material spreads in the atmosphere,
health and well-being of nature and humankind is at risk.
For disaster response, it is essential to repeatedly estimate
the state of the dispersion process to be able to under-
stand its characteristics and to predict possible future
impacts. For state estimation, a significant amount of
information is required and the use of robotic systems for
autonomous data gathering is increasingly considered in
environmental monitoring (Dunbabin and Marques, 2012).
Sensor-equipped autonomous vehicles are able to adapt
their movement to a changing environment, which is par-
ticularly beneficial when dealing with large-scale, highly
dynamic processes like atmospheric dispersion. However, a
single mobile sensor is not able to cope with these process
characteristics. Multiple sensor vehicles can cover larger
domains and cooperate efficiently when controlled in an
optimal manner.

The dimensions of the endangered domain prohibit pattern-
based sampling or global exploration. Rather, immediate
processing of the gathered data and subsequent optimized
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selection of complementary measurement locations is re-
quired. This is also known as Adaptive Observation.
Information obtained from the sensors and the predictions
of an underlying process model can be combined by a data
assimilation method to estimate the current process state.
In this way, uncertainties in the estimate stemming from
observation noise and model errors can be reduced. Using
a partial differential equation (PDE) model, more accu-
rate forecasts can be obtained since the physics and the
dynamic behavior of the dispersion process are considered.

In literature, many approaches exist that avoid detailed
PDE models and instead use simple models, such as
Gaussian processes (Stranders et al., 2009), qualitative
models (Duckham et al., 2005) or simply no model at
all (Simic and Sastry, 2003). These models can provide
results in a very short time and are frequently used in dis-
tributed systems. However, as important characteristics of
the process dynamics are not considered, only inaccurate
approximations of the real process are possible.
Adaptive observation strategies based on PDE models are
commonly used in large-scale systems, e.g. for numerical
weather prediction. In this field, a number of different
approaches, like the singular vector technique (Buizza
and Montani, 1999), the gradient method (Daescu and
Navon, 2003), the ensemble spread technique (Lorenz and
Emanuel, 1998), or the Ensemble Transform Kalman Filter
(Bishop, 2001), have been applied. Due to the huge system
dimensions, though, vehicle dynamics are not considered
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in these applications.
Only a few publications focus on adaptive observation
strategies combining both PDE models and vehicle dy-
namics. While Ucinski (2004) and Song et al. (2007) work
on parameter estimation, Zhang et al. (2011) and Hover
(2009) consider state estimation problems in conjunction
with data assimilation. All these approaches involve solv-
ing a sophisticated optimal control problem subject to
the process model, the covariance evolution, and the ve-
hicle dynamics. Solving such complex problems is hard
and time-consuming, especially regarding the real-time
requirements of the application. Demetriou and Ucinski
(2011) try to circumvent the optimal control problem and
propose a Lyapunov-based sensor guidance scheme that
can be applied in real-time. The resulting sensor motion
allows for collision avoidance and connectivity constraints,
but cannot be considered optimal with respect to vehicle
cooperation.

In this paper, a new adaptive observation strategy is pro-
posed that combines the accuracy of PDE-based process
models with the potential of a team of optimally coop-
erating mobile sensors for online state estimation of a
dispersion process. State estimation and vehicle control are
considered separate problems that are linked in a repeating
sequential procedure. This results in a significant gain of
computational efficiency compared to solving a complex
optimal control problem incorporating both aspects.

The proposed approach applies the Ensemble Trans-
form Kalman Filter for state and uncertainty estima-
tion, whereas a Mixed Logical Dynamical based model-
predictive controller is used to guide the sensor vehi-
cles to their destinations. While both concepts are well-
established in literature, the novelty of this contribution
lies in their combination and in the interaction between
them: Based on the state estimate’s error covariance ma-
trix, locations with maximum uncertainty are chosen as
future measurement points. Those points are handed to
the cooperative controller which ensures that the sensor
vehicles approach these targets in an optimal manner.
After assimilating the gathered data with the predicted
model state, new measurement locations are determined
depending on the uncertainty in the updated state esti-
mate. Repeating this procedure iteratively improves the
quality of the state estimate. The required measurements
are obtained at optimal exploitation of the vehicles’ coop-
eration and their physical capabilities.

