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Abstract: System outputs with different sampling times may cause difficulties in subspace
identification to obtain an accurate model when some system variables are sampled at faster rate.
This identification problem is solved by dividing the multi-rate sampled system into different
subsystems, and multi-rate distributed control is proposed to control such system by using the
identified model.
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1. INTRODUCTION

The controlled variables of chemical processes may have
different sampling times, creating multi-rate sampled sys-
tems. For example, concentration measurements in Ten-
nessee Eastman (TE) challenge problem (Downs and Vo-
gel, 1993) are sampled every 6 or 15 minutes, while others
measurements are continuous variables. Simply applying
subspace identification to a multi-rate sampled system
at basic rate (the greatest common factor of different
sampling rates) may yield poor prediction results for the
variables with large sampling times. A better approach
for identification of multi-rate systems is based on a lifted
model, in which the system inputs and outputs with slower
sampling rates are lifted to a basic (fastest) rate, which
will generate larger dimensions of inputs and outputs for
system models. Lifted model can be used in control in
two ways: direct use of lifted model in subspace predictive
control (Qin et al., 2009), and to convert the lifted model
to the basic-rate model which is used in regular model
predictive control (MPC) (Li, 2001). The limitation of
the first approach is the increase in dimensionality of the
model due to lifting, and the worst situation happens
when some of the variables have much slower sampling
rates compared to the fast rate. For the second approach,
the inaccuracy of the lifted model may cause noticeable
error of basic-rate model when extracting it from the lifted
model.

We propose a new approach to solve the control problem
of multi-rate sampled systems that still utilizes the lift-
ed model, but we leverage the advantages of distributed
control techniques. The key is to let the local controllers
communicate with each other and generate the optimized
inputs sequences, which guarantee the global stability and
(sub)optimality, similar to the concepts of distributed M-
PC (DMPC) and feasible cooperative MPC (FC-MPC)
(Venkat et al., 2007). Extension of DMPC to nonlinear sys-
tems, such as nonlinear DMPC based on Lyapunov-based

MPC, follows similar information exchange mechanism as
FC-MPC (Liu et al., 2009).

For a multi-rate sampled system, the system outputs will
be assigned to different subsystems based on their sam-
pling times (in each subsystem, all the controlled variables
have the same sampling time, but it is not necessary
to have all the variables that have the same sampling
time in a single subsystem). Then, only input lifting (to
basic rate) is required when identifying the lifted model of
one subsystem, with the output unchanged, which would
further reduce the dimensions of the subsystem models.
For the model of a subsystem, the influences from neighbor
subsystems also need to be considered in order to develop
distributed control. Thus the system identification should
also include the related inputs of neighbor subsystems as
inputs to this subsystem. Subspace identification will be
utilized to obtain the state space model for each subsys-
tem. After the distributed models under different sampling
times are available, DMPC is proposed to deal with the
control problem for the multi-rate system.

2. LINEAR DISTRIBUTED MODEL PREDICTIVE
CONTROL

For a linear system described by the state space model

x(k + 1) =Ax(k) +Bu(k)

y(k) =Cx(k) (1)

the quadratic objective function with prediction horizon
N can be written as

Φ(k) =
k+N−1∑

t=k

(y(t|k)TQy(t|k) + u(t|k)TRu(t|k))

+y(k +N |k)TQfy(k +N |k) (2)

In distributed control, the system is divided to subsystems,
and each subsystem should consider the inputs from other
subsystems. The linear model for subsystem i is
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xi(k + 1) =Aixi(k) +Biui(k) +
M∑
j ̸=i

Wijuji(k)

yi(k) =Cixi(k) (3)

where uji is a subset of uj (the inputs in subsystem j)
and it includes all the inputs that would affect yi (outputs
in subsystem i) in uj , and Wij is the corresponding input
matrix of uji.

The local objective function of subsystem i is given in the
classical quadratic form

Φi(xi(k),ui) :=

N−1∑
j=0

(xi(k + j)TCT
i QiCixi(k + j)

+ui(k + j)TRiui(k + j))

+xi(k +N)TCT
i QiCixi(k +N) (4)

where Qi, Ri, Si, Qi are the weights of outputs, inputs,
the change of inputs, and the outputs at final stage,
respectively.

