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Abstract: Major space agencies have an increasing interest in highly accurate (200 m) autonomous
landing on the Moon. Inertial-only navigation is not compatible with this challenging requirement. The
techniques currently investigated rely on vision-based navigation. A first approach consists in tracking
features between sequences of images in order to measure the angular rate as well as the direction of the
velocity vector of the spacecraft. A second approach aims at identifying image features using a geo-
referenced on-board database to determine the attitude and the position of the spacecraft. However,
existing algorithms are computationally prohibitive and have a limited robustness to varying illumination
conditions and surface characteristics. This paper presents the development of an innovative autonomous
vision-based navigation system addressing these problems. Numerical simulations have shown that this
system is capable of estimating the position and velocity of the vehicle with an accuracy better than 100
m and 0.1 m/s respectively. This work is the result of a successful collaboration between the Université
de Sherbrooke, NGC Aerospace Ltd., Thales Alenia Space and the European Space Agency. The
proposed system has been selected as the main navigation algorithm in three major research and
development projects sponsored by European Space Agency and the Canadian Space Agency.

Keywords: absolute optical navigation, relative optical navigation, state estimation, pin-point lunar
landing, crater detection and matching, Harris corner tracking



INTRODUCTION

The interest of major space agencies for passive vision
sensors in their mission design has been increasing over the
years. These sensors are multipurpose, lightweight, space
qualified and low cost. They offer an efficient solution to
address the ever-increasing demands in navigation
performance. The most widespread space application of a
passive vision sensor is the star tracker (Wertz 1978). Star
constellations in the camera images are recognized with the
aim of retrieving the orientation of the spacecraft. Spacecraft
rendezvous and docking (VBrNAV) (Di Sotto et al. 2005) is
another example in which passive vision sensors are used.
Distinctive and strategically arranged markers on the docking
station are detected using image processing algorithms to
retrieve the relative pose of the spacecraft with a high degree
of accuracy. Moreover, interplanetary navigation systems
(AUTONAV) (Bhaskaran et al. 2000) take the full advantage
of cameras to provide the position of the spacecraft with
respect to the target celestial bodies at long range. Finally,
vision sensors are useful for planetary landing (DIMES,
NPAL, ALHAT, VISINAV) (Cheng et al. 2004; Flandin et
al. 2004; Brady et al. 2007; Mourikis et al. 2009) and small
body sample and return (Kominato et al. 2006). In these
applications, cameras open the way toward highly accurate
positioning of the spacecraft by recognising visual features
on the surface of the celestial body. All these vision-based
navigation technologies have provided tremendous
performance improvements of space navigation systems.

An important part of the research activities in passive vision
sensing for space applications currently focuses on the
navigation system for autonomous pin-point planetary
landing and small-body sample and return. Without a Global
Positioning System (GPS) or radio beacon, high-accuracy
navigation around a non-terrestrial planet is a complex task.
Most of the past and current navigation systems are based
only on the accurate initialization of the states and on the
integration of the Inertial Measurement Unit (IMU)
measurements in order to obtain the translational and the
angular position of the spacecraft (Trawny et al. 2007). This
strategy can only track sudden motions of short duration, but
their estimate diverges in time and typically leads to high
landing error. This reality is mainly caused by the poorly-
known gravity field of the celestial body and by the IMU
measurement bias and noise. In order to improve navigation
accuracy, many authors have proposed to fuse the IMU
measurements with optical measurements using state
estimators such as the Kalman filter.

A first vision-based navigation approach relies in feature
tracking between sequences of images taken in real time
during orbiting and/or landing operations. The features are
pixels that have a high probability of being recognized
between images taken from different camera locations. The
information about the tracked features measures the angular
rate and the direction of the velocity of the spacecraft. This
technique, referred to as Terrain-Relative Relative Navigation
(TRRN), relies on relatively easy-to-implement, robust and
well-developed image processing techniques. Although, this
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technology has been demonstrated on space qualified
hardware in DIMES (Cheng, Goguen et al. 2004) and NPAL
(Flandin, Frapard et al. 2004), the gain in navigation accuracy
remains limited since the spacecraft absolute position is not
observed through the vision measurements. In fact, this
technique normally helps maintaining an initial position
accuracy, but the estimated position is not improved over
time (it does not diverge as quickly compared to the inertial-
only navigation approach).

