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Abstract: In this paper we investigate the problem of optimal real-time power dispatch of an
interconnection of conventional power generation plants, renewable resources and energy storage
systems. The objective is to minimize imbalance costs and maximize profits whilst satisfying
user demand. The managing company is able to trade energy on an electricity market. Energy
prices, demand and renewable generation are considered stochastic processes. We show that
under certain assumptions, the stochastic power dispatch problem over a finite horizon can be
recast into a stochastic optimization formulation but with deterministic constraints. We carry
out a systematic study of stochastic optimization methods to solve this problem. We also show
that this problem can be approximated by a proper deterministic optimization problem using
the sample average approximation method, which can then be solved by standard means.

1. INTRODUCTION

Due to the current trend of deregularizing electricity
markets, there is a ever increasing need for efficiency in
power production and distribution. The current solution
to these problems, from the energy supplier’s side, is the
integration in the current power systems of renewable
energy generation sources and power storage systems.
Integrating renewables is a major bottleneck due to high
variability and low predictability of renewable resources.

In the majority of electricity markets, market participants
(called Balance Responsible Partners (BRPs)) place their
bids on the Day-Ahead (DA) market and the Ancillary
Services (AS) market regarding energy delivery and ca-
pacity availability for each Program Time Unit (PTU) of
the following day. At the end of the day-ahead auction, the
Transmission System Operator (TSO) selects the accepted
and rejected bids according to some clearing mechanism
[Shahidehpour et al., 2002] and publishes the future prices
and volumes, for each PTU of the following day. Sub-
sequently, each BRP determines its Energy Program (E-
Program) and sends it to the TSO for approval. The latter
describes the amount of energy supplied or consumed by
the BRP at every Program Time Unit (PTU) of the next
day. After receiving approval by the TSO, each BRP exe-
cutes a unit-commitment module to determine the on/off
status of its generators for each PTU of the following day.
Due to uncertainties in power demand and generation, the
existence of an imbalance market (or real-time market)
operated by the TSO is mandatory in order to counteract
real-time global energy imbalances, [Jokic, 2007]. Unlike
day-ahead prices, imbalance prices are characterized by
large volatility, sudden spikes that are hard to predict,
and counterintuitive phenomena like negative values.

A BRP must fulfill its E-Program and concurrently cope
with uncertainties induced by renewables intermittent gen-
eration, time-varying loads and imbalance prices, as well
as perturbations of its E-Program due to ancillary services
(AS) bids activated by the TSO. If the TSO calls for a
specific AS bid, the BRP responsible for this bid is asked
to deliver the requested energy, by adjusting its E-Program
accordingly. The real-time operation of a BRP is a com-
plicated optimal control problem, due to the coupling
between PTUs, uncertainties and complex dynamics of
the controllable generators. The controller must determine
power set–points for the controllable generators which
minimize generation costs (utilize intermittent resources
as much as possible) and economically track the deviated
E-Program, meaning that it may be profitable sometimes
to deviate either upwards or downwards depending on the
imbalance price, [Patrinos et al., 2012].

In this paper we formulate the model predictive problem
for power systems dispatch into a stochastic optimization
problem where the power balance constraint needs to hold
almost surely. We show that the stochastic constraints
of the original optimization problem, through a linear
input feedback form and under certain assumptions re-
garding the disturbance sets, can be replaced by properly
structured deterministic ones. With properly formulated
constraints, we show that the MPC problem with the
objective function in expectation can be approximated by
a deterministic optimization problem using sample aver-
age approximation method, which is solvable by standard
means. We also show that certain stochastic optimization
strategies are applicable to the problem and permit us to
solve it more directly, e.g. stochastic gradient algorithm.

The outline of the paper is as follows. In Section 2 we ana-
lyze the power dispatch problem. In Section 3 we formulate
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the corresponding stochastic MPC problem. In Section 4
we show, under certain assumptions, that the stochastisc
constraints of the MPC problem can be reformulated into
deterministic ones. In Section 5 we address the problem of
the expected value objective function for the MPC.