The rest of the paper is organized as follows. In Sec-
tion 2, the process model is introduced together with
the Ensemble Transform Kalman Filter, before the coop-
erative vehicle controller is presented in Section 3. The
proposed adaptive observation strategy combining the two
aforementioned concepts is described in Section 4. After
examining the strategy with a simple test case in Section
5, the paper is concluded in Section 6 by giving an outlook
on future work.

2. MODEL AND STATE ESTIMATION

2.1 Process Model

The approach presented in this work is aimed to estimate
the state of a dynamic transport process that can be

described by a PDE of the form

∂χ

∂t
= f(χ(t),∇χ(t),∆χ(t),w(t),∇w(t)), (1)

where χ represents the dispersing entity to be estimated
and w the underlying velocity field. With the aid of a
spatial discretization scheme like the finite difference or
the finite element method, the solution of the PDE can be
represented by the state vector χ, which contains values of
χ at certain, discrete spatial positions. Applying a suitable
time integration scheme, the state vector at time ti+1 can
then be calculated from a model forecast of the state vector
at time ti according to

χf
i+1 = Mi[χ

f
i ]. (2)

The superscript (·)f implies the forecasted state and Mi

is known as the model operator. In general, this solution
is not equal to the true solution of the system. The true
solution, denoted by the superscript (·)t, is defined as

χt
i+1 = Mi[χ

t
i ] + ηi, (3)

where ηi represents the model error, which is assumed to
be Gaussian with known covariance Qi.

2.2 Observations and Data Assimilation

To alleviate uncertainty stemming from the model, the
process is also measured by a network of sensors. At
certain times tj , all sensors take a measurement and the
observation vector ψo

j is described by the relation

ψo
j = Hj [χ

t
j ] + εj , (4)

where εj represents the observation error, which is, similar
to the model error, assumed to be Gaussian with known
covariance Rj . The observation operator Hj maps vectors
from the state space onto the observation space and de-
pends on the positions the sensors take their measurements
at. Thus, Hj has to be updated in every step to account
for the current sensor positions.

To combine results obtained from simulation and from
observations, a data assimilation method has to be cho-
sen. A very popular approach is the Kalman Filter (KF)
(Kalman, 1960). It is a sequential method for linear sys-
tems calculating the mean state and the error covariance
matrix Pj of the estimate. Basically, the KF consists of two
steps. In the prediction step, state and error covariance are
forecasted from one observation time to the next:

χf
j = Mj−1[χa

j−1] (5)

Pf
j = Mj−1P

a
j−1M

T
j−1 + Qj−1. (6)

When new observations are available, the update step
has to be executed yielding the analysis (superscript (·)a)
mean state and error covariance matrix:

χa
j = χf

j + Kj(ψ
o
j −Hj [χ

f
j ]) (7)

Pa
j = (I−KjHj)P

f
j . (8)

While the matrices Mj and Hj are the linear model
and observation operator, the matrix Kj is known as
the Kalman gain and has to be calculated in every step
according to

Kj = Pf
j HT

j

(
HjP

f
j HT

j + Rj

)−1

. (9)

This choice of the Kalman gain minimizes the analysis
error covariance matrix. However, the computation of Kj
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and especially the propagation of the error covariance
matrix requires a huge amount of matrix multiplications
and inversions. Thus, the KF is computationally not
tractable for high dimensional systems, which are common
in the considered application areas.