The overall objective function is the weighted sum of the
local objective functions, and the local optimization is to
minimize the overall objective function

min
ui

M∑
m=1

wmΦm([u1, ...,ui−1,ui,ui+1, ...,uM ];xm(k))

(5)
by assuming the inputs from other subsystems to be
constant. In (5), uj , j ̸= i is the previous optimization
results, which can be from previous iteration or previous

time step; wm is the weight with
∑M

m=1 wm = 1. There
could be multiple iterations in each time step, and the
local controllers communicate with each other and update
the newly generated optimized inputs sequence ui after
each iteration. It is proved to be stable for any number of
iterations, and also it is proved that when the number of
iteration approach infinity, optimality could be achieved
similar to centralized MPC (Venkat et al., 2007).

3. DISTRIBUTED MULTI-RATE SYSTEM
IDENTIFICATION

Consider a system with basic (fastest) sampling rate T ,
and a subsystem with sampling time nT with basic-rate
state space model described in (1). The lifted model is:

x(k + n) =Ax(k) +B u(k)

y(k) =Cx(k) (6)

where

A=An

B = [An−1B An−2B . . . B]

u(k) = [u(k)T u(k + 1)T . . . u(k + n− 1)T ]T (7)

where the underline indicates the lifted form. The lifted
model describes the relation between the current state
and the state after nT , which is the sampling time of the
controlled variables. It considers all the inputs between two
consecutive sampling times at time interval of T , which is
the basic rate of the whole discrete-time system.

For the distributed multi-rate sampled system, the lifted
model for the distributed model (3) is:

xi(k + ni) =Aixi(k) +Bi ui(k) +

M∑
j ̸=i

Wij uji(k)

yi(k) =Cixi(k) (8)

where Wij is the lifted form of Wij ( similar to B in (7)).

The above model for each subsystem could be obtained
with standard subspace identification techniques. Pseudo
random ternary sequence (PRTS) signals are sent to ma-
nipulated variables (MV) to stimulate the process (Juricek
et al., 2001), and model identification is carried out after
the data generation procedure is completed. To model a
subsystem, its measurements at their sampling time are
taken as outputs, and both its own inputs and the inputs
of other subsystems at basic rate between two consecutive
sampling times are taken as inputs. Regular distributed
state space model and subspace identification are utilized
for subsystems whose controlled variables have basic-rate
sampling time.

4. MULTI-RATE DISTRIBUTED CONTROL

Using the model (either normal state space model or lifted
model) for each subsystem, distributed control allows each
local controller to optimize its own objective function and
determine its own control actions, while the communi-
cations and iterations between local controllers ensure a
suboptimal solution of the global objective function and
also guarantee the stability of the control system.

4.1 Multi-rate Model Predictive Control

Consider the use of lifted model on a multi-rate centralized
system, in which the sampling time of the controlled
variables are integer times of basic rate, and its controller
is assumed to update at basic-rate. Although this makes
no sense for improving performance, it provides a baseline
for assessing the performance of the distributed case.

For regular linear MPC with quadratic objective function
in (2), the objective function could be converted to a
quadratic form under the constraints of (1) as (Muske and
Rawlings, 1993):

Φ(k) = (uN (k))THuN (k) + 2(uN (k))TGx(k) (9)

The first challenge for the multi-rate system would be the
selection of an appropriate prediction horizon for the lifted
model. At time k, the prediction horizon should include all
sampling times in the range k to k+N−1. The prediction
horizon is determined by Nm = floor((N − 2)/n+ 2).

Assuming that the first sampling time is at k0, define
s(k) = floor((k − k0)/n) ∗ n + k0, which stands for the
sampling time of current value. Then, using prediction
horizon N for regular MPC, the objective function at s(k)
would be:
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Φs(s(k)) =
Nm−1∑
j=0

(y(k + jn|k)TQmy(k + jn|k)

+u(k + jn|k)TRmu(k + jn|k))
+y(k +Nmn|k)TQm

f y(k +Nmn|k)

= (uNmn)(s(k))THmuNmn(s(k))

+2(uNmn(s(k)))TGmx(s(k)) (10)

where the superscript s stands for sampling time, Qm, Rm,
and Qm

f are the penalty matrices for outputs, inputs, and
terminal outputs, respectively, for the multi-rate system
described by the lifted model. uNmn is the input sequence
with the length of Nmn.