2. OPTIMAL POWER DISPATCH PROBLEM

We consider a system formed by np conventional power
plants (e.g. coal, oil or gas), nr renewable plants (e.g. wind,
solar), and ns storage sites used to store excess energy
(e.g. reservoirs with upstream pumping). We denote by
pi(k) the average power output over one PTU of the
conventional generator i, where i = 1, . . . , np. Each power
plant will of course have its own physical limitations on
the average power produced over one PTU, which are
expressed as the constraints:

plbi ≤ pi(k) ≤ pubi . (1)

The conventional power plants are limited on how quickly
production can be changed (ramp rate limitations):

∆lb
pi

≤ pi(k + 1)− pi(k) ≤ ∆ub
pi
. (2)

The ns storage sites of the power system are the dynamic
components of the system. We denote by xi the state of
the storage site i, which represents the amount of energy
currently stored on site (state-of-charge, (SOC)). We con-
sider that a storage site i has the following dynamics:

xi(k + 1) = αixi(k) + T (αc
iu

c
i (k)− αd

i u
d
i (k)), (3)

where T is the length of the PTU, αi ≤ 1 is a loss
parameter for the stored energy, uc

i (k) and ud
i (k) are

inputs, which represent the amount of power to be stored
and the amount of energy to be redistributed back into
the grid, while αc

i ≤ 1 and αd
i ≤ 1 are conversion loss

parameters. The storage units will of course have their
own physical limitations as follows:

uc,min
i ≤ uc

i (k) ≤ uc,max
i , ud,min

i ≤ ud
i (k) ≤ ud,max

i (4)

xlb
i ≤ xi(k) ≤ xub

i , ∆lb
xi

≤ xi(k)− xi(k − 1) ≤ ∆ub
xi
. (5)

The constraints in (4) represent limitations on the amount
of energy which can be stored or redistributed from the site
i in one PTU, while those in (5) represent limitations on
the total amount of energy that can be stored and on how
much the stored energy can fluctuate from one PTU to the
other. At every step k, the amount of energy produced,
minus the amount of energy stored and traded with
other markets has to meet local customer demand. This
requirement is known as a power balance requirement:

np
∑

i=1

pi(k)+

ns
∑

i=1

(ud
i (k)−u

c
i (k))+

nr
∑

i=1

ri(k)−p
ex(k)=d(k), (6)

where ri(k) represents the power output of the renewable
generators, pex(k) is the power imbalance, i.e. the amount
of power traded to electricity markets and d(k) is the local
energy demand. Here we assume that the local demand
includes a deterministic part that is the energy required
by the E-Program determined on the day-ahead, plus a
stochastic part that is induced by the Ancillary Services re-
quests activated by the TSO and the discrepancy between
predicted and actual load due to imperfect demand fore-
casting. Note that this constraint can always be deemed
feasible, due to the possibility of pex(k) being negative, i.e.
we can always purchase more energy from the TSO if the
current production does not meet the demand. A similar

modeling approach for the power system can be found in
[Patrinos et al., 2011, Xie and Ilic, 2008, Elaiw et al., 2012].

3. STOCHASTIC MPC PROBLEM FORMULATION

The objective of the MPC problem is to obtain a schedule
of pi(k) production rates (set points) for the conventional
power plant in order to maximize profits and meet cus-
tomer demand. The non-renewable np conventional power
plants are the most expensive to operate. We consider a
quadratic operation cost for a conventional power plant
i, li(pi(k)) = Qipi(k)

2 + qipi(k), with Qi > 0. Thus, the
objective of the problem at each moment k is to minimize:

np
∑

i=1

li(pi(k))− Tλ(k)pex(k), (7)

where λ(k) is the imbalance energy price at time k. We
denote by p(k) the vector of pi(k), and we also denote
ucd(k) = [uc

1(k) ud
1(k) . . . u

c
ns
(k) ud

ns
(k)]T , such that the

input vector for the power system at time k is u(k) =
[p(k)T uT

cd(k) p
ex(k)]T , with u(k) ∈ R

nu , nu = np+2ns+1.
Given that li are quadratic costs in the scalars pi(k), we
can express their sum as l(u(k)) = u(k)TQu(k) + qTu(k),
with Q ∈ R

nu×nu , q ∈ R
nu , Q = diag(Qi, 0nu−np×nu−np

),

Q positive semidefinite and q = [q1 . . . qns
0 . . . 0]T . We

now outline the fact that the outputs of the renewable
plants ri(k), the customer demand d(k) and the electricity
price λ(k) are stochastic variables and, from a control
perspective, are considered stochastic disturbances for the
power system. We thus gather them into a disturbance
vector w(k), w(k) = [r(k)T d(k) λ(k)]T , where r(k) =
[r1(k) . . . rnr

(k)]T and w(k) ∈ R
nw , with nw = nr + 2.