A modification of the KF called Ensemble Kalman Filter
(EnKF) (Evensen, 1994) can avoid this problem. Here, a
set of state vectors (χ1

j ,χ
2
j , ...,χ

N
j ) is considered. Start-

ing from a perturbation of the initial guess, each single
state vector is forecasted and updated, respectively, using
perturbed observations. The main benefit of this method
relies on the fact that the error covariance matrix does not
have to be propagated explicitly. Instead, the deviation of
the single ensemble members from the ensemble mean

Zf
j =

[χf ,1
j − χf

j ,χ
f ,2
j − χf

j , . . . ,χ
f ,N
j − χf

j ]
√
N − 1

(10)

with

χf
j =

∑
k χ

f ,k
j

N
(11)

is used to approximate the error covariance matrix

Pf
j = Zf

j ZfT
j . (12)

Note that in (10)-(12) the superscript (·)f can be replaced
by (·)a to calculate the analysis error covariance matrix
accordingly. Typically, the ensemble size is much smaller
than the state dimension and so this method is much
more efficient than the KF. However, the data assimilation
method to be used in this work should be capable to
compute the analysis error covariance matrix before the
actual measurements are taken. This is not the case for the
EnKF since the provided analysis error covariance matrix
depends on the observation vector.

Thus, a modification of the EnKF has to be made result-
ing in the Ensemble Transform Kalman Filter (ETKF)
(Bishop, 2001). The idea of the ETKF approach is to
express the analysis ensemble spread by the forecasted
ensemble spread in the following way:

Za
j = Zf

j Tj . (13)

Hence, unlike the EnKF approach, all ensemble members
are updated together and deterministically. If it is assumed
that (12) holds for the forecast error covariance matrix
and (8) for the analysis error covariance matrix, the
transformation matrix T fulfills

Tj = Vj(Γj + I)−1/2, (14)

where Vj is the matrix of eigenvectors and Γj the corres-

ponding matrix of eigenvalues of ZfT
j HT

j R−1
j HjZ

f
j . From

this, it is obvious that the ETKF enables the calculation
of the analysis error covariance matrix before the actual
measurements are available.

In most applications, the number of ensemble members is
significantly lower than the dimension of the state enabling
efficient computation of high dimensional problems. On
the other hand, this discrepancy can lead to approxima-
tion problems like spurious correlations between distant
locations and underestimation of the error covariance ma-
trix. Localization (Houtekamer and Mitchell, 2001) and
multiplicative inflation (Wang and Bishop, 2003) can be
used to counteract these phenomena.

3. COOPERATIVE VEHICLE CONTROL

The cooperative feedback control approach presented in
this section is able to guide multiple vehicles to a number
of specified target locations that may change dynamically
over time. Based on a linear discrete-continuous optimiza-
tion scheme, it simultaneously determines collision-free
vehicle trajectories as well as optimal target allocation
respecting the vehicles’ physical characteristics. The pro-
posed controller can be adapted to various multi-vehicle
constellations and task scenarios. Within the scope of this
paper, it is applied to a homogeneous team of sensor
vehicles and the number of target points is assumed to
equal the number of vehicles.

3.1 MLD-Based Model-Predictive Control

The basic idea of the employed cooperative control ap-
proach is to set up a discrete-time linear Mixed Logical
Dynamical (MLD) formulation of the considered multi-
vehicle system, combine it with a suitable objective func-
tion, and solve the resulting optimal control problem

min
UN
|FxN |+

N−1∑
k=0

|G1u
k|+|G2δδδ

k|+|G3z
k|+|G4x

k| (15a)

s.t. xk+1 = Axk + B1u
k + B2δδδ

k + B3z
k (15b)

yk = Cxk + D1u
k + D2δδδ

k + D3z
k (15c)

E2δδδ
k + E3z

k ≤ E1u
k + E4x

k + E5 , (15d)

in a receding horizon fashion to compute optimal control
inputs for each vehicle. In this problem formulation,
x = [xc xb]

T ,xc ∈ Rnc ,xb ∈ {0, 1}nb , is the system state,
y = [yc yb]

T ,yc ∈ Rpc ,yb ∈ {0, 1}pb , is the output vector,
u = [uc ub]

T ,uc∈Rmc ,ub ∈ {0, 1}mb , is the control input,
and δδδ ∈ {0, 1}rb and z ∈ Rrc represent auxiliary binary
and continuous vectors, respectively. The prediction time
step k = 0, . . . , N−1 relates to the global equidistant time
steps ti ∈ N according to xk = x(ti+k). As solution of

problem (15), the sequence UN := {uk}N−1
k=0 of control

inputs is obtained. In virtue of a model-predictive control
(MPC) scheme, the first element of UN is applied to the
real system, then its new state is measured for computing
updated control inputs at the next time step ti+1. In this
manner, the prediction horizon N is shifted over time.