A second vision-based navigation technique currently under
investigation consists in identifying features and in mapping
them into an on-board cartographic database indexed by an
absolute coordinates system, thereby providing absolute
position determination (Mourikis, Trawny et al. 2009). This
technique, referred to as Terrain-Relative Absolute
Navigation (TRAN), relies on complex Image Processing
Software (IPS) that are not compatible with flight computers
and have an obvious lack of robustness.

To be usable in future pinpoint landing missions, vision-
based navigation technology must meet the following well-
established requirements:

1. High accuracy: The navigation system shall provide
absolute position and surface-relative velocity knowledge
within respectively tens of meters (100 m) and tens of
millimetres per second (10 cm/s) at touchdown.

2. Autonomy: The navigation system shall operate without
intervention from the ground.

3. Compatibility with flight computers: Flight computers
typically have limited computing power and require
highly optimized and computer-efficient algorithms.

4. Robustness: The navigation system shall be able to work
in a wide variety of environments which means varying
light conditions, varying atmospheric conditions, different
spacecraft altitudes, different viewing angles and with a
wide range of surface topography, albedo and texture.

The main objective of the paper is to present the development
of an accurate, robust, autonomous and computational
efficient vision-based navigation algorithm that provides
absolute position and surface-relative velocity during the
proximity operation of the lunar landing mission using a
combined approach of TRRN and TRAN. This work is the
result of a joint research and development endeavour
sponsored by the Université de Sherbrooke, NGC Aerospace
Ltd., the European Space Agency and Thales Alenia Space.

This paper first describes the space mission for which the
system has been developed. It is followed by an overview of
the navigation system. The proposed image processing and
estimation algorithms are then described. Finally, numerical
simulation experiments are presented in order to demonstrate
the performance of the system.

MISSION DEFINITION

1.1. Mission Timeline

There are several missions that would benefit from TRAN
and TRRN. However, this work focuses on lunar landing
mission. This mission aims at delivering a payload to a
precise location on the surface of the Moon or at reaching a

specific site with a high scientific interest. The mission
timeline is based on the Next Lunar Lander (NLL) study
(Pradier et al. 2011). The targeted landing site is located at
the Malapert peak. The descent trajectory is decomposed into
the three phases shown in the following figure:

Fig. 1: Phases of the Moon-Landing Mission

The Low Lunar Orbit (LLO) phase begins when the vehicle
is in a circular orbit at an altitude of 100 km. The LLO phase
ends when the Descent Orbit Injection (DOI) is performed in
order to bring the vehicle into the Descent Orbit (DO). More
precisely, the DOI reduces the horizontal velocity of the
spacecraft to reach an eccentric descent orbit with a periapse
close to the lunar surface. The Power Descent Initialization
(PDI) takes place around an altitude of 10 km. During the
Powered Descent (PD), the velocity of the spacecraft is
reduced from orbital speed (~1.7 km/s) to a velocity safe for
landing (1 m/s).

The PD phase has four parts. At the beginning, the spacecraft
follows a predefined optimal trajectory computed using
numerical optimisation tools. The optimization problem is
formulated following the Pontryagin’s maximum/minimum
principle (Lewis 2006). At 80 km of downrange, the Powered
Explicite Guidance (PEG) algorithm is enabled (Springmann
2006). This algorithm has been originally developed for the
space shuttle. It aims at computing the thrust direction and
magnitude to reach a desired terminal position ௗ࢘ and
velocity ௗ࢜ in a minimum time using a computationally-
efficient iterative algorithm. When the spacecraft reaches an
altitude of about 100 m, the Gravity Turn (GT) segment is
engaged. This guidance law lines up the engines of the
vehicle to fire in the opposite direction of its current surface-
relative velocity vector. At 10 m of altitude or when the
spacecraft reaches a vertical velocity of 1 m/s the Terminal
Descent (TD) phase starts. During this phase, the spacecraft
descends at a constant velocity toward the ground. Finally,
when the landing legs touch the ground, the engines are cut
off.

1.2. Lightning conditions

The mission takes place with illumination conditions that are
challenging for optical-based navigation. The descent orbit of
the spacecraft is assumed to be at 45 degrees of the
terminator as shown in Fig. 2 below:
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Fig. 2: Landing Orbit and Assumption about the Sun Position

The terminator is the line which separates the illuminated day
side and the dark night side of the Moon. During landing the
light elevation vary from 45 to 2.5 deg.

