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Abstract: This paper addresses the synthesis of controllers for walk-to-run transition (WRT)
and run-to-walk transition (RWT) in legged robots with adjustable leg compliance. Inspired by
human kinematics, we propose a detailed procedure for the WRT and RWT in an adjustable-
stiffness spring and mass model, and derive control parameters that ensure effective gait
transitions. The WRT is achieved by modulating the compliance of the leg in a piecewise
constant way during the transition stride. In the RWT, in addition to the leg compliance, we
modulate the touchdown angle of attack. The merits of the approach proposed are demonstrated
via a simulation that incorporates the control of walking, followed by a transition to running
with first increasing and then decreasing speed, and finally a transition back to walking.
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1. INTRODUCTION

Walking and running are the two gaits most commonly
used by humans. In biomechanics, these two gaits are
distinguished according to the patterns of the interleaved
phases. While a flight phase is characteristic for running,
walking entails a phase during which both legs are in
contact with the ground at the same time (i.e., the double-
stance phase). Although it is clear that humans prefer to
transition from walking to running at a certain locomotion
speed, there has been no unequivocal explanation as to
why they change the gait (Prilutsky and Gregor, 2001).
Biological observations (Hreljac et al., 2007) reveal that
the transition stride does not resemble either of the two
gaits, and that the transition is not a sudden event, but
it is initiated during the transition stride and completed
after an adjustment period. Hence, in order to study gait
transitions, it is necessary to investigate the transient
dynamics of the body.

In the control literature, the simulation and control of
walk-run transitions has been rarely studied. The existing
literature mainly focuses on identifying the overlap be-
tween stable limit cycles of walking and running. Initially,
Geyer et al. (2006) claimed that there is a gap between the
regions of stable walking and running limit cycles. How-
ever, Rummel et al. (2009) found an almost continuous
morphing of gait patterns between walking and running.
They showed that, in the case of a passive system, walking
and running gaits can be produced at the same speed
(at low and medium speeds). However, the authors did
not address the transition process itself. More recently,
Martinez and Carbajal (2011) detected a new gait pattern,
namely ‘hopping’, that can connect a walking to a running
limit cycle by using different angles of attack for each step.
However, neither of these papers deals with adjustable

compliance, something that is evidenced in the human
morphology. Moreover, humans do not need to switch to an
intermediate gait in the realization of walk-run transitions.

In this paper, we introduce a control methodology that
realizes walk-to-run transition (WRT) and run-to-walk
transition (RWT) along with the walking and running
gaits in a unified framework. In Section 2 we explain
why it is useful to exploit variable compliance in the leg
and we formulate the underlying mathematical structure
based on the spring-loaded inverted pendulum (SLIP)
model. We also derive an approximate solution for the
associated equations of motion that predicts the system
behavior. This solution plays a crucial role in the synthe-
sis of controllers that we design to automate the transi-
tions. We limit the adjustment of the leg compliance to
piecewise constant discrete changes. Next, in Section 3
we propose a method to control the transient behavior
of the system in accelerated running on the basis of the
solution derived previously. Section 4 is devoted to the
main contribution of the paper, the realization of WRT
and RWT. We suggest the start and end instant of the
transient behavior in the transition stride and synthesize
the sequence of control parameters that lead to the desired
specifications. Section 5 presents numerical simulations
and the corresponding results. In addition, we present a
preliminary investigation on the relevance and feasibility
of the proposed control methods in comparison to human
data. Section 6 concludes the paper along with suggestions
for future work.

2. DYNAMIC WALKING AND RUNNING

It is generally accepted that the simplest yet sufficiently
descriptive mechanical model that captures the character-
istics of the animals walking and running gaits is the SLIP

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2171



model. It was first introduced for running (Blickhan, 1989),
and later extended to represent walking as well (Geyer
et al., 2006). Most of the subsequent research have focused
on identifying periodic limit cycles by searching the space
of the possible system parameters. In the context of the
running SLIP, thanks to the simplicity of the flight phase,
the adjustment of the swing leg parameters (namely, angle
of attack, stiffness and rest length) prior to touchdown
has attracted some attention (Seyfarth and Geyer, 2002;
Blum et al., 2007; Seyfarth et al., 2003; Ernst et al., 2009).
The idea of varying stiffness has also been studied for the
bipedal SLIP in (Visser et al., 2012) by using feedback
linearization. Biological studies reveal that humans adjust
their leg stiffness during each locomotion step to compen-
sate for the heel strike impact, and also from one step
to the next to change the gait frequency, see for example
(Farley and Gonzalez, 1996). It is also evidenced in (Lipfert
et al., 2012) that the simple SLIP model overestimates
the amplitude of the leg length changes, suggesting that a
more sophisticated model is required. This motivates in-
vestigating an adjustable-stiffness spring and mass model.

