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Abstract: This paper presents a new dynamic friction model based on a static friction model
and a linear parameter-varying first-order lowpass filter. The static model considers viscous,
Coulomb, and Stribeck friction and is defined by continuous functions, yielding a smooth force
transition at standstill. The adaptive filter changes its time constant dependent on the actual
velocity and supplements the static model with hysteresis and memory effect. The combination of
both parts offers a high accuracy in simulations using high sample rates and shows a numerically
robust behaviour and a good qualitative representation of the friction for small sample rates,
making it applicable for practical control tasks using an observer-based approach.
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1. INTRODUCTION

Friction is one of the most common problems in modelling
and control theory. In general, it can be found in almost
any mechanical system, as e. g. in bearings, linear slides,
and gear boxes. Its influence on the overall system varies
with the ratio between dissipative and non-dissipative
forces. If the friction forces are high, they can dominate the
behaviour of a system, but even if they are much smaller,
they still have an undesired influence, which makes it
difficult to control a system in an accurate manner.

To solve or at least minimise this problem, a lot of differ-
ent approaches in friction modelling have been developed
in the last 200 years, beginning with the early work of
Coulomb (1821) on the effect of dry friction. Later, the
work of Coulomb was refined by Stribeck (1903), adding
static friction and describing the velocity dependant tran-
sition between both effects. These fundamental works were
followed by many others, but even up to today, where the
qualitative mechanisms are well understood, friction is still
one of the most difficult and unpredictable influences in
cybernetics. The combination of highly non-linear stepping
behaviour with hysteresis and memory effect makes fric-
tion a variable that is hardly determinable, yet not consid-
ered the stochastic interactions as mentioned in Andersson
et al. (2007).

This being the case, friction modelling is still an ongoing
process, distinguished between static and dynamic mod-
elling approaches. Static models only describe the direct
link between friction and actual velocity. They neglect the
hysteresis and the memory effect of friction and, therefore,
are not accurate at velocity’s zero crossing. A review
of static model approaches based on the Coulomb and
Stribeck effect is given in Wojewoda et al. (2008). Dynamic
models also include the hysteresis and the memory effect
of friction and, therefore, require an extension of states of

the overall system model. The additional state makes the
model more complex, but offers a higher model precision
at velocity’s zero crossing. A first dynamic model approach
was presented by Dahl (1968) and refined in following
publications, e.g.Canudas de Wit et al. (1995), Dankowicz
(1999), and Swevers et al. (2000). As mentioned in Woje-
woda et al. (2008), both static and dynamic models have
their disadvantages. The simplifications make the static
models not precise enough, whereas the dynamic models
are often too complicated for practical engineering tasks.
One disadvantage they share is the usage of stepping func-
tions at velocity’s zero crossing, which causes an unstable
numerical behaviour for lower sample frequencies and ap-
plications with non-linear state observers. But especially
the combination with a state observer is required to make
the friction model applicable for practical control tasks.

Thus, a new dynamic friction model is derived in this con-
tribution. Its static part describes viscous, Coulomb, and
Stribeck friction and is defined by continuous functions
only, making the model more robust and applicable with
common observer approaches, comparable to the approach
of Makkar et al. (2005). Furthermore, the proposed model
also considers hysteresis and memory effect by its dynamic
part. In Section 2, the model structure is explained in
detail and the single features are worked out, followed by
an evaluation based on a simulation of a classical stick-
slip experiment in Section 3. In the stick-slip simulation,
it can be shown that the model has a high precision for
lower sample times, which deteriorates for higher sample
times while keeping numerical stability and qualitative
behaviour.