Given the vectors u(k) and w(k), the term representing
traded energy revenue in the cost (7) is:

Tλ(k)pex(k) = w(k)THwuu(k),

where Hwu = Tenw
eTnu

. Given the individual dynam-
ics (3), the dynamics for the entire state x(k) =
[x1(k) . . . xns

(k)]T can be written as x(k + 1) = Ax(k) +
Bu(k), with A ∈ R

ns×ns , A = diag(αi), and B ∈ R
ns×nu

formed from T , αc
i and αd

i . In the following, we will con-
sider an MPC problem with a prediction horizon of length
N . Now, if we denote the input vector over a prediction
horizon of length N as ū = [u(1)T . . . u(N)T ]T , where
ū ∈ R

nū with nū = N(np + 2ns + 1), we can write the
production cost for the conventional generators as:

V̄ (ū) =

N−1
∑

k=0

l(u(k)) = ūT Q̄ū+ q̄T ū,

where Q̄ is block-diagonal with block components Q and
q̄ = 1N ⊗ q 1 . If we also denote the disturbance vector for
the entire prediction horizon as w̄ = [w(1)T . . . w(N)T ]T ,
then the traded energy term for the entire prediction hori-
zon will be w̄THw̄ūū, where Hw̄ū = IN ⊗Hwu. Given that
Qi > 0, we have Q̄ � 0 and V (ū, w̄) = V̄ (ū)+ w̄T H̄w̄ūū, is
convex in ū, but not strongly convex. We now turn our at-
tention to formulating the constraints for the problem over
the entire prediction horizon. The power balance equation
(6) can be written as cTuwu(k) − dTuww(k) = 0, where cuw
and duw are vectors of appropriate form. Thus, for the

1 In this paper, by ⊗ we denote the standard Kronecker product.
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entire prediction horizon, the power balance constraint (6)
is expressed as:

Cuwū−Duww̄ = 0, (8)

where Cuw = IN ⊗ cuw and Duw = IN ⊗ duw. Note that
this constraint has to be satisfied almost surely.

If we now denote x̄ = [x(1)T . . . x(N)T ]T , x̄ ∈ R
Ns as the

state vector for the entire prediction horizon, the dynamics
for the entire prediction horizon would imply a constraint:

x̄ = ĀBū+ cx(0), (9)

where ĀB and cx(0) are of appropriate form. Note that
constraints (5) for the entire prediction horizon are written
as x̄ ∈ X = {x̄ : Cx̄x̄ ≤ dx̄}, where Cx̄ ∈ R

mx̄×nx̄ , with
mx̄ = 4nx̄ = 4Nns, and dx̄ ∈ R

mx̄ . Constraints for the
input over the entire prediction horizon are also written in
the same manner, ū ∈ U, U = {Cūū ≤ dū}, where Cū ∈
R

mū×nū , with mū = (4N − 2)np + 4Nns, and dū ∈ R
mū .

Now, given the fact that the cost is not a function of x̄,
we can eliminate the states through (9) and arrive at the
compact concatenated form of the constraints:

Cūx̄ū ≤ dūx̄, Cūx̄ =

[

Cū

Cx̄ĀB

]

, dūx̄ =

[

dū
dx̄ − Cx̄cx(0)

]

,

and Cūx̄ ∈ R
(mx̄+mū)×nū , with mx̄ +mū = 8Nns + (4N −

2)np. We consider that the stochastic disturbance w(k) has
a finite polyhedral support setW , such that over the entire
prediction horizon we have w̄ ∈ W = W ×W × · · · ×W .
We now formulate the stochastic MPC problem over the
entire prediction horizon:

min
ū

E [V (ū, w̄)]

s.t.: Cūx̄ū ≤ dūx̄, Cuwū−Duww̄ = 0 ∀w̄ ∈ W.

Given the disturbance w(k), the standard approach would
be to find causal disturbance feedback policies u(k) =
Φk(x(0), w(0), . . . , w(k−1)) that would minimize the cost.
However, this would imply an infinite dimensional problem
since the variables would be the functions Φk(·). This mo-
tivates us to restrict the policies Φk to a finite dimensional
subspace, i.e. we choose an input of linear disturbance
feedback form u(k) = Kw(k), which is encouraged by the
fact that the constraint (8) needs to be satisfied a.s. and
implies that ū is linearly dependent on w̄.

Remark 1. We may also consider a time-varying linear
disturbance feedback of the form u(k) = K(k)w(k).