2.1 Adjustable-stiffness spring and mass model

The spring-loaded inverted pendulum with adjustable
stiffness for the modeling of walking and running gaits
is depicted in Fig. 1(a) and (b), respectively. The model
consists of a point mass m bouncing in the sagittal plane
(with gravitational acceleration g) on two telescopic, com-
pliant legs. The legs are assumed mass-less and the leg
rest length is denoted by l0. The stiffness of the legs has a
nominal constant part k0 and a varying part ki, i ∈ {1, 2},
which can be adjusted by the controller to an arbitrary
bounded value.

A single step of the walking gait starts at the vertical
leg orientation (VLO) in the single-stance phase (SSP),
includes the touchdown event of the swing leg leading to
the double-stance phase (DSP), followed by the liftoff of
the rear leg and ends at VLO in the next SSP. Hence,
the walking gait alternates between the SSPs and DSPs.
The transition from the SSP to the DSP occurs when the
fully stretched swing leg touches the ground. The angle
of attack is denoted by αw. The transition form the DSP
to the SSP takes place if the rear leg is fully stretched.
A single running step starts in the flight phase (FP), at
the highest vertical position of the center of mass (CoM),
called the apex. In this phase, no leg is in contact with the
ground. The transition to the SSP takes place when the
fully stretched leg touches the ground. The angle of attack
is denoted αr. The transition to the FP occurs after the
liftoff when the leg reaches its rest length and the step
ends at the next apex. Hence, during running the system
alternates between the SSPs and FPs.

The equations of motion in the DSP are as follows:[
mẍ
mÿ

]
=

[
0
−mg

]
+

[
cos θ1 cos θ2

sin θ1 sin θ2

] [
fs1

fs2

]
, (1)

where θi measures the angle between the horizontal and
the ith leg which has the positive sign in the counterclock-
wise direction, fsi is the ith spring force being calculated
from the following expression:

fsi = (k0 + ki)(l0 − li),

Fig. 1. Walking and running gaits performed using the
adjustable stiffness spring-loaded inverted pendulum
model. Subsequent single-stance phases are shaded.

and li is the instantaneous length of the ith leg. Note
that if one sets fs1 = 0 (or fs2 = 0), then (1) represents
the system dynamics in the SSP. Accordingly, for the
FP both spring forces must be set to zero in (1). At
the moment, a closed-form analytical solution for the
differential equations (1) is not available. However, the
control methods we propose in this paper rely on using
the prediction of the system dynamics in the SSP. To fulfill
this requirement and to avoid forward-in-time numerical
simulations, we relax the accuracy and use an approximate
analytical solution (Geyer et al., 2005) that has been
proposed for the SLIP dynamics in the SSP.

2.2 Approximate map for the single-stance phase

Geyer et al. (2005) derived a simple analytical approxima-
tion, in terms of the elementary functions, for the SLIP
dynamics in the SSP. While the approximation is quite
accurate for symmetric trajectories, it introduces relatively
large errors in asymmetric cases. Recently, Arslan et al.
(2009) have improved the effectiveness of the original
method by correcting the influence of the gravitational
torque. In the rest of this section, after briefly reviewing
this method, we describe how it can be modified to be used
in the adjustable leg compliance case.