The MLD framework (15b)–(15d) was proposed by Bem-
porad and Morari (1999) for modeling and controlling
constrained linear systems containing interacting physi-
cal laws and logical rules. In this paper, it is used to
describe both the motion of multiple mobile sensors and
the decision logic required to ensure optimal target alloca-
tion among them as well as their adherence to distance
constraints. The objective function (15a) can reflect a
prioritization of different problem aspects. Problem (15)
is a mixed-integer linear Constrained Finite Time Optimal
Control (CFTOC) problem. It can easily be transformed
into a Mixed Integer Linear Program (MILP) at each
time step of the MPC procedure. Therefore, a numerically
robust, efficient computation of control inputs can be per-
formed. The modeling details will be given in Section 3.2.

The described control scheme is applied in a centralized
manner for the global system of vehicles and measurement
locations. Hence, globally optimal cooperative behavior
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within the scope of the system model and the chosen
prediction horizon N is obtained. However, the efficiency
of the centralized MPC approach strongly depends on the
size of the system model, i.e. the number of vehicles.

3.2 Modeling the Multi-Vehicle System

Motion Dynamics Employing the MLD framework (15b)–
(15d) for modeling multi-vehicle systems permits to use all
kinds of discrete-time linear motion dynamics models that
can be stated in the form

xk+1
v = Avx

k
v +Bvu

k
v , (16)

where xkv and ukv denote the state and control input,
respectively, of vehicle v ∈ {1, . . . , nV } at time step k.
Let xkV = (xk1 , . . . ,x

k
nV ) and ukV = (uk1 , . . . ,u

k
nV ).

It is assumed that measurement locations shift with the
wind in order to best preserve their information level
until reached by a sensor. Therefore, their movement is
predicted according to a linearized representation of the
advection influence

xk+1
m = Amx

k
m + bm , (17)

where xkm, m ∈ {1, . . . , nM}, is the position of target m at
time k. Let xkM = (xk1 , . . . ,x

k
nM ).

Distances A linear approximation dkvm of the Euclidean
distance between a vehicle v and a measurement point m
is obtained by introducing a set of inequalities

(xkv − xkm) sin
2πγ

nγ
+ (ykv − ykm) cos

2πγ

nγ
≤ dkvm , (18)

where (xkv , y
k
v ) denotes the vehicle’s position, (xkm, y

k
m) the

measurement location at time k, and γ = 1, . . . , nγ . If dkvm
takes the minimum value such that all inequalities (18)

hold, then dkvm ≈
√

(xkv − xkm)2 + (ykv − ykm)2. The accu-
racy of the approximation can be scaled by the constant
parameter nγ ∈ N. Including a distance criterion in the
objective function (15a) ensures that dkvm is driven to its
smallest possible value whenever that value is relevant for
the optimal solution.

Measurement Constraints For each pair (v,m), a binary
variable bkvm ∈ {0, 1} indicates whether or not vehicle v
measures at target m at time k:

bkvm = 1 ⇔ dkvm ≤ dmeas , (19)

where dmeas determines how close to xkm a vehicle has to be
in order to trigger a measurement. A linear representation
of (19) is given by the inequalities

dkvm − rm ≤M1(1− bkvm) and (20a)

dkvm − rm ≥ ε+ (m1 − ε)bkvm , (20b)

where M1 ≥ max{dvm − rm}, m1 ≤ min{dvm − rm} =
−rm, and ε is a small tolerance close to machine precision.

Since it is not of interest which sensor measures at target
m, but that the measurement is eventually taken by any
sensor, another binary variable skm ∈ {0, 1} is introduced
and represents the measurement status of m:

skm = 0 ⇔
nV∑
v=1

bkvm ≥ 1 . (21)

Eq. (21) can be linearized by introducing the inequalities

1−
nV∑
v=1

bkvm ≤M2 · skm and (22a)

1−
nV∑
v=1

bkvm ≥ ε+ (m2 − ε)(1− skm) , (22b)

where M2 ≥ max{1 −
∑
bvm} = 1 and m2 ≤ min{1 −∑

bvm} = 1− nV .