1.3. Sensor Suite

The navigation sensor suite comprises: an Inertial
Measurement Unit (IMU), a star tracker, an altimeter and a
camera. The configuration of the sensors on the vehicle is
shown in the following figure:

Fig. 3: Sensor Configurations

The IMU is used during the entire mission. The star tracker is
enabled only when the main engines are cut off, i.e. during
the DO. The perturbations induced by thrusters can interfere
with the operation of the star tracker and yield to erroneous
spacecraft attitude measurements. The altimeter is enabled as
soon as the spacecraft altitude is compatible with its
maximum operating range of 3 km. This happens at an
altitude of 2 km. The altimeter operation is stopped when the
terminal descent starts. At this point, the interaction of the
thruster plumes with the ground raises dust which might
affect its operation. The absolute optical navigation is
enabled at an altitude of 50 km. There are many raisons why
enabling the absolute navigation earlier is not useful. First, at
higher altitude, the low resolution of the image makes the
absolute optical measurements so inaccurate that they do not
provide significant improvements to the spacecraft position
and attitude estimation. Second, accurate spacecraft position
knowledge is not required since the translational states of the
spacecraft are left uncontrolled during the DO phase. Third,
the use of optical absolute navigation early in the descent
would require a larger on-board database. However, it is
critical to start the absolute navigation before the braking
burn. The powered descent phase must be initiated at the
right moment during the descent in order to fulfil the
challenging landing accuracy requirements using a minimum
amount of fuel. The absolute optical navigation is disabled at
an altitude of 1.5 km. At lower altitude, the absolute
navigation would require an on-board geo-referenced feature
database with a resolution higher than that of the currently
available lunar surface imagery. The optical relative
navigation is started only at an altitude of 25 km. In other to
get a relatively accurate velocity estimation of the spacecraft
from the relative optical measurements, the resolution of the

image must be sufficiently good. In addition, the velocity
estimates are more accurate if the altitude estimation error is
lower. Consequently, it is more adequate to let the navigation
filter converges using the absolute optical measurements
before starting the optical relative navigation.

NAVIGATION SYSTEM OVERVIEW

The proposed navigation system used both TRRN and TRAN
technology. It is shown in the following figure:

Fig. 4: Navigation System Overview

For the TRRN, the IPS tracks several features into successive
image frames. It provides the normalized image coordinates
of the features. For TRAN, the IPS detects and matches the
features into a geo-referenced database. Consequently, the
feature information is augmented by their surface position.
The information extracted by the image processing and the
measurements from other sensors are fed into an Extended
Kalman Filter (EKF) to estimate the spacecraft states
(position, velocity, and attitude).

IMAGE PROCESSING

1.4. Crater Detection and Matching

The presence of relatively well-shaped crater impacts
covering the entire surface makes the Crater Detection and
Matching Algorithm (CDMA) an attractive solution for
future autonomous robotic lunar landing missions.

The crater detection is achieved by pairing shadowed and
illuminated objects of the image having a similar size and a
relative orientation consistent with the direction of the light.
The proposed algorithm is able to detect craters close from
each other as well as eroded craters of various size. It is also
robust to a wide range of illumination conditions and terrain
characteristics. The details of this algorithm are presented in
Fig. 5. It has eight steps:

1. A rough estimation of the Sun direction in the image is
computed using the estimated states of the spacecraft
(position and orientation) and the Moon and Sun
ephemerides.

2. The image is filtered using a smoothing filter to reduce
image noise and the high-frequency texture induces by
the terrain relief (not useful information for crater
detection). The image is also equalized in order to exploit
the full range of intensity values.
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3. Illuminated and shaded objects are extracted from the
images using adaptive intensity clustering and the image
edge response. The result of this operation is two binary
images describing the illuminated and shaded objects in
the image.

4. The distance transform is then applied on the binary
images so the intensity of each object pixel becomes
proportional to its distance from the closest background
pixel.

5. A hierarchical watershed transform is performed in order
to extract the convex illuminated and shaded objects
(potentially parts of craters). Each convex object is
labelled and characterized (area, centroid, principal axes).
The result of this step is a hierarchical representation of
each illuminated and shaded object referred as object
trees. Each level of the hierarchy represents a higher level
of object segmentation.

6. All combinations of illuminated and shaded convex object
pairs are compared against a simple mathematical model
of a crater. This model characterizes for instance the
relative size of objects, their distance versus their size,
and their relative orientation with respect to the Sun
direction. Each illuminated/shaded object pair is assigned
to a cost proportional to its degree of dissimilarity to the
crater mathematical model.