The equations of motion in the SSP, under the simplifying
assumptions made in (Geyer et al., 2005), can be formu-
lated in polar coordinates (r, θ) as:

r̈ + ω̂2
0r = f,

ṗ = 0,
(2)

where ω̂2
0 = ω2

0 + 3ω2, f = −g + l0ω
2
0 + 4l0ω

2, ω =

p/(ml0
2) and ω2

0 = k/m, with p = mr2θ̇ being the angular
momentum of mass m around the toe position assumed, at
the moment, that is conserved during motion, hence can
be substituted by the known angular momentum at the
initial condition, p0 = mr2

iniθ̇ini. Solving (2) and applying
further simplifications yield the following expressions for
the radial and angular motions in the SSP, by defining the
instant of the initial condition as t = 0:

r(t) =
f

ω̂2
0

+ λ1 sin ω̂0t+ λ2 cos ω̂0t,

θ(t) =
2g/l0 + ω2

0 + ω2

ω̂2
0

ωt

+
2ω

l0ω̂0
(λ1 cos ω̂0t− λ2 sin ω̂0t) + λ3,

(3)
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where λ1, λ2 and λ3 are constant values obtained from
the initial conditions. Equation (3) is valid for any initial
and final conditions within the SSP. Inspired by (Arslan
et al., 2009), in order to improve the performance in case
of asymmetric trajectories, we use the following equations
to update the angular momentum:

r̄ =
f

ω̂2
0

+
1

ω̂0tend
(λ1 − λ1 cos ω̂0tend + λ2 sin ω̂0tend),

p̄ = − tend

2
mgr̄(cos θini + cos θend),

p = p0 + p̄.

(4)

Now the updated angular momentum, p, replaces p0 in the
corresponding terms in (3).

This approximation assumes a constant stiffness for the
leg. Having a chance to change the stiffness gives the
opportunity to adjust the total energy of the system, which
is necessary in order to achieve the desired locomotion
properties. If we limit the variation of stiffness to discrete
piecewise changes, then it is straightforward to adopt
the above-mentioned approximation. The only required
modification is to split the solution into n phases, if the leg
compliance is intended to change for (n−1) times between
the initial and final positions. Of particular interest is
the situation in which different constant stiffnesses are
used for the spring compression (CP) and decompression
(DCP) phases, k = k0 + kc and k = k0 + kdc, respectively.
Denoted by tb the time for which ṙ(t) = 0 (i.e., the bottom
position), we make a discrete change in the leg stiffness

at t = tb. Subsequently, r(tb), θ(tb) and θ̇(tb) define the
new initial condition for the next phase solution. The
resulting compliant leg with a multi-segment stiffness is
a substantial part of the control methods we propose in
the remaining of this paper.

Note that in the next sections we need to construct
maps containing the FP dynamics as well. The derivation
of a map between two arbitrary positions in the FP is
straightforward due to the well-known ballistic motion.
The reader can find the corresponding relations in (Geyer
et al., 2005).

3. CONTROL OF ACCELERATED RUNNING

For the passive SLIP system, there exist stable limit cycles
in walking and running that exhibit constant locomotion
speeds (average per stride). Since we investigate walk-run
transitions, we need to be able to accelerate the motion
during particular intervals of time. In this paper we con-
sider the accelerated motions when the robot is running.
To do so, we synthesize a controller which makes use of
(i) the multi-segment leg stiffness, and (ii) an adjustable
leg touchdown angle of attack. The resulting deadbeat
controller, which is based on the derived approximate
solution (3), is used once per step, at apex, and computes
the control inputs required to achieve the desired motion
at the next apex, see Fig. 1(b). The state of the system
at apex, zi, can be defined by two variables 1 : the apex
height, yi, and the apex horizontal velocity, ẋi. Denoted

1 In order to describe the system state completely, we need to include
the horizontal position of the mass in the state vector, but for the
purpose of our control strategy this is not needed.

by Z ∈ R2 the set of possible apex states, we define the
apex return map Hr : Z → Z such that:

zi+1 = Hr(zi, ui), (5)

where ui = [αr kc kdc]
T

is the vector of control param-
eters. The map Hr is the composition of the apex-to-
touchdown map in the FP, the touchdown-to-bottom map
with the leg compliance of k = k0 + kc in the SSP, the
bottom-to-liftoff map with the leg compliance of k = k0 +
kdc in the SSP, and the liftoff-to-apex map in the FP.

