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Abstract: In this paper we exploit some interesting properties of a class of 2D bipedal robots
which have an inertial disc. One of this properties is the ability to control every position
and speed except for the disc position. The proposed control is designed in two hierarchic
levels. The first will drive the robot geometry, while the second will control the speed and
also the angular momentum. The exponential stability of this approach is proved around some
neighborhood of the nominal trajectory defining the geometry of the step. The disc position is
unimportant ant it is not governed by the proposed control law. The geometry of the walking
gait is effectively controlled, but the synchronization of the walking gait with time is much less
important The proposed control only takes action to correct the essential aspects of the walking
gait. Computational simulations are presented for different conditions, serving as an empirical
test for the neighborhood of attraction.
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1. INTRODUCTION

Dynamic robot locomotion is a particularly challenging
study. One of its main difficulties is due to the fact that
such kind of robots are under-actuated: on a dynamic
walking gait it is impossible to freely control each ori-
entation of the robot’s links. It is straightforward to see
this limitation as there is no actuator between the ground
and the support polygon, the gravity alone will impose an
additional torque that will change the robot orientation.
Aside from this, a dynamic walking bipedal robot can
achieve greater speeds than a static walker, so there is
a practical interest in this domain of research.
In Westervelt et al. [2007] the problem of under-actuated
dynamic walking is treated in a systematic way that will
lead to controller design with assured stability and also,
with a step evolution clocked, not by the time, but by
its own geometry. This self clocked characteristic will be
instrumental in this work. We can see each step as a
trajectory for the state vector of the dynamic model. The
classical controller design will ensure the state of the model
to track some reference tied to the time and some control
effort will take place even if the robot state is valid for
the reference trajectory but is not synchronized with the
reference. See Chevallereau [2002] for some details.
To successfully perform a step, the robot links must be
driven in some specific way, even for coordinates that
cannot be directly controlled. To accomplish this it may
be necessary, for example, to swing the robot’s torso and
this can be undesirable in some cases.
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To have complete control over one coordinate, it is nec-
essary to give up the control of another one. So, if it
is possible to ignore the position or the orientation of a
link, it will be possible to control every other important
coordinates. By using an inertial disc, its orientation will
be a cyclic variable, and thus, could be ignored. That is
the main idea introduced by the design presented in Kieffer
and Bale [1993] and studied in many works as Rouchon and
Sira-Ramirez [2003], Spong et al. [2000] and Peres [2008].
Theoretically it is possible to ignore the disc position and
speed, but in practice, there will be some limitation on the
maximum speed achieved by the disc, so that the actuators
do not saturate. One solution to this problem is proposed
in Peres [2008] by means of a supervisory control, that will
perform a different trajectory if the disc speed is beyond
some limit value.
Section 2 presents the hybrid dynamic model as proposed
in Westervelt et al. [2007]. There is also a brief presentation
of the hypotheses and terminology therein and inherited
by this paper.
Next, it will be introduced the trajectory planning in sec-
tion 3. This is the main practical benefit of our approach,
valid only for this specific class of bipedal robots. In
Westervelt et al. [2007], the proposed strategy is to find the
evolution of the robot geometry as function of the absolute
orientation and then check if it will lead to a monotonic
evolution of that absolute orientation. In our approach, it
is possible to fix the robot geometry as a desired function
of the absolute orientation. After that one may establish a
monotonic evolution of the absolute orientation that lead
to a repeatable evolution of the disc speed. Another benefit
is that the proposed control does not deal at all with the
disc position, but can continuously control its speed. The
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Fig. 1. Example model. Side view with coordinates and
detail of frontal view in the upper right corner.

control law and the convenient change of coordinates is
also presented, introducing the core contribution of this
paper. Section 4 present a demonstration of exponential
stability around some neighborhood of the planed trajec-
tory. Finally in section 5 there are some simulation results.