7. In order to keep only the best candidate craters and
remove multiple pairings of same convex object, a
dynamic optimization algorithm exploiting the quality of
the pairs is used. This process starts by identifying the
object pair with the lowest cost value (highest quality).
The trees of these objects are then used to identify their
parent and their children in order to ungroup them.
Consequently, it is no longer possible for them to form
craters. In addition, other pairs composed of one of the
objects (which have by definition a higher cost) are also
ungrouped. Therefore, the same object cannot belong to
more than one crater. This scheme is repeated with the
pair having the second lowest cost among all remaining
pairs and so on unit that all pairs are processed.

8. The parameters of the ellipse characterizing each detected
crater are computed. In order to do so, the smallest ellipse
enclosing all the pixels of the crater objects is determined.

The crater matching algorithm uses the parameters of the
detected craters to locate them into a geo-referenced
database. The proposed algorithm is based on a stochastic
approach robust to false detection, missed detection and/or
depleted database. It also provides very few false matches
(see next sections). The proposed algorithm exploits the
logical consistency between matches (a given detected crater
cannot be matched to more than one database crater and vice
versa) as well as the geometric consistency of a match
(detected and database craters of the matches are related
through a camera projection model). The algorithm is
summarized below:

1. A set of logically consistent tentative matches (2 or more)
is picked randomly. The probability of selecting a match
is proportional to the degree of geometrical consistency
with the current estimate of the spacecraft attitude and
position.

2. The camera position is estimated from the set drawn in
step 1 using a least square fit approach.

3. The number of matches geometrically consistent with this
computed camera position is determined.

4. The matches with incompatible radius are removed.
5. The steps 2 to 4 are repeated using the matches found in

step 4.
6. If more than 50% of the detected craters are matched, stop

the algorithm.
7. If the maximum number of iterations is not exceeded,

restart at step 1. Otherwise, no match has been found.

1.5. Harris Corner Tracking

Harris corners can be detected in image with a minimum
among of texture. They can be easily tracked in an image
sequence using the approach illustrated in Fig. 6 and
summarized as follows:

Fig. 5: Crater Detection
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1. The algorithm searches for each feature in the current
image along the predicted epipolar line with the Kanade-
Lucas (KL) differential method (Robinson 2004).

2. The lost tracks are then replaced by the strongest corners
of the current image located outside a user-defined radius
of the tracked features.

3. The descriptor of each feature is updated if their sum of
squared difference with the current image is too high or if
the corner has been newly added in step 2. The feature
descriptor corresponds to the intensity as well as the
vertical and horizontal intensity gradient of the pixels in
the corner neighbourhood (this descriptor is required in
the step 1).

4. The process is then restarted when a new image is
available using the updated feature coordinates and
descriptors.

VISION-BASED STATE ESTIMATOR

The proposed state estimation is based on the multiplicative
version of the Extended Kalman Filter (EKF) (Chodas 1982).
This formulation is able to deal with quaternion in its state
vector. This algorithm is well known and will be not reported
in this paper. The major challenges faced in the design of a
robust and accurate filter are the selection of the state vector
and the definition of the mathematical models describing the
state evolution and the measurements as function of states. It
is noted that the measurement equations can also be
formulated as constraints between the states and the
measurements. These models must also include the various
noise sources of the system (assumed zero-mean Gaussian
random signal). The covariance of the noise signals defines
the weight of the state propagation and of each measurement
update in the estimation. Following the Kalman filter theory,
the state estimator also keeps track of the current state
estimation covariance. This information can be used as a
quality indicator.

1.6. State Vector

The proposed state vector is given by:

=࢞ ] ࣓ூ
 ఠ࢈

 ௌ
 ௌ࢜

 ௌࢇ
 ࢈

]ࢀ (1)

where  is a quaternion describing the rotation from the
planet fixed frame ℑ to the spacecraft body frame ℑ, ࣓



is the angular velocity of the spacecraft with respect to ℑ

and expressed in ℑ, ௌࢇ
 is the acceleration of the spacecraft

excluding the gravity in ℑ, ௌ࢜
 and ௌ

 are the spacecraft
velocity and position expressed in ℑ, ఠ࢈

 and ࢈
 are the

gyroscope and the accelerometer bias in ℑ.