Given that the constraint Cū − Dw̄ = 0 is equivalent to
(KT cuw − duw)

Tw(k) = 0 ∀w(k) ∈ W,k ≥ 0, and under
the assumption that W has a nonempty interior, it implies
that KT cuw − duw = 0. For compactess of exposition, we
denote K̄ = IN ⊗K such that ū = K̄w̄, and we arrive at
the MPC problem:

min
K

E
[

w̄T K̄T Q̄K̄w̄ + (q̄ +HT
w̄ūw̄)

T K̄w̄
]

s.t.: KT cuw = duw, Cūx̄K̄w̄ ≤ dūx̄ ∀w̄ ∈ W. (10)

The objective function of (10) can be rewritten such that
the resulting optimization problem is:

min
K

Tr(K̄T Q̄K̄Σw̄ +Hw̄ūK̄Σw̄) +mT
w̄K̄

T Q̄K̄mw̄

+ (HT
w̄ūmw̄ + q̄)T K̄mw̄ (11)

s.t.: KT cuw = duw, Cūx̄K̄w̄ ≤ dūx̄ ∀w̄ ∈ W.

where mw̄ = E[w̄] and Σw̄ = Cov[w̄] = E[(w̄ −mw̄)(w̄ −
mw̄)

T ]. There are two main issues regarding this problem.

First of all, the cost is in expectation, and we investigate
under which conditions applied to w̄ we can transform
it into a convex deterministic optimization problem. Sec-
ondly, if the variable w̄ would have an infinite support set
W, then we would get an infinite number of constraints.
In the following two sections we will address these issues.

4. CONSTRAINTS REFORMULATION

We now examine the structure of the constraints of prob-
lem (11). After a few simple calculations, it can be ob-
served that the constraint Cx̄ĀBK̄w̄ ≤ dx̄ − Cx̄cx(0) con-
sists of the following:

k
∑

t=0

Ak−tBKw(t) ≤ xub −Akx(0)

k
∑

t=0

−Ak−tBKw(t) ≤ −xlb +Akx(0) (12)

k
∑

t=1

Ak−t(A− I)BKw(t− 1) +BKw(k) ≤ ∆ub
x − δkx(0)

k
∑

t=1

Ak−t(I −A)BKw(t− 1)−BKw(k) ≤ δkx(0) −∆lb
x ,

where k = 0, . . . , N − 1, δkx(0) = Ak(A− I)x(0). These cat-

egories of constraints are obtained from the constraints in
(5) together with constraint elimination via (9). These add
up to 4N linear constraints in K. Now, given constraints
on ū, we note that Cū is formed from matrices:

Cnp = [Inp 0np×2ns+1] , Ccd = [02ns×np I2ns 02ns×1] .

Thus, the constraint CūK̄w̄ ≤ dū comprises the following
constraints:

CnpKw(k) ≤ pub, −CnpKw(k) ≤ −plb, (13)

CcdKw(k) ≤ uub
cd , −CcdKw(k) ≤ −ulb

cd, (14)

for k = 0, . . . , N − 1 and
{

CnpK(w(k)− w(k − 1)) ≤ ∆pub

CnpK(w(k − 1)− w(k)) ≤ −∆plb,
(15)

for k = 1, . . . , N − 1. Constraints of type (13)-(14) are
obtained from (1) and (4), while constraints (15) are
obtained from (2). These constraints add up to 6N − 2
constraints in the variable K, with a total of 10N − 2
constraints in K for problem (11). Now, given that the
constraint sets X and U are formed by box constraints,
they are compact. If we define the constraint set

K = {K̄ : (12)− (15) satisfied ∀w̄ ∈ W},

we find that it is also compact. In the following we will
examine two options regarding the form of the set W ,
either expressed as a convex hull of vertices, or as a
multivariate linear inequality.

4.1 Reformulation for convex hull description of W

We first consider W expressed as the convex hull of a
number of nv vertices wi, i.e. W = conv {w1, . . . , wnv

},
such that any w(t) ∈ W can be expressed as w(t) =
∑nv

i=1 αi(t)wi, with 0 ≤ αi(t) ≤ 1 and
∑nv

i=1 αi(t) = 1.
Consequently, the set W is also a convex hull of vertices
w̄i, with i = 1, . . . , nN

v formed from all possible combina-
tions of vertices from W over the prediction horizon N .

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11149



Thus, the compact form of the stochastic MPC problem
over the prediction horizon N is:

min
K

Tr(K̄T Q̄K̄Σw̄ +Hw̄ūK̄Σw̄) +mT
w̄K̄

T Q̄K̄mw̄

+ (HT
w̄ūmw̄ + q̄)T K̄mw̄ (16)

s.t.: KT cuw = duw, Cūx̄K̄w̄i ≤ dūx̄, i = 1, . . . , nN
v .