Conduct the following partition:

Hm =

[
Hm

11 Hm
12 Hm

13
Hm

21 Hm
22 Hm

23
Hm

31 Hm
32 Hm

33

]

Gm =

[
Hm

1
Hm

2
Hm

3

]

uNmn =

uNmn
1

uNmn
2

uNmn
3

 (11)

where uNmn
1 = [u(s(k)), · · · , u(k−1)], uNmn

2 = [u(k), · · · ,
u(k+N−1)], and uNmn

3 = [u(k+N), · · · , u(s(k)+Nmn−
1)]. uNmn

1 contains inputs from the most recent sampling
time to the current time (not included), uNmn

2 contains
inputs that start at the current time (included) and last for
the time of control horizon, and uNmn

3 contains the rest of
the inputs. The decomposition of Hm and Gm corresponds
to the partition of uNmn. At time k, uNmn

1 is known, uNmn
2

is the control sequence for multi-rate MPC (the decision
variables), and uNmn

3 is a zero vector. Then,

Φs(s(k)) = (uNmn
2 )THm

22u
Nmn
2 (s(k))

+2(uNmn
2 (s(k)))T (Gm

2 x(s(k))

+
1

2
(Hm

12
T +Hm

21)u
Nmn
1 (s(k))) + constant

(12)

Define the objective function for the multi-rate MPC at
time k:

Φ(k) =
k+N−1∑

t=k

(ysamp(t|k)TQysamp(t|k)

+u(t|k)TRu(t|k))
+ysamp(k +N |k)TQysamp(k +N |k) (13)

where the sampled value of outputs is evaluated instead
of their real values obtained from the simulation with the
model or process data collected at high frequency, which
is the major difference from the regular MPC. Now let
Q = Qm/n, R = Rm, Qf = Qm

f , and also set uNmn
3 be

zero vector as above, then

Φ(k) = Φs(s(k)) + constant (14)

therefore, since uN ≡ uNmn
2 ,

uN (k) = argmin
uN

Φ(k) = arg min
uNmn
2

Φs(s(k)) (15)

Then, (15) converts the control problem of the multi-rate
sampled system to a control problem at its sampling times.

4.2 Multi-rate Distributed Model Predictive Control

The objective function for subsystem i is defined as

Φi(k) =
k+N−1∑

t=k

(ysamp,i(t|k)TQiysamp,i(t|k) + ui(t|k)T

Riui(t|k)) + ysamp,i(k +N |k)TQf,iysamp,i(k +N |k)
(16)

similarly to (13), where subscript i denotes the ith subsys-
tem, and the objective function would be minimized sub-
ject to constraints of the system model (8). When generat-
ingHm

i andGm
i in (10), let [uT

i , u
T
1i, . . . , u

T
(i−1)i, u

T
(i+1)i, . . . ,

uT
Mi]

T and [Bi,Wi1, . . . ,Wi(i−1),Wi(i+1), . . . ,WiM ] be the
input vector and its corresponding system matrix (for the
multi-rate case, both are changed to the form of lifted
model), and let the input penalty matrix be diag([R, 01i,
. . . , 0(i−1)i, 0(i+1)i, . . . , 0Mi]), where 0ji is the square zeros
matrix with the number of rows (or columns) equal to the
length of uji.

The overall objective function is the weighted sum of local
objective functions:

Φ =
∑

ωiΦi, with Σωi = 1 (17)

The centralized solution can be obtained from:

uN (k) = [uN
1 (k)T , · · · , uN

M (k)T ]T

= argmin
uN

∑
ωiΦi(k)

= argmin
uN

∑
ωiΦ

s(s(k))

= argmin
uN

(uN (k)
T
Hc(k)uN (k)

+2uN (k)
T
Gc(k)x(k)) (18)

The centralized quadratic optimization matrices Hc and
Gc are calculated by summation of corresponding local
optimization matrices in (12).