Cooperation among the sensor vehicles is realized by mini-
mizing the number of unprocessed measurement locations,
i.e.

∑nM
m=1 s

k
m, and each vehicle’s distance to those loca-

tions not yet visited by any other vehicle. The latter is
expressed using the variables sm and an additional set of
auxiliary variables hvm ∈ R that either equal the distances
dvm or zero, depending on the status of target m:

hkvm = skm · dkvm . (23)

The linear representation of (23) comprises the inequalities

hkvm ≤M3 · skm , (24a)

hkvm ≤ dkvm , and (24b)

−hkvm ≤ −dkvm +M3(1− skm) , (24c)

where M3 ≥ max{dvm}.

Collision Avoidance In order to make every two vehicles
vi and vj , i 6= j, keep a minimum distance dmin to each
other, they should avoid the region defined by

(xkvi − x
k
vj ) sinγ +(ykvi − y

k
vj ) cosγ ≤ dmin , (25)

where sinγ := sin 2πγ
nγ

and cosγ := cos 2πγ
nγ

.

Hence, at least one of the inequalities (25) must be
violated, which can be expressed by the following logical
rules involving an additional set of binary variables bkijγ :

(xkvi− x
k
vj ) sinγ +(ykvi− y

k
vj ) cosγ > dmin ⇒ bkijγ = 0 (26)

and

nγ∑
γ=1

bkijγ ≤ nγ − 1 . (27)

Linearizing (26) yields

(xkvj−x
k
vi) sinγ +(ykvj−y

k
vi) cosγ ≤ −dmin+M4·bkijγ , (28)

where M4 ≥ max{(xkvj−x
k
vi) sinγ +(ykvj−y

k
vi) cosγ +dmin}.

Objectives The controller’s main purpose is to lead each
vehicle to one of the measurement locations, which is
represented in the objective function as minimization of
the distances hkvm as well as the binary variables skk.
In addition, the vehicles are to move at a minimum
control effort, which in reality could correspond to energy
consumption or other limiting factors. In summary, the
cost function takes the form:

min
UN

N−1∑
k=0

(
gz

nV∑
v=1

nM∑
m=1

hkvm + gδ

nM∑
m=1

skm + gu|ukV |
)
, (29)

where gz, gδ, gu ∈ R weight the different objectives
according to their priorities and the best expected task
performance.

The objective function (29) subject to (16)-(18), (20),
(22), (24), and (27)-(28) can be reformulated as CFTOC
problem (15) in order to apply the MPC approach as
outlined in section 3.1. In this representation, the vector
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xk contains the state of all nV vehicles as well as the nM
measurement locations. All binary variables are contained

in δδδk ∈ {0, 1}(nV +1)nM+(nV2 )nγ . zk ∈ R2nV nM comprises
the approximated distances dkvm and hkvm. The vector uk

summarizes the vehicle control inputs. The overall problem
comprises nV nM (5 + nγ) + 4nM +

(
nV
2

)
(nγ + 1) linear

inequality constraints.

4. ADAPTIVE OBSERVATION STRATEGY

This section describes how the ETKF-based state and
uncertainty estimation (cf. Section 2) is combined with the
model-predictive vehicle controller (cf. Section 3) to ob-
tain an efficient optimization-based adaptive observation
strategy. A schematic overview over the proposed method
is given in Figure 1, Algorithm 1 shows the procedure
during one time step in more detail. While the ETKF
can provide several measures of current uncertainty and of
future measurements’ impact on estimate quality, the con-
troller requires discrete target points to guide the sensor
vehicles to. Therefore, a method to generate these target
points with the aid of the ETKF has been developed and
is described in the following.

The error covariance matrix provided by the ETKF is a
suitable measure of the quality of a state estimate. Large
entries indicate high uncertainties and, thus, high devia-
tions between true state and estimate. The objective is to
iteratively improve the state estimate of the considered dis-
persion process, i.e. to reduce the entries in the covariance
matrix. This can be achieved by taking measurements at
positions where the uncertainty in the estimate is largest
and the most valuable information can be obtained. As
these positions are likely to change due to the dynamic
process behavior and the incorporation of gathered data,
the vehicles’ target points have to be updated from time
to time.