2. A NEW FRICTION MODEL

The proposed friction model is divided into two stages.
Stage one is a static friction model including the viscous,
Coulomb, and Stribeck effect with a smooth force transi-
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tion between positive and negative velocity. The smooth
transition is modelled with hyperbolic sigmoid functions
in the case of dry friction and with a differentiated Gaus-
sian function describing the Stribeck effect. All parts are
modelled independently, and neglecting one of them has
no influence on the behaviour of the others. The second
stage adds hysteresis and memory effect using a linear
parameter-varying (LPV) system in form of a first-order
lowpass filter with tunable time constant and holding be-
haviour at standstill. A detailed description of both model
stages is given in the following.

2.1 Static friction model

The basis for the new dynamic friction model is defined
as a common static friction model, including viscous,
Coulomb, and Stribeck friction with smoothed transitions.
The different characteristics of the velocity dependent
force trajectories are defined as follows.

Viscous friction, or linear damping, is rather easy to
handle in modelling. The damping term

F̃v(v) = Fv(v) = dv (1)

with linear damping factor d describes the proportional
relation between viscous friction F̃v and velocity v. Since
the force transition at zero velocity is smooth by nature,
there is no need to customize it.

In primitive linear control applications, the overall friction
is often simplified to viscous behaviour only, which offers
the possibility to keep at linear control and observer
approaches. But for more complex or even non-linear
systems with high friction, it is not possible to achieve a
satisfying control accuracy without extending the friction
model with further dissipative effects, e.g. dry friction.

Coulomb friction, or dry friction, was one of the first
observed friction effects, already mentioned in the work of
Coulomb (1821). The value of the dry friction force is not
dependent on the absolute value of velocity, but changes
its sign with it. It is commonly described by

Fc(v) = µFn sign(v) = F̂c sign(v) (2)

and depends on the normal force Fn and the coefficient of
friction µ. Both together can be summarized in the peak
force

F̂c = µFn. (3)

Since a switching function character given through the
sign of the velocity is not desired in the proposed model
approach, the sign function is approximated by a hyper-
bolic tangent with the transition velocity vt, which defines
the force slope at standstill. Thereby, the term for the
Coulomb friction changes to

F̃c(v) = F̂c tanh

(
v

vt

)
. (4)

The difference between the original and the modified dry
friction effect is shown in Fig. 1. A steeper force transition
leads to a better match between approximated and original
function and, therefore, to a more realistic behaviour,
whereas a flatter slope guarantees a more robust numeric
behaviour in simulation. A rule of thumb for choosing an
appropriate value vt is not available, since it is not only
dependent on the used combination of sample time and
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Fig. 1. Approximated Coulomb friction F̃c and real
Coulomb friction Fc dependant on the peak friction
F̂c and the transition velocity vt.

solver, but also on the kind of state observer it is combined
with later on in practical applications of the model. In
general, the transition velocity has to be adapted to the
given system conditions.

Since the dry friction model cannot explain the adhesive
forces at standstill, it is supplemented by a non-linear
friction force characteristic mentioned by Stribeck (1903).

Stribeck friction describes the stiction between two sur-
faces caused by adhesive forces and depends on various
factors, such as material, geometry, and temperature. The
friction force can be defined as an additional part to dry
friction in the general form of

F∆(v) =
(
F̂s − F̂c

)
g(v) sign(v) = F̂∆g(v) sign(v) (5)

with the non-linear function g(v), describing the decay
characteristics of the Stribeck curve, and the additional
force amplitude

F̂∆ = F̂s − F̂c, (6)

consisting of the Stribeck peak force F̂s and the peak force
of Coulomb friction. There are many possible definitions
of g(v), a review of the most common approaches is given
in Wojewoda et al. (2008), comprising exponential, gen-
eralized exponential, Gaussian, Laurentzian, and Popp-
Stelter function behaviour. There are no suitable models
to calculate the dominating parameters which character-
izes the stiction behaviour, e.g. the Stribeck velocity vs

for Gaussian approaches. Therefore, the parameter values
have to be identified in experimental setups.