The next step is to decompose the overall objective func-
tion back to local objective functions. For subsystem i, let
uN
i = Λiu

N , then Λi is a matrix with the corresponding

columns of the identity matrix. Define uN
i to be the inputs

of other subsystems, Λi to be the other columns of the
identity matrix. Assume that the current states and inputs
of other subsystems are known. Then, the overall objective
function is defined as the new local objective function:

Φl
i(k) = uN

i (k)
T
ΛiH

c(k)ΛT
i u

N
i (k) + 2uN

i (k)
T

[Λi
1

2
(Hc(k) +HcT (k))Λi

T
uN
i (k) + ΛiG

c(k)x(k)]

(19)

that can be optimized locally by local controllers, and the
input or output constraints can be enforced to the local
optimization, which is the same as standard MPC.
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With the distributed optimization above, the multi-rate
distributed MPC uses the same communication and coop-
eration structure as the other distributed MPC algorithms
in literature such as Venkat et al. (2007), in which multiple
iterations may be conducted in each time step to improve
the optimality. The stability in the sense of Lyapunov is
guaranteed if Φ is positive-definite, and

Φq(k + 1)≤Φ0(k + 1)

=Φq(k)−
M∑
i=1

(xT
i (k)Qixi(k)

+uN
i,q

T
(k|k)(1)Riu

N
i,q(k|k)(1))

≤Φq(k) (20)

where q indicates the number of iterations.

5. CASE STUDY

To demonstrate the effectiveness of the proposed method,
two case studies are presented. The first is a linear system
artificially sampled in multi-rate, and the second is the
classical TE challenge problem.

5.1 Distillation Column

A distillation column model (Venkat et al., 2007), with
two manipulated variables (vapor boilup flowrate and re-
flux flowrate, respectively) and two controlled variables
(temperatures of tray 27 and 7), is used to develop a sys-
tem with two subsystems (described by basic-rate system
matrices), each subsystem has one input and one output.

Different sampling times are artificially assigned to con-
trolled variables, and the lifted model is constructed for
each subsystem by using (7). Pretending that only the
lifted models are known, and this system is controlled by
distributed control. The control objective is to make target
tracking with a new setpoint yt = [1,−1]T , under the hard
constraints for inputs −1.5 ≤ u1 ≤ 1.5 and −2 ≤ u2 ≤ 2.

Before examining the performance of multi-rate distribut-
ed control, the multi-rate centralized control is studied to
evaluate MPC by lifted model. Make a centralized model
for centralized control:

Ac =

[
A1 0
0 A2

]
Bc =

[
B1 W12

W21 B2

]
Cc =

[
C1 0
0 C2

]
(21)

Set the sampling time to nc = 11, and construct the
lifted model for the centralized control system, using MPC
with quadratic objective function. The results in Fig.
1(a) indicate that the basic-rate response (dashed line)
has many fluctuations because the lifted model has no
information about the intermediate status other than at
sampling points. The solid line shows the sampled value,
and a smooth response is obtained as expected. For the
input side, the periodical saw-tooth shape has the same
period as sampling, and it is an aggressive behavior for
this system with fast dynamics.

The fluctuations for both outputs and inputs are always
observed for control with lifted model, however it may
not be so severe in systems with slower dynamics. In case
such fluctuations are not desirable, zero-order hold can be
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(a) Without zero-order hold.
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(b) With zero-order hold.

Fig. 1. Results of centralized multi-rate control. For out-
puts, the dashed line shows basic-rate response, and
the solid line shows the measurements at sampling
times.

added as the constraints for the inputs, and the stability
is still ensured since (20) still holds. The zero-order hold
for inputs can be realized by adding the following equality
constraints: Z 0

. . .
0 Z

uN =

0...
0

 (22)

The number of Z in the diagonal of the left matrix is Nm,
and the dimension of Z is (n − 1) × n, where n is the
sampling steps.

Z =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1

 (23)

The control results for centralized control with zero-order
hold (Fig. 1(b)) show a smooth response.
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To illustrate distributed control, the sampling time of two
subsystems are set to n1 = 3 and n2 = 7. Take 10
iterations (maximum q equals to 10) at each sampling
time. The results with and without zero-order hold (Fig. 2)
are similar but worse responses are obtained in both cases
compared to centralized control, and even the zero-order
hold constrained case shows some fluctuations. These
results are mainly because of the different sampling times
of two subsystems, and not distributed control, since 10
iterations could generate results that are close enough
to the centralized control, from the study of basic-rate
distributed control on this system.
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(a) Without zero-order hold.
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(b) With zero-order hold.