2. DYNAMIC MODEL

The robot will be modeled by a chain of N rigid links,
each one with known parameters such as mass, center
of mass and inertia. The links are connected by N − 1
frictionless joints independently actuated. There will be at
least one and at most two point of contact with the ground,
called foots. The foots are punctual and unactuated.
For illustration purposes, a very simple bipedal robot is
depicted at figure 1. The coordinate qn is the only absolute
coordinate, qd is a relative coordinate to represent the disc
position and qr is a relative coordinate representing the
angular displacement between the two legs. In the case
of a higher order robot, qr will be a vector representing
the angular displacements between each link. Indeed, the
robot’s shape will be determined by qr.
The walking takes place on a surface, is restricted to
the sagittal plane, and is composed of alternating phases
of single and double support. During the single support
phase, the stance foot acts as an ideal pivot. The double
support phase is instantaneous and associated impacts are
modeled as a rigid contact. At the impact, the swing leg
touches the ground with no slip nor rebound and, the
former stance leg releases without interaction.
The robot model is derived under the hypotheses briefly
cited above and detailed in Westervelt et al. [2007],
HR1~HR5, HGW1~HGW7 and HI1~HI7 ([Westervelt
et al., 2007, p48 p50]). A small change is introduced in
HR6.
HR6∗): the model is expressed in one relative coordinate
qd for the disc, N-2 relative coordinates qr for the rest of
the body and only one absolute coordinate qn.
Using Lagrangian formulation, the dynamic equations for
the continuous phase, between two impacts, will be

D (qr) q̈ + C (qr, q̇r, q̇n) q̇ + G (qr, qn) = B (qr) u (1)
where

q ,
(
qd qr qn

)T
(2)

qd ∈ R, qr ∈ RN−2, qn ∈ R and the vector of actuator
torques being defined by u ∈ RN−1. D (qr) is called the
Inertia Matrix, C (qr, q̇r) is called the Coriolis Matrix,
G (qr, qn) is called the Gravity Vector and B (qr) will map
the actuator torques as generalized forces.
It will be more convenient to define

ω ,
(
σN q̇r q̇n

)T
(3)

where σN is the angular momentum of the system, calcu-
lated as

σN = DN (qr) q̇ (4)

DN being the last line of the inertia matrix. Its derivative
will be

σ̇N = −GN (qr, qn) (5)

GN being the last line of the gravity vector.
There will be a diffeomorphism between q̇ and ω and so it
is possible to define the state vector

x ,
(

q ω
)T

(6)

and denote by X ⊂ R2N the set of valid values for the
vector state x.
At some moment, the swing foot will touch the ground
with state x− and the system will be mapped to a new
state x+. It is assumed that the walking gait is transversal
to the impact surface. So, the impact forces will change
the speeds on q̇r and q̇n After the impact the roles of the
legs are reversed with a change in q. As result, the system
state, x+, after the impact is

x+ = ∆
(

x−
)

(7)

∆ =
(

∆qq−s
∆ω

(
q−r , q−n

)
ω−

)
(8)

with ∆q being a constant involutive matrix and ∆ω a func-
tion of the robot geometry q−r and absolute orientation
q−n . Note that any value with a superscript q− means the
value just before the impact at the end of the step, and
a superscript q+ means the value immediately after the
impact at the beginning of a new step. This is the same
notation utilized in Westervelt et al. [2007].

The impact, modeled by the mapping ∆ (x−), will take
place at a given configuration that can be represented by
a manifold S, for example

S , {x ∈ X|p2 (q) = 0} (9)

where p2 (q) ≥ 0 is a convenient 1 function for which
ṗ2 (x+) > 0 and ṗ2 (x−) < 0. The complete hybrid model
will be {

ẋ = f (x) + g (x) u x /∈ S
x+ = ∆

(
x−
)

x ∈ S
(10)

1 The function p2 (x) can express for example, the vertical position
of the swing foot and will reach zero only when the swing foot touch
the ground.
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For this particular class of robots, if the coordinate vector
is chosen as (6) then it is possible to demonstrate that the
first column of ∆ω is always ( 1 0 · · · 0 )T . This is due to
qd being a cyclic coordinate.

3. DESIGN OF THE TRAJECTORY

In this section we present some aspects of the trajectory
generation.