In order to determine the target points xM , the current
error covariance matrix Pa is calculated applying the
ETKF. To obtain the largest possible reduction of the
covariance matrix, the measurement points should be
chosen in dependence of the eigenvector corresponding to
the largest eigenvalue of the covariance matrix. However,
as it is not straightforward to generate the measurement
locations out of the eigenvector, a simpler approach is
used considering the diagonal of the matrix, i.e. the
variance of the state vector entries. The location xmax

that belongs to the maximum value of the diagonal is
chosen as the first measurement location x1

M = x1 =
xmax. Hence, the new target point is not determined by
continuous optimization, but by finding the maximum
from a discrete set of candidates. This is not necessarily
the optimal position at which measurements are most
valuable – however, this choice provides a fast and suitable
approximation. Further target points are calculated ite-
ratively in the same manner, but considering the analysis
error covariance matrix P̃a. The latter is calculated by
the ETKF pretending that observations are available at
all previously calculated target points. Therefore, the
observation matrix H̃k has to be determined in every
iteration k from the vector xk−1

M = (x1, . . . ,xk−1). By
using the analysis error covariance, clusterization of target
points in regions with high uncertainty is avoided.

As the covariance changes in time, it is obvious that the
quality of the target points continuously reduces until
reached by a sensor vehicle. Still, the targets will not be re-
calculated at every time step. Instead, they are moved ac-
cording to the underlying wind velocity since it is assumed
that the characteristic evolution of the covariance matrix
is directed with the wind. This prevents the target points
from jumping from one position to another and guarantees
that they can actually be reached by the sensors.
As soon as one of the sensors reaches a measurement loca-
tion, all sensors take a measurement, the state estimation
is updated, and new target points are generated. It is
likely that at that time, the other sensors have not reached
their targets, yet. However, the benefit of a measurement
close to the optimal location and an earlier update of all
observation targets is greater than waiting for them to
arrive at a possibly outdated destination.

In general, the sensor platforms in the proposed approach
only take measurements if a sensor is located at a target
position. At all intermediate times, no observation is
made. Although additional measurements on the way
would probably further improve the results, the larger
measurement intervals are still sufficient to provide much
better results than other strategies with more frequent
measurements (see Section 5).

Algorithm 1 Adaptive observation time step at t = ti

[χf
i ,P

f
i ]← Forecast Process(χa

i−1,P
a
i−1)

xV,i ← Update Vehicle States(xV,i−1,u
0
V,i−1)

if new observation ψo
i available then

Hi ← Observation Matrix(xV,i)

[χa
i ,P

a
i ]← ETKF(χf

i ,P
f
i ,ψ

o
i ,Hi)

x0
M,i ← ()

for k ← 1 to nV do
H̃k
i ← Observation Matrix(xk−1

M,i )

P̃a,k
i ← ETKF Covariance(Pa

i , H̃
k
i )

xmax ← location belonging to max(diag(P̃a,k
i ))

xkM,i ← (xk−1
M,i ,xmax)

end for
xM,i ← xnVM,i

else
xM,i ←Move In Wind Direction(xM,i−1)

end if
u0
V,i ← Controller(xV,i,xM,i)

5. RESULTS

In order to illustrate the proposed approach, a simple test
case is set up considering a 2D problem on a 4×2 domain.
The dispersion process is assumed to be governed by the
source-free linear advection-diffusion equation

∂c

∂t
+∇ · (cw)−∇ · (D∇c) = 0, (30)

where the function c, representing the concentration, is
to be estimated. The diffusion matrix D is assumed
to be homogeneous and constant and the velocity field
w is uniform with w1 = 0.005 in x-direction and a
vanishing component in y-direction. The finite element
method is used to solve (30). As the considered problems
are highly advection dominated, the application of a
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Fig. 1. Schematic view of the proposed adaptive observa-
tion strategy.

standard Galerkin method might lead to instabilities.
Therefore, a characteristic Galerkin method is applied.