As it will be shown in the next section, the relative optical
measurements are used to enforce constraints between two
past spacecraft poses (attitude quaternion and position). It
will be also explained that the optical measurements
(especially the absolute ones) are available several seconds
after the image acquisition due to the processing time.
Consequently, the measurements are not consistent with the
current states of the spacecraft. In order to deal with these
facts, the state vector is augmented with a history of past
spacecraft poses (position and quaternion):
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where =,࢞ ,,ൣ ௌ,,
 ൧. Each time an image is

triggered, the oldest pose from the history is replaced with the
current vehicle pose and the covariance is updated
accordingly. These poses are fixed in time and only their
cross-covariance with the current spacecraft pose evolves.
Consequently, an update of the past poses also impacts the
estimation of the current states.

1.7. Spacecraft Model

The spacecraft dynamic model is given in the following
equations:

̇ =
1

2
ூ࣓)ࢹ

 − ூ࣓()۱
 ( (3)

࣓̇ௌ
 = ఈࣁ

 (4)

࣓̇࢈
 = ഘࣁ

 (5)

ௌ̇࢜
 = ࢍ + ௌࢇ்()

 − 2(࣓ூ
 ௌ࢜×(



− (࣓ூ
 )×(࣓ூ

 ௌ×(
 + ࣁ

 (6)

ௌ̇ࢇ
 = ࣁ

 (7)

ࢇ̇࢈
 = ೌࣁ

 (8)

where()� is the cosine direction matrix corresponding to ,
࣓× is the skew-symetic matrix of the vector ࣓ , ࣓ூ
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angular velocity of the Moon with respect to the inertial
frame and expressed in its reference frame,ࣁ�

 represents the

gravity field modelling error, ࣓)ࢹ ) and ࢍ are respectively
defined by:

࣓)ࢹ ) = ቂ −்࣓

࣓ −࣓×ቃ (9)

ࢍ = −
ߤ

ௌ‖
 ‖ଷ

ௌ
 (10)

1.8. Gyroscope and Acceleration Measurement Model

The gyroscope and acceleration measurement models are
respectively shown below:

࣓ூ
 = ࣓
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where ࣓ூ
 is the angular velocity of the planet with respect to

ℑூ expressed in ℑ, ఠࣁ
 and ࣁ

 are the gyroscope and the
accelerometer noise.

1.9. Optical-Absolute Measurement Model

The optical absolute measurements are processed using the
pin-hole projection model based on the crater line-of-sight:

=࢛
ቂ
1 0 0
0 1 0

ቃி


[0 0 ி[1
 + ௦,ࣁ

(13)

where ௦,ࣁ is the crater detection measurement noise, ி


is the position of feature i݅n the camera frame ℑሬሬ⃗:
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ி
 is the crater surface position, 

 and  are the

attitude quaternion and the position of the camera in ℑ,
ெࣁ  is the map-tie error (error in the on-board crater

database).

1.10. Optical-Relative Measurement Model

The optical relative measurements are treated using the
epipolar constraint defined between two different views of
the same feature (taken at different time):
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where ࡾ is the director cosine matrix that describes the
rotation from the view ݈to the view ,݆ ×ࢀ corresponds to the
skew-symmetric matrix of the translation vector between the
two views:
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1.11. Altimeter Measurement Model

The altimeter measurements are fused using the following
constraint:

0 = ൫ௌ
 ൯

்
௧ௗ
 + ௌࢊ (18)

where ௌ
 and ௌ݀ are the parameter of the surface mean

plane. The surface mean plane can be predetermined prior the
mission if the trajectory is such that the altimeter is pointed
toward the landing during the descent or it can be recomputed
in the real-time using an on-board Digital Elevation Map
(DEM). The point ௧ௗ

 of Eq. (18) is defined as:
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where ݀௧ is the altimeter measurement delay and ௧ௗ
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given by:
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The vectors ௌ
 (݇− ݀) and −݇) ݀) correspond to the

back-propagated position and attitude of the spacecraft at the
time of the measurement:
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This delay-recovery method is less elegant than the one used
for optical measurement fusion, but it is more
computationally efficient and accurate enough when the
delay is small (a few navigation cycles).

1.12. Star-Tracker Measurement Model

The star-tracker measurement equation is given by the
following constraint:

ଷ×ଵ = [ଷ×ଵ ଷ×ଷ]൬ࡵ


ௌ௧ࣁ0.5
൨⊗ ௌ

⊗ −݇) ௌ݀௧) ⊗ ⊗ூ −݇)ௌூ) ௌ݀௧) )ି൰
(23)

where ⊗ is the quaternion product, ௌூ is the measured
quaternion from ℑூ to the star-tracker frame, ௌ௧ࣁ is the star-
tracker measurement noise, ௌ is the orientation of the star-
tracker frame in ℑ, ூ is the planet attitude quaternion in
ℑூ (computed from the on-board time), ௌ݀௧ is the star-tracker
measurement delay. The back-propagated spacecraft
quaternion −݇) ௌ݀௧) has been defined in the previous
paragraph.