3.1 Ensuring a geometry tied to the absolute orientation

The idea of a geometry tied to the absolute orientation
is presented in Westervelt et al. [2007]. In this kind of
design, all the actuators will be used to drive the robot
geometry as a function of the absolute orientation. This
geometry must be chosen in a way that, apart from not
being directly controlled, the absolute orientation will have
a monotonic evolution. Also, the interaction of the robot
with the ground must produce a stable limit cycle.
In our robot, the disc position will be ignored. This
allows us to get a new input available. Every relative
link orientation, except for the disc coordinate qd, should
track a predefined function of qn. This way, at any time,
the robot configuration will be a function of its absolute
orientation. Consider the output given by

h =
(

hr qn
)T

(11)
where

hr = qr − hrefr (qn) (12)
The control law is designed in a way that hr will converge
to zero, with hrefr (qn) being the desired evolution of qr
as a function of qn. The output described by (11) has
dimension N −1 which is the same dimension of the input
u. The dynamic system can be written in terms of the
global diffeomorphism defined by

p =
(

h, qd, ḣ, σN
)

(13)

If the decoupling matrix LgLfh is square 2 and inverti-
ble 3 , there exists an input

u∗ =
(
LgLfh

)−1 {
v− L2

fh
}

(14)

so that by the use of u∗ and the coordinate change (13),
the system can be viewed as N − 1 independent series of
2 integrators driven by the virtual input v = (vr, vN )T .
Thus, if it is possible to find u∗, it will be possible to
control every entry of h by the input v. More information
on the exact linearization control can be found in Isidori
[1995].
Applying the change of coordinates defined by (13) it is
possible to write

σ̇N = k2 (hr, qn) (15)

k2 (hr, qn) , −GN

(
hr + hrefr (qn) , qn

)
(16)

2 It will be square as h and u have both the same dimension.
3 There is a discussion on the invertibility of the decoupling matrix
in [Westervelt et al., 2007, p 156]

Using the input (14), the change of coordinates (13) and
discarding qd, it is possible to rewrite the continuous phase
as

d
dt


hr
ḣr
σN
qn
q̇n

 =


ḣr
0

k2 (hr, qn)
q̇n
0

+


0

vr
0
0
vN

 (17)

Now define an embedded manifold

W ,
{

x ∈ X|hr = 0, ḣr = 0
}

(18)

From equation (17) it is possible to see that the input
vr can be used to drive hr to zero. The input 4 vN
remains free to control the absolute speed q̇n and also,
when restricted to W, the angular momentum σN .
Assume that it is possible to find functions V (qn) > 0 and
S (qn), such that if q̇n = V (qn), then σN = S (qn) + Cσ,
where Cσ is some constant bias. It is possible to use the
input vN to exponentially attenuate this bias.

3.2 Finding a periodic step

The manifoldW is said to be forward invariant if solutions
starting atW will remain inW. It will be said to be impact
invariant if W ∩ S 6= ∅ and ∆ (W ∩ S) ⊂ W. Observe
that ∆ (W ∩ S)∩S = ∅. If W is both forward and impact
invariant, it is said to be hybrid invariant [Westervelt et al.,
2007, p 96]. While the feedback control can lead to forward
invariance, the impact invariance is a design property.
For the nominal trajectory to be repeated, each variable
evolution must be hybrid invariant. So, not only W, but
also the angular momentum reference S (qn), and the
absolute speed reference V (qn), has to be hybrid invariant
themselves.
One procedure to find such nominal trajectory would be:
(1) Fix the absolute orientations at the beginning, qn =

q̄+
n , and at the end, qn = q̄−n , of the step, and the
nominal configurations q̄+ and q̄−.

(2) Determine a desirable evolution hrefr (qn) for the
robot configuration, such that
(a) q̄+ = ∆qq̄−∀q ∈ W, as qd is a cyclic coordinate, it

can be ignored; this will ensure impact invariance
on the robot shape hrefr (qn)

(b) depending on the value of ∆ω (q̄−r , q̄−n ), determine
∂hrefr (q+

n )
∂qn

and
∂hrefr (q−n )

∂qn
for impact invariance

of ḣrefr (qn). There will be also a fixed increment
or decrement of the angular momentum ∆σ =
σ−N − σ

+
N . This will lead to impact invariance on

W.
(3) choose an impact invariant and convenient function

candidate for V (qn) > 0 , then numerically calculate

S (qn) =

qn∫
q+
n

k2(0,τ)
V (τ) dτ + σ+

N (19)

4 As k2 is the gravity effect on the absolute coordinate qn, it will be
zero for only one moment when the horizontal position of the robot’s
center of mass is the same of the stance foot.
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such that ∆σ = S (q−n )−S (q+
n ) will satisfy the impact

invariance restriction for S (qn).
The control must ensure forward invariance and also a
stability around this planned trajectory.