In the proposed model, an adapted version of the Gaussian
bell approach

g(v) = e−( v
vs

)
2

(7)

is used and modified to

g̃(v) =
v

vsp
e
−
(

v√
2vsp

)2

+ 1
2
, (8)

where the Stribeck peak velocity vsp defines the friction
decay, but is not equal to the Stribeck velocity vs. In con-
trast to g(v), the adapted function g̃(v) already includes
the sign function. The difference between both functions is
shown in Fig. 2 for a peak velocity vsp half the size of the
Stribeck velocity vs. The flatter the slope at zero crossing
is chosen, the more the peak of the approximated friction
moves away from its usually position at zero velocity. If
a very flat slope is required, it might be better to neglect
the Stribeck effect, otherwise there is not only a wrong
model behaviour at standstill, but also a peak of friction
at higher velocities which falsifies the model.
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Fig. 2. Behaviour of Stribeck friction for a Gaussian bell
function g(v) with sign step and decay factor vs and
for an adapted Gaussian function g̃(v) with smooth
transition dependent on the peak velocity vsp.

If the Stribeck effect is not omitted, the additional force
amplitude F̂∆ has to be adapted as well. Because the
Coulomb force F̃c is not constant any more, the gap be-
tween the Stribeck peak and the dry friction force widens
at the velocity vsp and, therefore, has to be considered by

ˆ̃F∆ = F̂s − F̂c tanh

(
vsp

vt

)
− dvsp. (9)

For the sake of completeness, the viscous friction at vsp is
subtracted as well, even if its value is not significant for
small velocities, where the force peak is suspected.

In total, the combination of the adapted Gaussian bell
(8) and the additional peak force (9) yields the modified
Stribeck force

F̃∆(v) = ˆ̃F∆g̃(v). (10)

By adding up all three described friction effects, the
dissipative overall force of the smoothed static friction
model is

F̃Σ(v) = F̃v(v) + F̃c(v) + F̃∆(v), (11)

which is depicted in Fig. 3 together with each single
characteristics and a comparison with the common friction
force

FΣ(v) = Fv(v) + Fc(v) + F∆(v). (12)

A good function approximation for small sample times can
be achieved by using the ratio

vs ≈ 2vsp ≈ 4vt, (13)

where, beginning at a velocity of v ≈ vsp, the trajec-

tories FΣ(v) and F̃Σ(v) are almost equal. For practical
applications with higher sample times, vt and vsp might
be chosen greater than vs to maintain numerical stability.
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Fig. 3. Viscous force F̃v, Coulomb force F̃c, additional
Stribeck force F̃∆, and overall force F̃Σ, in contrast
to the common friction force FΣ.

The resulting loss of accuracy can be compensated by an
observer.

2.2 Hysteresis and memory effect

The static friction model described in the previous para-
graph is not able to reproduce the dynamic friction be-
haviour. There is not only a loss of precision by making
the model continuously differentiable, it also yields zero
force at standstill because of the lack of hysteresis and
memory effect.

For dynamic systems, it is rather easy to achieve hysteresis
by using a linear lowpass filter that delays the force to
the velocity. Following other dynamic friction model ap-
proaches, e.g. Canudas de Wit et al. (1995) and Dankowicz
(1999), the used filter should not contain more than one
state to keep the model simple. Therefore, a linear first-
order lag element with the transfer function

G(s) =
1

T1s+ 1
, (14)

the time constant T1, and a gain of one is used. If the
lag element is connected in series after the static friction
model, the overall behaviour changes as shown in Fig. 4.
Based on the increasing damping behaviour for higher
frequencies, the lag element widens the hysteresis and the
force at standstill changes to a value almost as high as
the Coulomb force. Furthermore, the friction’s peak force
decreases, which is another characteristic of the Stribeck
effect that was reported in the works of Canudas de Wit
et al. (1995), Swevers et al. (2000), and Wojewoda et al.
(2008).