SIMULATION TESTING

1.13. Crater Detection and Matching Robustness Analysis

The crater detection and matching is a critical part of the
navigation system. Several analyses have been done to
demonstrate its robustness. Those analyses use more than
4000 synthetic images generated with PANGU (Parkes et al.
2004). The first analysis demonstrates that the algorithm is
robust to translational motion blur of more than 4 pixels
(which is severe considering that the blur is lower than one
pixel during the descent):
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(a) (b)

(c)
Fig. 7: Crater Detection Performance Versus Translational Motion
Blur (a) detection and matching rate, (b) false detection and false

match rate, (c) crater radius and position accuracy

The second analysis shows that image Signal to Noise Ratio
(SNR) has to be only 20 to get good crater detection and
matching performances (lighting condition analysis shown
that typical SNR of the images gathered during the descent is
50):

(a) (b)

(c)
Fig. 8: Image Processing Performance Versus Image Noise (a)

detection and matching rate, (b) false detection and false match rate,
(c) crater radius and position accuracy

The third and fourth analyses demonstrate that the crater
detection and matching algorithm works for a wide range of
realistic Sun elevations angles and viewing angles:

(a) (b)

(c)
Fig. 9: Image Processing Performance Versus Viewing Angle (a)

detection and matching rate, (b) false detection and false match rate,
(c) crater radius and position accuracy

(a) (b)

(c)
Fig. 10: Image Processing Performance Versus Light Elevation (a)

detection and matching rate, (b) false detection and false match rate,
(c) crater radius and position accuracy

1.14. High Fidelity, End-to-End Closed-Loop Simulation

The navigation system has also been validated using high
fidelity, closed-loop and end-to-end simulations using
MATAB/SIMULINK. It is noted that only a few papers have
published results of end-to-end lunar landing simulations
with image processing in the loop. The real-world simulator
includes the following components:

 The camera images are generated during the simulation
based on the true states of the vehicle using PANGU.

 The distribution of the craters and their size are based on
(Smith et al. 1982).

 The topography of the surface is defined using the
Kaguya mission flight data (Araki et al. 2009).

 The map-tie error of the crater on-board database has
been established so it is representative of the currently
available positioning information of the lunar craters (50
m).

 The camera lens and intrinsic parameter calibration errors
are modelled.

 The lighting conditions are representative of the mission
scenario.

 The characteristics of the Charged Coupled Device
(CCD) are based on the Atmel TH7888.

 The IMU model is based on the Honeywell YG9666N
characteristics.

 The star-tracker model is based on the ASTRO-APS sold
by Jenaoptronik.
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 The altimeter model corresponds to the Doppler radar
designed for the EXOMARS mission.

 The propulsion system as well as the fuel slosh is fully
modelled.

 The gravity field is modelled using LP165 (Konopliv et
al. 2000).

The on-board software includes:

 The crater detection and matching as well as the Harris
corner tracking coded in C language.

 The state estimator implemented in SIMULINK.
 The guidance and control algorithm based on the design

described in (Hamel et al. 2012) and implemented in
SIMULINK.

Typical attitude, position and velocity estimation accuracy is
shown in the following figure:

(a) (b)

(c)
Fig. 11: Navigation Error Versus Time, (a) attitude, (b) position, (c)

velocity

The estimation errors are reported by phase of the mission in
the following table:

Tab. 1: Navigation Errors

Mission Phase
Position

(m)
Velocity

(m/s)
Attitude

(rad)

Before the enabling of
the optical navigation

6.1 × 10ଷ 6.4 2.4 × 10ିସ

PDI 230 0.60 2.8 × 10ିସ

TD 8.6 0.033 0.0026

One could notice a dramatic improvement of the position
estimation accuracy when the crater detection and matching
is enabled. The position and the velocity estimation accuracy
at TD are respectively of the order of 10 m and 5 cm/s which
fulfil with a comfortable margin the mission requirements.

CONCLUSIONS

This paper has presented an innovative optical navigation
system for lunar pin-point landing. Its performance has also
been demonstrated through high-fidelity end-to-end
simulations. The attitude, position and velocity estimation
errors are lower than 0.15 deg, 10 m and 0.05 m/s
respectively. For future work, the image processing will be
implemented on flight-like computer.
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