Now, given that w̄ is in a convex hull of vertices, this
implies that constraints (12) to (15) need to be satisfied in
all the vertices ofW. We thus get a total number of (10N−
2)nN

v constraints in K. However, given the structure of

matrices Cū and Cx̄, we get 4
nN+1
v −nv

nv−1 +2(N−1)n2
v+4Nnv

constraints inK. Note that in this case we obtain a number
of constraints which is exponential in the length of the
prediction horizon N .

4.2 Reformulation for halfspace description of W

We now assume that W is expressed as a system of
linear inequalities, i.e., W = {w : Cww ≤ dw}, with Cw ∈
R

mw×nw , dw ∈ R
mw . For the stochastic disturbance

vector over the entire prediction horizon we consider the
disturbance set as: W = {w̄ : Cw̄w̄ ≤ dw̄}, with Cw̄ =
IN ⊗Cw, dw̄ = 1N ⊗ dw. Each one of the constraints (12)
to (15) can be expressed as

k
∑

t=l

ctjKw(t) ≤ dj ∀w(t) ∈ W,

where l and k take values from 0 to N − 1, depending
on the constraint, while ctj are the rows of the matrices

Ak−tB, Ak−t(A− I)B, Cnp or Ccd and dj are components
of dūx̄. These constraints could be equivalently written as:

max
w(t)

k
∑

t=l

w(t)TKT (ctj)
T ≤ dj

s.t. Cww(t) ≤ dw.

If we denote w̄k =
[

w(l)T , w(l + 1), . . . , w(k)T
]T

, then the
previous constraint can be written as:

max
w̄k

[

clj . . . c
k
j

]

(Ik ⊗K)w̄k ≤ dj

s.t.: (Ik ⊗ Cw)w̄
k ≤ 1k ⊗ dw.

If we denote cj =
[

clj . . . c
k
j

]T
, we form the dual:

min
λj≥0

max
w̄k

cTj (Ik⊗K)w̄k+λT
j ((Ik ⊗ Cw)w̄k−1k ⊗ dw)≤ dj .

Given the fact that this problem is unconstrained in the
variable w̄k, it is unbounded if the linear term is nonzero.
We thus get the following equivalent constraints:

λj ≥ 0,−λT
j (1k ⊗ dw)≤ dj , (Ik ⊗KT )cj = −(Ik ⊗ CT

w )λj ,

where λj are Lagrange multipliers. The multipliers λj can
be further divided into k − l subcomponents λt

j and the
previous constraints are rewritten as:

λt
j ≥ 0,KT ctj = −CT

wλ
t
j , t = l, . . . , k,

k
∑

t=l

(λt
j)

T dw ≤ dj .

Given that Cx̄ĀB has 4N block rows where each of the
blocks has ns rows, the number of additional variables

λi
j of dimension mw is 4ns

N(N+1)
2 , while from Cū we

get an additional 6Nnp + 4Nns variables. We thus get a

total number of 4N(N+3)
2 ns + 6npN constraints of type

KT cij = −CT
wλ

i
j , the same number for λT

j ≥ 0, while

for the constraints
∑k

t=l(λ
t
j)

T dw ≤ dj we get a total
number of 8Nns+(4N−2)np. The value that l and k take
depends on the type of constraints, i.e. on which w(k) of
w̄ are included in the constraint. Thus, if row j belongs to
constraints of type (12) we have l = 0 and k = 0, . . . , N−1.
For constraints of type (13) we have k = 0, . . . , N − 1 and
l = k since we have only one w(k) in the constraints.
Lastly, for constraints (15) we have k = 1, . . . , N − 1 and
l = k−1 since we have w(k) and w(k−1) in the constraint.
Thus, by this form of W , we get the following optimization
problem:

min
K,λt

j

Tr(K̄T Q̄K̄Σw̄ +Hw̄ūK̄Σw̄) +mT
w̄K̄

T Q̄K̄mw̄

+ (HT
w̄ūmw̄ + q̄)T K̄mw̄ (17)

s.t.: KT cuw = duw, λ
t
j ≥ 0,KT ctj = −CT

wλ
t
j ,

k
∑

t=l

(λt
j)

T dw ≤ dj , t = l, . . . , k, j ∈ (12), (13), (15)

5. OBJECTIVE FUNCTION REFORMULATION

In the previous section we established problems (16) and
(17) with a finite number of constraints and we now ad-
dress their objective functions. The most straightforward
approach would be to estimate mw̄ and Σw̄, e.g. based
on the history of w̄ or approximate them via empirical
averages. Then, problems (16) and (17) are transformed
into convex deterministic problems and can be solved ef-
ficiently via standard optimization software. On the other
hand, if these terms cannot be estimated, then we proceed
to analyze different methods of solving problems (16) and
(17). It can be observed that problems (16) and (17) can
be cast as follows:

f∗ = min
x∈X

f(x) (= E[F (x, ξ)]), (18)

where x = K̄, X = K, ξ = w̄ and F (x, ξ) = V (K̄, w̄).