Compared to the positive effects of lowpass filtering for
higher velocity rates, there is only a poor improvement for
low or zero dynamics. The only way to enhance the model
for small accelerations is increasing the time constant,
changing it even up to infinity for static cases. But in turn,
this leads to an undesired strong damping behaviour at
higher dynamics. To solve this conflict, a non-linear filter
is used that combines the different tasks by varying the
time constant dependent on the actual velocity.

The approach applied here is based on a linear parameter-
varying filter. The filter parameters have to be changed in
such a way that the time constant is small at high veloc-
ities, growing at low velocities, and infinity at standstill.
Apart from this, the gain value shall remain constant at
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Fig. 4. FrictionĨforces for sine-shaped velocities with am-
plitude 0.1m

s andĨa linear filter with time constant
T1 = 3ms.
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Fig. 5. Varying lowpass time constant as a function of the
sliding speed with minimal time constant T1 and edge
velocity v0.

one. Therefore, the linear first-order lag element is supple-
mented by a velocity dependent parameter a(v), yielding
the linear parameter-varying transfer function

G̃(s) =
1

T1

a(v)s+ 1
=

a(v)

T1s+ a(v)
. (15)

The adaption factor a(v) is defined by another Gaussian
bell

a(v) = 1 − e−
(

v
v0

)2

(16)

with the edge velocity v0 effecting the overall time constant
as shown in Fig. 5. Beginning at v = v0, the time constant
grows rapidly and even reaches infinity for v = 0.

2.3 Overall Friction Model

Summarizing the static friction and the parameter-varying
filter, the complete dynamic friction model results in the
differential equation

Ḟfr(v) =
1 − e−

(
v
v0

)2

T1

(
F̃Σ(v) − Ffr(v)

)
, (17)

which is depicted in Fig. 6 as a block diagram. In case of
v � v0, the equation changes to

Ḟfr(v) =
1

T1

(
F̃Σ(v) − Ffr(v)

)
, (18)

whereas at standstill, it simplifies to

Ḟfr(v) = 0. (19)

Being the force derivative equal to zero, the filter behaves
as a hold element, i.e. the overall model includes the
desired memory effect by holding the force value that
occurs at the last moment of motion. An example of the
memory effect is shown in Fig. 7. Between 0.8 s and 1 s,
both velocity trajectories show standstill, but the related
friction force is held at different values dependent on

F̃Σ(v) × 1
T1

1
s

a(v)

v

Ḟfr(v) Ffr(v)

−

LPV lowpass filter

Fig. 6. Block diagram of the dynamic friction model with
a serial connection of the static friction model F̃Σ and
the adaptive first order lowpass filter.
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Fig. 7. Friction forces Ffr,sim with hysteresis and memory
effect dependent on the velocity trajectories vsim.
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Fig. 8. Friction forces for sine-shaped velocities with am-
plitude 0.1m

s and parameter-varying filter with time
constant T1 = 3ms and edge velocity v0 = vsp.

the former sign of velocity. In addition, there are other
occurring friction characteristics that can be seen, e.g. the
transition between dry friction and adhesion in Ffr,sim1 at
0.4 s and the initialisation of Ffr,sim2 at 0.1 s. Up to this
point, the memory of the linear parameter-varying filter
has no former information and remains at its initial value
zero.

If the hysteresis caused by linear filtering, as shown in
Fig. 4, is compared to the hysteresis modeled with the
linear parameter-varying filter, which is shown in Fig. 8,
there are remarkable differences. The hysteresis gap of the
non-linear approach is much broader, while the slope of the
transition remains unchanged. In other words, the delay
has only to be chosen large enough to maintain numerical
stability, and the friction behaviour for low dynamics still
can be reproduced.