A so-called twin experiment is performed to provide the
observations considered in this test case, i.e. the true
solution is assumed to be known and is forecasted in time
according to (3). From this, observations are obtained
using (4). The difference between the true solution and the
estimated solution resides in their initial condition. While
the initial estimate has the form of a simple Gaussian pulse

c0(x, y) = cA exp

(
−
(

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

))
(31)

with amplitude cA = 1 centered at (x0,y0) = (-1,0), the
initial true state is assumed to be composed of three
Gaussian pulses with perturbed parameters.

Three sensor vehicles modeled as point masses with a max-
imum velocity and acceleration of 0.02 are employed. Thus,
the sensors are four times faster than the characteristic
process speed, enabling them to reach every calculated
target point. To avoid collisions and redundant measure-
ments, the minimum distance between two sensors is set
to 0.1. Their initial positions are (-0.2,-0.4), (0.2,-0.4),
and (0,-0.2), respectively. An MPC prediction horizon of
N = 15 time steps is used, while ∆t = 2 is assumed.
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Fig. 2. Comparison of the mean estimation error over time
for three different sensor movement strategies.

(a) True state (b) Estimated state

Fig. 3. Concentration field at t = 240.

In order to compare the performance of the proposed
approach, two other sensor configurations are applied in
the same problem setup. The first consists of three mobile
sensors that move randomly, whereas the second employs
16 static sensors evenly distributed in a square area from
(-0.6,-0.6) to (0.6,0.6). In both configurations, each sensor
takes a measurement every time step.

The test scenario was run 50 times for 120 time steps, each
time with a different randomly chosen initial true state. As
the true solution is assumed to be known, the quality of
the resulting state estimates can be quantified considering
their deviation from the true state. In this way, the error
can be calculated at every time step by forming the norm
of the deviation vector.

Figure 2 shows the evolution of the mean error over time
for the three different observation strategies and Figure 3
depicts a comparison of the true and estimated state of
the concentration field for an example test run after 120
time steps. Although the strategy proposed in this paper
results in only ∼ 75 measurements within the given time
frame – five times less than for the random motion and
even 26 times less than for the static sensors – it provides
the least error. At t = 240, the estimation error obtained
from the static sensor network is 1.5 times greater than
the error obtained from the proposed adaptive observation
strategy. The error obtained using random sensor motion
is even 2.5 times greater.

Figure 4 depicts a snapshot of vehicle trajectories and
measurement locations for an example test run. Typically,
one sensor reaches a target point and invokes a measure-
ment of all sensors. Although the other sensors are still
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Fig. 4. Sensors (blue •) and their trajectories along with
the performed measurements (gray ◦) during an ex-
ample simulation. Active targets (red H) and past
targets (gray N) are depicted with their velocity-
induced trajectories. The numbers indicate the gen-
eration that targets and measurements belonged to.

far away from their targets, the measurements at their
current positions generally provide a sufficient amount of
new information and improved target locations can be
computed. Nevertheless, this situation might be improved
by limiting the domain for target generation to the local
environment of the vehicles. This would result in a loss of
global information gain, but would enhance cooperation
and shorten travel times between measurement locations.

6. CONCLUSION

A new adaptive observation strategy for online estimat-
ing the state of a dispersion process was proposed. It
employs a PDE-based process model, adaptive generation
of observation points using the ETKF as well as optimal
cooperation among multiple mobile sensors provided by
an MLD-based model-predictive controller. Compared to
other observation schemes, the proposed approach not
only produces a significantly larger error reduction, it is
also more efficient with respect to the number of required
measurements.

In order to avoid a central point of failure, reduce the
computational effort, and improve the flexibility of the
mobile sensor network, it is desirable for future work to
apply a distributed observation strategy, where each sensor
processes only local information. The approach presented
in this paper can be seen as a starting point towards
such a distributed application: While the authors already
presented a possible distributed variant of the cooperative
controller (Kuhn et al., 2011), the decentralization of
simulation, estimation and observation point generation
is subject of active research.
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