5.1 Sample average approximation (SAA) method

A well known strategy for solving problem (18) is the
Sample Average Approximation (SAA) strategy [Kleywegt
et al., 2002, Linderoth et al., 2006], from which we obtain
deterministic convex problems of the form:

min
x∈X

f̂NSAA
(x)

(

=
1

NSAA

NSAA
∑

i=1

F (x, ξi)

)

, (19)

where f̂NSAA
is an approximate objective function to f by

taking NSAA samples ξi. In our case, given that F (x, ξ)
is convex quadratic in x and that X is a convex set, then
problem (19) is a convex quadratic optimization problem
and can be solved by standard means. By taking an ap-
propriate number of NSAA samples, a suboptimal solution
to problem (19) is proven to be, with an acceptable degree
of probability, a suboptimal solution to problem (18). To
this purpose, we denote the corresponding ǫ-suboptimal
solution and δ-suboptimal solution sets for these problems:

Sǫ={x∈X: f(x)≤f∗+ǫ} ,

Ŝδ
NSAA

=
{

x∈X: f̂N (x)≤ f∗
N + δ

}

.

In the following we will establish a bound on the sample
number NSAA required such that for a precision δ ∈ [0, ǫ)
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we will have P(Ŝδ
NSAA

⊂ Sǫ) ≥ 1 − α, i.e. a δ-suboptimal
solution for the approximate problem (19) will be a ǫ-
suboptimal solution to the original problem (18) with
probability at least 1 − α. To obtain the bound on the
number of samples NSAA, we first need to introduce the
following assumptions [Shapiro et al., 2009]:

A.1 The expected value of f(x) is well defined and finite
for all x ∈ X.

A.2 The set X is bounded and not necessarily finite. For
any x′, x ∈ X there exists a constant σ > 0 such that
the moment-generating function Mx′,x(t) = E[etYx′,x ]
of the random variable Yx′,x = [F (x′, ξ) − f(x′)] −
[F (x, ξ)− f(x)] satisfies:

Mx′,x(t) ≤ exp

(

σ2‖x′ − x′‖2t2

2

)

∀t ∈ R.

A.3 There exists a constant L, independent of ξ, such that

|F (x′, ξ)− F (x, ξ)| ≤ L‖x′ − x‖,

for a.e. ξ ∈ Ξ and all x′, x ∈ X.

Given these assumptions, we have the following theorem
for selecting the sample size NSAA.

Theorem 1. ([Shapiro et al., 2009]). Suppose that assump-
tions A.1-A.3 hold, f(x) is convex in x, and the set of
optimal solutions S is nonempty, closed, and convex. Given
constants ǫ, δ ∈ [0, ǫ) and ǫ′ > 3/4ǫ+ δ/4, we have that:

P(Ŝδ
N ⊂ Sǫ) ≥ 1− α, (20)

for any a > ǫ and a sample size NSAA that satisfies

NSAA≥
O(1)σ2D̄2

a,ǫ

(ǫ− δ)2

[

nln

(

O(1)LD∗
a

ǫ− δ

)

+ ln

(

1

α

)]

,

where O(1) is a generic constant, D∗
a is the diameter of Sa

and D̄a,ǫ = supx∈Sa/Sǫ′ dist(x, S).

If additionally f(x) is strongly convex with a parameter
σf and we take δ ∈ [0, ǫ/2], then (20) can be attained with
sample size that satisfies

NSAA≥
O(1)σ2

σf ǫ

[

nln

(

O(1)LD∗
a

ǫ

)

+ ln

(

1

α

)]

. (21)

Now, given the power dispatch problem, we have that
the sets X and W are both bounded polyhedra and
assumption A.1 is satisfied. Regarding assumption A.3, in
our case we have F (x, ξ) = F (K̄, w̄) = V (K̄, w̄). Thus, for
any K̄ and K̄ ′ we would have that:

|V (K̄, w̄)−V (K̄ ′, w̄)|

≤ |V̄ (K̄w̄)−V̄ (K̄ ′w̄)|+ |w̄THw̄ū(K̄−K̄ ′)w̄)|

≤ |w̄T K̄T Q̄K̄w̄ − w̄T K̄ ′T Q̄K̄ ′w̄|

+ (‖q̄‖‖w̄‖+ ‖w̄‖2‖Hw̄ū‖)‖K̄−K̄ ′‖ ≤ κ(w̄)‖K̄ − K̄ ′‖

where κ(w̄) =
(

‖w̄‖2(λmax(Q) + ‖Hw̄ū‖) + ‖q̄‖‖w̄‖
)

is
now the Lipschitz constant depending on w̄. Given that
W is a bounded polyhedron and implicitly W is bounded,
we can take the Lipschitz constant L = maxw̄ κ(w̄) and
assumption A.3 is satisfied.