3. SIMULATION EXAMPLE

As a first evaluation approach for the new friction model,
a classical stip-slick experiment is chosen as depicted in
Fig. 9. It is made up of a mass m, pulled by a spring with
spring constant k that is moving with a constant velocity
vspr. At the beginning, the adhesion keeps the mass at
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standstill and the distance between the mass position sm

and the spring position sspr increases. This leads to a
growing tension of the spring and thus to a higher force

Fspr = k (sspr − sm) (20)

that is proportional to the spring constant and effecting
the mass directly. If the spring force has increased to the
level of the adhesive force, the mass breaks free and starts
to slide. This causes an abrupt decrease of the friction force
to the value of dry friction and therefore to an additional
acceleration. At the point where the mass moves faster
than the spring, the spring tension weakens. If it subsides
to a level lower than Coulomb force, the mass decelerates
and returns to standstill, otherwise the mass follows the
spring position with equal velocity and constant position
delay.

The mathematical model of the stick-slip experiment con-
sists of two coupled differential equations, one already
shown in (17), describing the dynamic behaviour of the
friction force, and

ms̈m = k (sspr − sm) − Ffr(ṡm), (21)

characterizing the dynamics of the mass movement, with
the spring position sspr as model input and the mass
position sm as output.

The results presented here are simulated with Simulink R©

using a fourth order Runge-Kutta method with fixed
sample time for solving the differential equations. The
simulation is done for two different sample times to show
the mentioned advantages of the friction model.

As an example for the precision that can be reached, the
sample time is chosen to Ts = 0.1 ms. Due to the fact
that such a small sample time cannot be provided in most
practical control tasks, another simulation is presented,
which is executed with a sample time of Ts = 10 ms. If the
model shows a robust and qualitative correct behaviour for
the second case, it should be possible to apply the model
in practice as well.

The simulation parameters are distinguished between con-
stants and variables and are listed in Table 1 and Table 2.
While mass, spring constant, and the peak forces remain
unchanged, the friction properties of the new model have
to be adapted to the used sample times. Since one sample
frequency is a hundred times faster than the other one, the
time constant T1 and the characteristic velocities vsp, vt,
and v0 are also varying with the same ratio.

In the regarded sequence, the spring position moves with
constant velocity vspr = 0.1 m

s for five seconds and then
stops abruptly. The simulation results for the occurring
forces are depicted in Fig. 10, and the mass dynamics,
described by position and velocity are shown in Fig. 11.

m

k

sm sspr

FsprFfr

Fig. 9. Benchmark model for stick-slip experiments,
pulling a mass by a spring with constant velocity vspr.

Table 1. Constant simulation parameters

m in kg k in N
m F̂s in N F̂c in N d in Ns

m

0.1 10 1.4 1 0.1

Table 2. Varying simulation parameters

Ts in ms vt in m
s vsp in m

s v0 in m
s T1 in s

0.1 0.00005 0.0001 0.0001 0.0003

10 0.05 0.01 0.01 0.03

The qualitative behaviour of both simulations is similar,
but they show a distinct difference with regard to quantity.

The simulation with Ts = 0.1 ms shows a realistic slip-
stick behaviour. In cases of expected standstill, there is
no remarkably drift in the position trajectory. The same
effect can be seen in the velocity curve as well. In the
force trajectory, all characteristic parts of friction appear,
the increasing force at standstill, the transition between
Stribeck and dry friction, and the viscous friction in cases
of motion. Furthermore, the overall force shows a constant
value beginning at five seconds, enforced by the holding
character of the parameter-varying filter.

The presented results are similar to those of the LuGre
model described in Canudas de Wit et al. (1995). The
LuGre model, based on the works of Canudas de Wit et al.
(1993), Canudas de Wit et al. (1995), and Olsson (1996),
is one of the most established friction models. Therefore, it
can be concluded that the new model has a high precision
for high sample frequencies.

Regarding the simulation results for Ts = 10 ms, a slightly
lower accuracy of the model is recognisable. At times where
the mass should remain in its position, a slow motion has
to be noticed. The drift of mass, observable from position
and velocity in Fig. 11, is caused by the flatter slope of
the underlying static friction model as well as the slower
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Fig. 10. Friction forces Ffr and spring forces Fspr for stick-
slip simulation using different sample times.
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Fig. 11. Mass position sm and spring position sspr (upper
figure) and related velocities vm and vspr (lower figure)
for stick-slip simulation using different sample times.

dynamics of the following filter. Thus, the friction force
is delayed in comparison to the spring force and an exact
compensation is not possible any more.