Biological evidence (Arampatzis et al., 1999) shows that
during the SSP of running gait, humans constrain the max-
imum leg length change within a small domain, regardless
of the locomotion speed that varies over an operational
range. Using this experimental data it can be roughly
estimated that the maximum leg retraction during the SSP
is about 10% of the leg length, i.e.,

rb = r(tb) = 0.9l0. (6)

This constraint can be added to (3) since it satisfies its
prerequisite assumptions. Therefore, in order to derive
the control parameters we need to solve the following
equations together:

zi+1,d −Hr(zi, ui) = 0,

0.9l0 − r(tb(zi, ui)) = 0.
(7)

Since finding an analytical solution for (7) can be diffi-
cult, we solve this system of nonlinear implicit algebraic
equations numerically. Note that efficient methods exist
for quickly solving such a system of equations. Moreover,
for a feasible range of the desired locomotion properties it
always yields a solution since no constraints are imposed
on the search space of kc and kdc. Solving (7) yields a
vector of control parameters, ui, that takes the system
state at the current apex, zi, to the desired state at the
subsequent apex, zi+1,d, in a single step of running gait.

4. WALK-RUN TRANSITIONS

In this section we propose a control methodology that re-
alizes the walk-run transitions. In particular, we illustrate
how the idea of using different stiffnesses for the spring CPs
and DCPs helps us to synthesize controllers that automate
practical transitions in a single step of locomotion. We
hypothesize that the SSP in the WRT stride comprises
of a CP and a DCP, while in the RWT stride it includes
two CPs and one DCP. All the control calculations are on
the basis of the derived approximate solution for the SSP
in Section 2.2. Using (3) enables us to predict the system
behavior without the need for forward-in-time simulations.

4.1 Control of walk-to-run transition

Fig. 2 depicts the proposed WRT-process schematically.
Inspired by the real CoM movement trajectory observed
for humans in (Segers et al., 2007), we assume that the
WRT-process is triggered at the minimum height in the
DSP (MHDS). The idea is to exploit different spring
stiffnesses for the CP and DCP in the upcoming SSP in
order to inject the energy required for a transitioning to
the FP. The vector of control parameters is ui = [kc kdc]T .
Here we have no control on αw as it was established before
the transition is triggered. The state of the system (for
the purpose of control) at MHDS is defined as zm =
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Fig. 2. Realization of WRT: Transition takes place in the
shaded region.

[∆xm ẋm ym]
T

, where ∆xm = xC2 − xm. Similarly, we

define the state of the system at apex as za = [ẋa ya]
T

.

According to Fig. 2, the map Hwr is built between the
MHDS and the apex in the FP that immediately follows
the SSP. It is important to note that although the MHDS
belongs to a DSP, we ignore the influence of the rear leg
and assume, at the moment, that the MHDS is a point
in the upcoming SSP. The map Hwr is the composition
of the following sub-maps: the MHDS-to-bottom map in
the SSP (with the spring stiffness of k′ = k0 + kc), the
bottom-to-liftoff map in the SSP (with the spring stiffness
of k′′ = k0 + kdc), and the liftoff-to-apex map in the
FP. Similarly to the procedure explained in Section 3, we
formalize the problem as a system of implicit equations as
follows:

za,d −Hwr(zm, ui) = 0, (8)

with za,d = [ẋa,d ya,d]
T

being the vector of the desired
apex state. Solving (8) yields the required input vector ui
which realizes the WRT in a single step of locomotion.

The assumption that the MHDS belongs to the SSP is only
made for the derivation of the control input, and does not
take place in simulation. In the simulation, however, upon
the control input ui is calculated, the spring constant of
the front leg, is updated but the simulated robot continues
in the current DSP until the system naturally switches
to the SSP. This is in accordance with what has been
observed for human in (Segers et al., 2006) where in the
transition stride the rear leg is walking and the front leg is
running. However, one must adopt a control system that
compensates for the effect of the rear leg force, which
pushes the CoM forwards. Using physical insight and
tuning in preliminary simulations, it was obtained that
it is sufficient to adjust za,d in advance. Accordingly, we
reduce ẋa,d by, roughly speaking, 50% and increase ya

by 50%. A quantitative demonstration for the proposed
control strategy is given in Section 5.