3.3 A new change of coordinates

By construction of V (qn) and S (qn), when restricted to
W, where hr = 0, the following relation holds

k2 (qn,hr)|W =
∂S (qn)
∂qn

V (qn) (20)

and so it is possible to write

k2 (hr, qn)−
∂S (qn)
∂qn

V (qn) = 〈hr, f2 (hr, qn)〉 (21)

where f2 (hr, qn) is an unknown but bounded function.
Suppose now that exist hybrid impact invariant functions
hrefr (qn), V (qn) and S (qn) . Then if we choose

vr = −KPhr −KV Lfhr (22)
with KP and KV positive definite, this will ensure conver-
gence of qr → hrefr (qn). The convergence x →W will be
independent of qn, q̇n, qd or q̇d and alsoW will be forward
invariant.
The input vN can be freely used to drive the absolute
orientation of the robot. It is theoretically possible to track
any reference trajectory by the use of the output (11) as
we found a linearizable part of dimension 2N − 2, the side
effect being that we do not have direct control over the
speed accumulated by the disc. But there is an interesting
property of this robot, as qd and q̇d can be ignored for the
dynamic model. So the remaining coordinates will be qr,
qn , σN , q̇r, q̇n. As qn is the only absolute coordinate, D
is also independent of qn.
Now define

b , σN − S (qn) (23a)

c , q̇n − V (qn)−
γ

β0

∂S (qn)
∂qn

b (23b)

with γ and β0 positive constants. It is possible to define
the manifold

Z , {x ∈ W|b = 0, c = 0} (24)
and it will be impact invariant. When the robot is perform-
ing the nominal step, x ∈ Z and Z∩S is one-dimensional.
As qn is monotonic at the continuous phase, it is possible
to integrate (17) at qn and rewrite it using the coordinates

y ,
(

hr ḣr b c
)T

(25)
So, defining

ξ (qn) ,
(
c (qn) + V (qn) + γ/β0

∂S

∂qn
b (qn)

)−1

(26)

using the input vr as defined in (22) and vN as

vN =
∂V

∂qn
q̇n + γ

∂S

∂qn
b− β0 (q̇n − V ) +

d
dt

(
γ

β0

∂S

∂qn
b

)
(27)

then the continuous part of the dynamic system, subject
to the given hypotheses, can be written as

dy
dqn

= f̄ (y, qn) (28)

f̄ (y, qn) , ξ

 ḣr
−KPhr −KV ḣr

〈hr, f2〉 − ∂S
∂qn

c− γ/β0

(
∂S
∂qn

)2
b

−β0c

 (29)

Note also that by using the input (27), the impact invariant
manifold Z will be forward invariant and thus, hybrid
invariant.
In this new coordinates, the impact map will be(

q+
d

h+
r

q+
n

)
= ∆q

(
q−
d

h−r + hrefr
(
q−n
)

q−n

)
−

(
0

hrefr
(
q+
n

)
0

)
(30a)

(
b+

ḣ+
r

c+

)
= ∆p

(
h−r , q

−
n , q

+
n

)( b−

ḣ−r
c−

)
(30b)

where

∆p = ∆1
(
q+
n

)
∆ω

(
hr + hrefr (qn)

)
∆2
(
q−n
)

(31)

∆1 =


1 0 0

0 1 −
∂hrefr
∂qn

−γ/β0
∂S

∂qn
0 1



∆2 =


1 0 0

γ/β0
∂hrefr
∂qn

∂S

∂qn
1
∂hrefr
∂qn

γ/β0
∂S

∂qn
0 1


From (30a) and (9) it is possible to find the impact
effect over hr and the actual integration limits q+

n and
q−n , q+

n < q−n . From (30b) it is possible to find how the
remaining part of (25) are affected by the impact. The
impact map with respect to the vector state (25) will be

y+ = ∆y
(

y−
)