Fig. 2. Results of distributed multi-rate control. For out-
puts, the dashed line shows basic-rate response, and
the solid line shows the sampling measurements.

The formulation of zero-order hold constraints is different
from the centralized control case. Denote the equality
matrix in (22) as Ξ, and make the same partition as (11),

Ξ =

[
Ξ11 Ξ12 Ξ13

Ξ21 Ξ22 Ξ23

Ξ31 Ξ32 Ξ33

]
(24)

then the constraints become:

Ξ22u
Nmn
2 = −Ξ11u

Nmn
1 (25)

and uNmn
2 is actually the decision variable in the optimiza-

tion described in (15), while uNmn
1 is known.

A comparison of distributed multi-rate control with zero-
order hold, without zero-order hold, and centralized basic-
rate control is given in Fig. 3, in which only sampled values
are plotted. The centralized basic-rate control has the best
control results, and control without constraints generates
slightly better response compared to the constrained case
as expected, at the expense of more fluctuations.
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Fig. 3. Comparison of different control method. The solid
black line is the response of distributed multi-rate
control without zero-order hold, the dashed blue line
is the response of distributed multi-rate control with
zero-order hold, and the dash-dotted red line is the
response of centralized control for basic rate.

5.2 Tennessee Eastman Challenge Problem

The main target in the TE challenge problem is to main-
tain the product flowrate and composition (Downs and
Vogel, 1993). The process contains three main operation
units: a reactor, a separator, and a stripper. It has total
41 measured variables and 12 MVs, four reactants labeled
as A, C, D, and E, two products labeled as G and H.

Since product concentration is directly related to control
objective, G concentration in product and the product
flowrate are chosen as the controlled variables (CV). Also
the reactor pressure is very sensitive to changes in process
operations, which may cause safety issues, so it is consid-
ered as another controlled variable. For the MVs, several
factors affect the concentration of G in the product. The
feed of D is the material that forms product G, and E
forms product H and thus will also influence the ratio of G,
therefore, D and E feed are chosen as two MVs. Moreover,
the reactor pressure control is tricky because it is too
sensitive to a couple of variables, including D feed and
E feed. When we conduct the concentration control and D
and E feeds change, the reactor pressure will be affected
significantly. Initially, the purge flowrate was picked as
MV for the reactor pressure, however two problems were
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raised: 1. The dynamic between purge flowrate and reactor
pressure is not fast enough to cover dramatic changes in
reactor pressure. 2. The maximum purge flowrate cannot
compensate very large changes in reactor pressure. Thus
another MV (the reactor temperature) is added to help
reactor pressure control. The response of reactor pressure
to changes in reactor temperature is fast, but large tem-
perature changes could cause instability and this drawback
must be dealt with carefully during control.

For distributed control, the system is partitioned to 2
subsystems according to their sampling rates. The reason
is that subspace identification yields poor prediction if all
the CVs are sampled at fast rate while applying zero-order
hold on the controlled variable with slower sampling rate.
Product flowrate and reactor pressure are in subsystem
1, and G concentration in product is in subsystem 2. The
MVs are also classified: D feed is in subsystem 2 because it
is the main MV that controls G concentration in product,
and the other 3 MVs are in subsystem 1.

The system model is obtained by subspace identification,
then multi-rate control is applied with the identified mod-
el. Illustrative results (Fig. 4) show the effects of changes
in setpoint of G concentration in product from 50% to
75% and 35%. Offset-free control is applied on the reactor
pressure due to the nonlinearity of reactor pressure with
respect to the MVs. The identified model and the proposed
method track the setpoint change successfully.

6. CONCLUSIONS

In this paper we proposed a system identification and
distributed control method to control multi-rate sampled
systems, which is challenging to regular subspace identi-
fication. The key idea is to convert the multi-rate control
problem to a distributed control problem, where lifted
model is used to deal with the subsystems with slower
sampling rates, and the local MPC based on lifted model
is converted to a standard form to fit in the distributed
control structure. The proposed method is illustrated with
an artificial multi-rate linear system and the TE challenge
problem. The results indicate that the proposed method
improves the control of multi-rate sampled systems.
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