4.2 Control of run-to-walk transition

In this section we propose a control strategy that realizes
the RWT in a single step of locomotion. Fig. 3 illustrates
the strategy schematically. The transition is triggered at
the first apex for which ẋa ≤ ẋrw, where ẋrw is the
preferred RWT speed. We assume that in the RWT the
walking gait starts at VLO. Thereby the state of the
system at VLO in the transition stride is defined by

Fig. 3. Realization of RWT: Transition takes place in the
shaded region.

the walking gait specifications. To formalize the problem,

denote by z = [∆x ẋ y ẏ]
T

the state of the system in the
SSP, where ∆x = xC1 − x. Accordingly, the desired state
vector at VLO 2 (given by the walking limit cycle) is:

zv,d = [0 ẋv,d yv,d 0]
T
. (9)

The control problem is to take z to zv,d in a single step

of locomotion using the control input ui = [αrw kc kdc]
T

.
Considering the system behavior in the SSP by looking at
(3), we find that the radial motion, r(t), has an oscillatory
behavior, thereby the motion contains a sequence of peaks
and valleys. Define the state of the system at a maximum

radius as zt = [∆xt ẋt yt ẏt]
T

, where ∆xt = xC1 − xt.
In order to achieve zv,d, it is necessary that the following
property holds:

θt = θ(tt(za, ui)) =
π

2
, (10)

i.e., the maximum radial motion occurs at VLO. Assuming
(10) and taking into account that ẏTD < 0, it is necessary
to have a local minimum in the system trajectory in the
SSP before the VLO. The horizontal position of this point
is denoted by xb in Fig. 3. Taking into account the above-
mentioned properties of the system, it follows that the
spring in the SSP of the transition stride is first compressed
until the CoM reaches xb, and then switches to the DCP
until the VLO. At this point, which is also the peak of
the radial motion, it switches again to the CP. We make
use of different stiffnesses for this three-phase movement in
the SSP of the transition stride to conduct the transition
process.

At the implementation side, we build the map Hrw be-
tween the apex state, za, and the state at VLO, zv. Note
again that given (10), zv and zt coincide. The map Hrw is
the composition of three sub-maps: the apex-to-touchdown
map in the FP, the touchdown-to-bottom map in the SSP
with the leg compliance of k′ = k0+kc, and the bottom-to-
VLO map in the SSP with the leg compliance of k′′ = k0 +
kdc. Similarly to the WRT, we formulate the problem as a
system of implicit equations:

zv,d −Hrw(za, ui) = 0,
π

2
− θ(tt(za, ui)) = 0.

(11)

Solving (11) yields the vector of control parameters, ui,
which realizes the RWT.
2 We assume ẏv,d = 0 as demanded by the selected symmetric
walking limit cycle.
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5. SIMULATION RESULTS

In this section we demonstrate the effectiveness of the
proposed methods for the realization of WRT and RWT
quantitatively. In a simulation, see Fig. 4(top), the system
starts to walk in a passive limit cycle with the average
(per-stride) locomotion speed of v̄w = 1.17 m/s up to the
time twr = 0.8 s. At the first MHDS after twr the WRT
controller calculates the control parameters that lead to
the transition from walking to running, as proposed in
Section 4.1. The transition takes place in one step and
the robot is then instructed to run with the average (per-
stride) positive acceleration of āar = 0.766 m/s2, where the
subscript ‘ar’ stands for accelerated run. At the time tcr =
5.8 s the robot stops accelerating and keeps a constant
locomotion speed of v̄cr = 5 m/s until tdr = 6.3 s. Next,
a decelerated run with the negative average acceleration of
ādr = −0.766 m/s2 continues until the first apex with the
property of ẋi ≤ ẋrw = 2 m/s is detected. At this instant
the RWT controller, proposed in Section 4.2, is invoked
and the control parameters are calculated accordingly.
Consequently, the robot transitions to the similar walking
limit cycle as the beginning. The simulation ends after a
few strides in walking.

The top panel of Fig. 4 shows the desired and actual
horizontal velocity (dashed and solid lines, respectively).
The varying part of the legs stiffness are also plotted
in dotted lines. The bottom panel of Fig. 4 shows the
trajectory of the system together with the movement phase
indicators are plotted. The WRT and RWT regions are
highlighted in both subplots. A detailed view of these
regions were already depicted in Figures 2 and 3. Table 1
reports the numerical values of the system parameters as
well as the control parameters.