(32)

and can be obtained by reshaping (30) adequately. From
(28) and (32), the complete hybrid system will be{ dy

dqn
= f̄ (y, qn) y /∈ S

y+ = ∆y

(
y−
)

y ∈ S
(33)

3.4 Poincaré Map

When walking, the dynamic system (33) will take a peri-
odic evolution composed of a continuous phase, followed by
the impact map and another continuous phase. To evaluate
the stability of this periodic orbit, it will be important to
define Poincaré return map for the manifold S as

P : SP → S (34)

where SP ∈ S is a neighborhood of y = 0, such that

P (y) , ϕy
(
q+
n , q
−
n ,∆y (y)

)
(35)

with ϕy (q+
n , q

−
n ,y0) being the integral curve of (33) with

initial condition y0, starting at qn = q+
n and ending at

qn = q−n . So ϕy (q+
n , q

+
n ,y0) = y0.
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By the hybrid invariance of the manifold Z, y0 = 0 will
be a fixed point of P

P (0) = 0 (36)

As expected, there exists a periodic orbit of y ∈ Z and, the
intersection of this periodic orbit with the impact surface
S, that is S ∩ Z, occours at y = 0.

4. STABILITY AROUND THE NOMINAL STEP

Theorem 1. Under the given robot hypotheses and the
existence of hrefr (qn), V (qn) and S (qn) such that the
manifolds W and Z are hybrid invariants, then:
- The Poincaré return map P is regular in some neighbor-
hood SP ⊂ S around y = 0.
- The Poincaré return map P can be made locally expo-
nentially contracting in some neighborhood SC ⊂ SP of
y = 0, by adjusting the parameters KP , Kv, β0 and γ.
Corollary 2. If it is possible to find (14) for every possible
value of x, then the the system (10), except for the disc
position, can be made exponentially stable around some
neighborhood U of Z by using the inputs defined by (22),
(27) and adjusting the parameters KP , Kv, β0 and γ.

Proof. The Poincaré return map is well defined for y = 0,
Z ∩ S, and this is its fixed point. The manifold Z is
transversal to S and solutions of the hybrid system (33)
are continuous. So for some sufficiently small perturbation
ε ∈ S around 0 before the impact, the continuous part of
the system will reach again the impact surface. If SP is
defined to be the set in which, in the event of an impact,
at least one another impact will follow, then it is possible
to conclude that ∃P : SP → S.
The impact map (31) can be linearized at Z ∩S. This will
lead to

y+ ≈ ∆̄yy− (37)

where ∆̄y will be a matrix whose non constant elements
will increase at most with (γ/β0)2. Also, the integration lim-
its q+

n and q−n , being determined by the impact condition,
will change if hr 6= 0. They can be written as functions
and when linearizated around y = 0 will lead to

q+
n ≈ q̄+

n +
〈

h+
r , f̄+

〉
; q−n ≈ q̄−n +

〈
h−r , f̄−

〉
(38)

where f̄+ and f̄− are constants.

Note that ξ (qn)|Z = (V (qn))−1, so the differential equa-
tion (28), linearizated around Z, will be

dy
dqn
≈ Ξy (39)

with

Ξ = V −1


0 1 0 0
−Kp −Kv 0 0

f2 0 −γ/β0

(
∂S

∂qn

)2

−
∂S

∂qn
0 0 0 −β0



If the linearized system is exponentially stable, then the
non linear system will be stable around some neighborhood
U of Z.
We can find an explicit solution of (39) for the k-th step

y−(k) = Φy

(
q−
n(k), q

+
n(k)