Regarding assumption A.2, we have E[Yx′,x] = 0. By
Hoeffding’s inequality [Shapiro et al., 2009], if we have that
|Yx′,x| ≤ σ, where σ > 0, then Mx′,x(t) ≤ exp(σ2t2/2). For
our problem we have through Lipschitz continuity that:

|YK̄′,K̄ | ≤ |V (K̄ ′, w̄)− V (K̄, w̄)|+
∣

∣E[V (K̄, w̄)−V (K̄ ′, w̄)]
∣

∣

≤ (κ(w̄) + E[κ(w̄)])‖K̄ − K̄ ′‖

≤
(

(max
w̄

κ(w̄)) + E[κ(w̄)]
)

‖K̄ − K̄ ′‖

≤ 2L‖K̄ − K̄ ′‖,

where the last inequality follows from the fact that
E[κ(w̄)] ≤ maxw̄ κ(w̄). Thus, we can take σ = 2L and
assumption A.2 is satisfied.

Given that the number of constraints in (16) is exponential
in the prediction horizon N , we prefer to tackle problem
(17), where the number of constraints grows quadratically
with N . We thus obtain a number of NSAA random
samples w̄i of the vector w̄ such that the optimization
problem for the entire prediction horizon is:

min
K̄

1

NSAA

NSAA
∑

i=1

V (K̄, w̄i) (22)

s.t.: KT cuw = duw

λt
j ≥ 0,KT ctj = −CT

wλ
t
j , t = l, . . . , k

k
∑

t=l

(λt
j)

T dw ≤ dj , t = l, . . . , k, j ∈ (12), (13), (15)

Now, given the fact that the cost V (ū) is actually quadratic
in terms of p̄ = [p(1) . . . p(N)]T , we can write p(k) =
Eupu(k) and p̄ = Ēupū, where Ēup = IN ⊗ Eup. Thus,
considering that ū = K̄w̄ we have:

V (K̄, w̄i) = w̄T
i K̄

T ĒT
upQ̄ĒupK̄w̄i + q̄T ĒupK̄w̄i. (23)

We can replace the costs V (K̄, w̄i) by auxiliary variables ti
and some further constraints added to the problem. Thus,
problem (22) is formulated as an SDP:

min
t,K

1

NSAA
1T
NSAA

ti

s.t.: KT cuw = duw

λt
j ≥ 0,KT ctj = −CT

wλ
t
j , t = l, . . . , k

k
∑

t=l

(λt
j)

T dw ≤ dj , t = l, . . . , k, j ∈ (12), (13), (15)

[

ti yi(K̄)T

yi(K̄) Q̄−1

]

� 0, i = 1, . . . , NSAA,

where yi = ĒupK̄w̄i + Q̄−1( 12 q̄ + Ēupq̄wu) and q̄wu =

HT
w̄ūw̄i.

5.2 Stochastic gradient method

We can also apply other alternative methods for solving
the stochastic optimization problems defined previously,
such as the stochastic gradient method. In order to have an
optimization problem of a more standard form, we denote
by z = vec(K) the vectorization of matrix K. Given this,
the term wTKTQKw + qTKw can be written as:

zT (wwT ⊗Q)z + (w ⊗ q)T z.

Recall that the cost function V (K̄, w̄) is actually:

F (K, w̄)=

N−1
∑

k=0

w(k)TKTQKw(k)+
(

qT+w(k)THwu

)

Kw(k)

and given that z = vec(K), it can be rewritten as:

F (z, w̄) = zTQwz + qTwz, (24)
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where

Qw=
N−1
∑

k=0

w(k)w(k)T⊗Q, qw=
N−1
∑

k=0

w(k)⊗
(

qT +w(k)THwu

)

.

The stochastic gradient method solves a problem of type
(18), where F : D × Ω → R and ξ : Ω → R

n is a convex
vector with a probability distribution on a set Ω ∈ R

n.
In order to apply the stochastic gradient method, we first
require the following assumptions.