Discussion

As can be seen in the results, the WRT, the RWT and the
accelerated running are realized effectively. In the following
we explore some of the important features with respect to
the numerical results obtained. In order to evaluate the
feasibility of the results, we compare the calculated leg
stiffness for the constant speed running using (5) with that
of reported in (Arampatzis et al., 1999) for the human. The
average estimated leg stiffness of several participants in
their test for the speed of 5 m/s roughly equals to 31 kN/m
which is quite similar to what can be read from Fig. 4 (top)
for the similar speed (k = k0 + k2 = 16.50 + 14.65 =
31.15 kN/m). This match holds also for all other speeds
that were reported. Moreover, the trajectory of the CoM
during the WRT and RWT, see the highlighted parts in
Fig. 4 (bottom) resemble those observed for a human
in (Segers et al., 2007).

As depicted in Fig. 4, in order to accelerate the system
in running, the controller commands a smaller stiffness for
the CP than for the DCP. Together with the influence
of the angle of attack, this shortens the decelerating part
and prolongs the accelerating part in each SSP, making
it possible for the system to increase the energy level, as
demanded by the desired kinetic energy. Consequently, the
locomotion speed and the step length increase. In contrast,
for the decelerated running, the leg stiffness in the CP is

Table 1. System and control parameters

System parameters:

Body mass m 80 kg

Gravity acceleration g 9.81 m/s2

Leg stiffness (constant part) k0 16.5 kN/m

Leg rest length l0 1 m

Walking limit cycle:

Angle of attack αw 70 degree

ẋ at starting VLO ẋv 1.11 m/s

y at starting VLO yv 0.976 m

WRT (See Equation (8) and Fig. 2):

za,d =
[
ẋa,d ya,d

]T
=
[
0.6 1.5

]T
zm =

[
∆xm ẋm ym

]T
=
[
0.2494 1.250 0.9220

]T
ui = [kc kdc]T =

[
−7.478 18.90

]T
RWT (See Equation (11) and Fig. 3):

zv,d =
[
∆xv,d ẋv,d yv,d ẏv,d

]T
=
[
0 1.11 0.976 0

]T
za =

[
ẋa ya

]T
=
[
1.999 1.003

]T
ui = [αrw kc kdc]T =

[
69.63 54.22 −1.88

]T
larger than that of in the DCP, leading to smaller steps
with reduced speeds.

It should be emphasized that the control methods pro-
posed in this paper are based on the approximate so-
lution of the SSP. Thereby, the approximation error is
propagated throughout the simulation. This can affect the
tracking performance or even cause a loss of stability.
In particular in the RWT-process, since the system is
intended to switch to a passive limit cycle with a very
limited basin of attraction commonly attributed to pas-
sive limit cycles, the influence of the approximation error
is noteworthy. Quantitatively, the system converges to

xv = [0 0.9785 1.052 −0.2485]
T

instead of zv,d given in
Table 1, causing 5.2% error in ẋv,d. Given this error, the
system loses the stability of the subsequent walking limit
cycle, although it can walk for a finite number of steps.
This necessitates the existence of a regulator in the walking
gait, which is out of the scope of the current work.

6. CONCLUSION

We have proposed a control synthesis method that enables
an adjustable-stiffness spring and mass model to transition
between walking and running gaits in a single step of loco-
motion. To realize the transition from walking to running
the transition stride includes a single-stance phase with
two distinct constant stiffnesses, changing in a piecewise
discrete manner. For the run-to-walk transition the result-
ing stride contains three distinct constant stiffnesses. We
have compared the simulation results with human data
and concluded that there is a relevant agreement. In the
future, we will explore the possibility of extending the
findings to a more realistic robotic model incorporating
segmented legs.
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Fig. 4. The system starts in walking, switches to running with first increasing and then decreasing speed and finally
transitions back to walking. Top: desired (dashed line) and actual (solid line) horizontal velocity along with the
varying parts of the legs stiffness (dotted lines). Bottom: the corresponding CoM trajectory and phase indicators.
In both panels, the WRT and RWT regions are highlighted.
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