Caused by the drift of position, the tension of the spring
increases more slowly, leading to a delay of the breaking
point of adhesion and resulting in a lower frequency of the
stick-slip effect, as can be seen in Fig. 10. Furthermore, the
mentioned delay also effects a slow drift of sm towards sspr

at the end of the simulation. This implies that the filter
adaption is not able to move the time constant to infinity
and reaching the desired holding behaviour of the memory
effect. However, the quantitative behaviour of the model is
still reasonable and good enough to be used in an observer,
which would compensate some of the differences, and the
simulation is numerically stable, which is a significant
advantage over other model approaches.

4. CONCLUSION

In this contribution, a new approach for a dynamic friction
model has been presented. In contrast to other friction
models, e.g. the LuGre model, it is defined by continu-
ous functions only. This offers a better numeric stability,
but also leads to an approximation error in the under-
lying static friction model, which consists of the viscous,
Coulomb, and Stribeck effect.

To improve the model accuracy and adding features like
hysteresis and memory effect, a linear parameter-varying
first-order lag element is connected in series, behaving as
a lowpass filter with varying time constant. This makes
it possible to delay the friction force towards the velocity,
achieving hysteresis as well as acting as a hold element in
cases of standstill. By applying the adaptive filter on the
static friction model, it is even possible to compensate for
the negative effects caused by smoothing the transition at
zero velocity.

The new model has been evaluated by simulation with a
classical stick-slip experiment. For high sample frequen-

cies, the new model shows a high precision which is com-
parable to reputable models while remaining numerically
stable for lower frequencies. To keep stability, a slight
impairment in accuracy has to be accepted, but the qual-
itative characteristics are still good.

Since the model combines the features of being defined by
continuous functions and maintaining stability for small
sample rates, it is possible to apply it in practical appli-
cations. This has to be tested in combination with non-
linear state observers and different controller approaches.
Particularly interesting is the usage of the new model
for friction compensation, where both, a high dynamic
behaviour and an accurate estimation are necessary.
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Andersson, S., Söderberg, A., and Björklund, S. (2007).
Friction models for sliding dry, boundary and mixed
lubricated contacts. Tribology International, 40, 580–
587.

Canudas de Wit, C., Olsson, H., Åström, K., and Lischin-
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Coulomb, C. (1821). Théorie des machines simple (Nouv.
éd.). Bachelier.

Dahl, P. (1968). A solid friction model. Technical Report
TOR-0158(3107-18), The Aerospace Corporation, El
Segundo, CA.

Dankowicz, H. (1999). On the modeling of dynamic
friction phenomena. Z. Angew. Math. Mech., 79, 399–
409.

Makkar, C., Dixon, W., Sawyer, W., and Hu, G. (2005).
A new continuously differentiable friction model for
control systems design. In Proceedings of the 2005
IEEE/ASME International Conference on Advanced In-
telligent Mechatronics, Monterey, California.

Olsson, H. (1996). Control Systems with Friction. Ph.D.
thesis, Department of Automatic Control, Lund Insti-
tute of Technology, Lund, Sweden.

Stribeck, R. (1903). Wesentliche Eigenschaften der Gleit-
und Rollenlager. Springer.

Swevers, J., Al-Bender, F., Ganseman, C., and Prajogo,
T. (2000). An integrated friction model structure with
improved presliding behaviour for accurate friction com-
pensation. IEEE Transactions on Automatic Control,
45, 675–686.

Wojewoda, J., Stefanski, A., Wiercigroch, M., and Kap-
itaniak, T. (2008). Hysteretic effects of dry friction:
modelling and experimental studies. Phil. Trans. R. Soc.
A, 366, 747–765.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4528