Assumption 1. There exists a possibility to generate i.i.d.
samples ξ1, ξ2, . . . of realizations of the random vector ξ.

Assumption 2. The set X ⊂ D is convex and closed. The
function F (·, ξ) is convex for every ξ ∈ Ω and f(x) is finite
for every x ∈ D.

Assumption 3. There exists a scalar M > 0 such that

E
[

‖∇F (x, ξ)‖22
]

≤ M2 ∀x ∈ X. (25)

Under the latter assumption, the function f is convex over
X and the following holds [Nemirovski et al., 2009]:

∂f(x) = E[∂xF (x, ξ)] ∀x ∈ D,

i.e. the expectation of the subgradients of F in x are
subgradients of f(x). For the moment, we assume that
f(x) is differentiable and denote by ∇f(x) its gradient.
The classic stochastic gradient algorithm has an iteration
that mimicks the deterministic gradient method. Thus,
given an initial point x0 ∈ X and stepsizes γk, then the
iteration of the algorithm is:

xk+1 = ΠX (xk − γk∇F (xk, ξk)) , (26)

where ΠX(y) denotes the projection operator of the vector
y on the set X. For a convex objective function f(x), we
have the following theorem for the convergence rate of the
stochastic gradient algorithm.

Theorem 2. [Nemirovski et al., 2009] If we denote byDX =

maxx∈X‖x− x1‖, νk = γk/
∑k

t=1 γk, and the approximate

solution x̃k
1 =

∑k
t=1 νkxk, then for the iterates (26) we

have that E[f(x̃k
1) − f(x∗)] ≤ DxM√

k
for a constant step

size γk = Dx

M
√
k
. Additionally, if we asssume that f(x) is

strongly convex with a constant σf , then for a stepsize

γk = Θ
k with a constant Θ > 1

2σf
we have that E[‖xk −

x∗‖2] ≤ R(Θ)
k , where R(Θ) = max

{

Θ2M2

2σfΘ−1 , ‖x1 − x∗‖2
}

.

For the proof of this theorem see [Nemirovski et al., 2009].
Given the first result in the theorem above and a precision
ǫ for the suboptimality of x̃k

1 , by Markov’s inequality we
have P(f(x̃k

1)− f(x∗) ≥ ǫ) ≤ DXM

ǫ
√
k
. Thus, if we impose

that P(f(x̃NSG

1 )− f(x∗) < ǫ) > 1 − α, i.e. x̃NSG

1 is a ǫ-
suboptimal solution to problem (18) with probability at
least 1 − α, α ∈ (0, 1), we require that the number of

iterations NSG satisfy NSG ≥
D2

XM2

ǫ2α2 . Under the light-tail
assumption [Nemirovski et al., 2009]:

E

[

exp

(

‖∇F (x,w)‖2

M2

)]

≤exp(1) ∀x ∈ X, w ∈ W, (27)

and for ǫ > 0 and α ∈ (0, 1/2), an iterate x̃NSG

1 of (26)

satisfies P
[

f
(

x̃NSG

1

)

− f(x∗) > ǫ
]

≤ α, after a number of

iterations NSG which satisfy:

NSG ≥
O(1)D2

XM2 ln2(1/α)

ǫ2
.

Now, given the form (24) of the objective function, we get
∇F (z, w) = Qwz + qw and:

‖∇F (z, w̄)‖≤ ‖Qw‖‖z‖+ ‖qw‖

=

N−1
∑

k=0

‖w(k)‖2(‖Q‖‖z‖+‖Hwu‖)+‖w(k)‖‖q‖.

Now, given that K and W are bounded sets, we denote:

Vz = max
z∈K

‖z‖, Vw = max
w∈W

‖w‖,

which are both finite. We have ‖∇F (z, w̄)‖ ≤ M , where:

M = N
(

V 2
w(‖Q‖Vz+‖Hwu‖)+Vw‖q‖

)

,

which is finite and thus (25) and (27) are implicitly
satisfied. For a strongly convex f with constant σf , the
second result in Theorem 2 for a number of iterations Nsc

SG:

Nsc
SG ≥ max

{

Θ2M2

ǫα(2σΘ− 1)
,
‖x1 − x∗‖2

ǫα

}

we would obtain P(‖xNsc
SG

− x∗‖2 ≥ ǫ) ≤ δ. Note that
the stochastic gradient method is essentially an iterative
method in which requires samplings at each iteration.
On the other hand, the SAA method first of all requires
samplings in order to approximate the stochastic optimiza-
tion problem by a deterministic one. This still leaves us
with a deterministic optimization problem of considerable
dimensions which still needs to be solved.
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