)
y+

(k) (40)

where

Φy
(
qn, q

+
n

)
=

 gpp gpv 0 0
gvp gvv 0 0
gbp gbv gbb gbc
0 0 0 gcc



gpp (qn) =
α1e−ζ(qn)α2 − α2e−ζ(qn)α1

α1 − α2

gpv (qn) =
e−ζ(qn)α2 − e−ζ(qn)α1

α1 − α2

gvp (qn) = −V −1α1α2gvp (qn)

gvv (qn) = V −1 α1e−ζ(qn)α1 − α2e−ζ(qn)α2

α1 − α2

gcc (qn) = e−β0ζ(qn) ; gbb (qn) = e−γ/β0ψ(qn)

gbc (qn) = e−γ/β0ψ(qn)

qn∫
q+
n

e
γ/β0ψ(qn)−β0ζ

∂S

∂qn
V −1dqn

gbp (qn) = −
e−γ/β0ψ(qn)

α1 − α2

qn∫
q+
n

ybpf2 (qn)V −1dqn

ybp = α2e
γ/β0ψ(τ)−α2ζ(τ) + α1e

γ/β0ψ(τ)−α1ζ(τ)

gbv (qn) = −
e−γ/β0ψ(qn)

α1 − α2

qn∫
q+
n

ybvf2 (qn)V −1dqn

ybv = e
γ/β0ψ(τ)−α2ζ(τ) − eγ/β0ψ(τ)−α1ζ(τ)

α1,2 = Kv ±
(
K2
v − 4Kp

)1/2

ζ (qn) =

qn∫
q+
n

V −1 (τ) dτ ≥ 0∀qn

ψ (qn) =

qn∫
q+
n

(
∂S (τ)
∂qn

)2

V −1dτ ≥ 0∀qn

It is possible to see that the parameters Kp, Kv, β0 and γ
can be chosen large enough to have any initial condition
y+

(k) at qn = q+
n(k) attenuated as much as we want at the
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point qn = q−n(k), end of the step. This will be true even if
there are some small pertubation on the integration limits
due to hr 6= 0.
Choosing S as the Poincaré surface, it will be possible to
write its linearization as

P̄ (y0) ≈ Φy
(
q−n , q

+
n

)
∆̄yy0 (41)

and this product will be basically composed of terms like
(γ/β0)2

e−γ/β0 that, after some peak point, will exponen-
tially became smaller as γ/β0 increases. By adjusting the
tunning parameters, the linearized Poincaré map can be
made as small as we want and, as result, its eigenvalues
can be allocated inside the unit circle. Even starting in a
neighborhood of W, where the integration limits q+

n and
q−n will be different from the nominal values, the stability
is assured. In fact, appropriate values of KP and KV will
lead, along each step, to the convergence of q+

n(k) and q
−
n(k)

to the nominal values q̄+
n and q̄−n .

Under the conditions of the Corollary there exists a
diffeomorphism between (33) and (10), except for the
disc position. If the jacobian of the Poincaré return map
evaluated at Z ∩ S has its eigenvalues inside the unit
circle, then the system (33) will be stable around some
neighborhood U of Z. This can be achieved by choosing the
parameters of the control law. As conclusion, the system
(10) can be made stable in the neighborhood U , except for
the disc position.

5. NUMERICAL SIMULATIONS

By now some simulation results are presented for a model
like the one illustrated on picture 1. The corresponding
author can submit the numerical values and other details
by email.
The proposed control law was simulated with parameters
β0 = 4.5 and γ = 0.35, with the robot starting from rest
at positions qn = −10◦ and qr = −20◦. This means that
the robot state is outside W. The simulated behavior can
be viewed on figure 2.

Fig. 2. Complete control with exact model and starting
outside W manifold.

Figure 3 show the results when some parametric errors are
included on the model. Anyway, the control remains stable
and can drive the robot close to the reference.

Fig. 3. Complete control, model with parametric errors
and starting outside W manifold.

6. CONCLUSIONS

We have derived a control law for the presented class
of bipedal robots, so that the robot configuration will
be tied to the absolute orientation. Also the speed of
this absolute orientation and the angular momentum will
follow predetermined references. As result, the robot will
asymptotically converge to a walking gait at the same
time as the average disc speed can be driven to zero (or
any other desired value) by an appropriate offset in the
reference for the angular momentum.
The stability of the proposed control was proved around
some neighborhood of the nominal step and could be
verified in numerical simulations. The simulations shows
that the domain of attraction is somewhat big as the
nominal step is reached even if the robot starts with
no speed and the results could also be validated for
some parametric errors, indicating the robustness of the
presented method.
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