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Abstract: In this paper, we propose a nonlinear control approach for balancing underactuated
legged robots. For the balancing task, the robot is modeled as a generalized version of a Segway.
The control design is based on the State-Dependent Riccati Equation (SDRE) approach. The
domain of attraction of the SDRE controller is compared to the domain of attraction of a linear
quadratic controller. Using a simulation example of a four-legged robot balancing on its hind
legs, we show that the SDRE controller gives a reasonably large domain of attraction, even with
realistic level constraints on the control input, while the linear quadratic controller is unable to
stabilize the system.

Keywords: State-dependent Riccati equation control, Linear quadratic control, Legged robots,
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1. INTRODUCTION

Designing motion controllers for ground robots that need
to traverse unstructured terrains is a challenging problem.
For example, a legged robot should be able to execute
different tasks such as walking, jumping, running and
balancing. As legged robots are efficient in navigating
various terrains, legged locomotion has been the subject
of extensive research, see, for instance, (Saranli et al.,
2001; Raibert et al., 2008; Kalakrishnan et al., 2011). In
this paper, we address stabilizing of a four-legged RHex-
type robot (Weingarten et al., 2004), called RQuad (Lopes
et al., 2009) in its upright position. This task is relevant
to traversing different terrains and climbing large obsta-
cles. In addition, the robot can observe its environment
standing on its hind legs. The robot is equipped with
rotating legs of semicircular shape, see Fig. 1. During the
balancing task, the hind legs of the RQuad robot roll over
the ground in a way similar to wheels rotating around a
pivot point placed off the wheel center, as schematically
shown in Fig. 2. In this sense, the task can be regarded as
a more complex variant of Segway balancing.

The control of the Segway, wheeled inverted pendulums
and ballbots, which are all similar platforms, has been in-
vestigated in the literature (Grasser et al., 2002; Nagarajan
et al., 2012). It has been shown that although the Segway
is a nonlinear underactuated system, it can be controlled
by linear controllers (Pathak et al., 2005). However, when
the pivot point moves from the wheel’s center toward
the wheel’s rim (Fig. 2), the nonlinearity of the system
becomes more severe. As a result, the linear controller’s
domain of attraction (DA) 1 shrinks quickly and so linear

1 The DA of a controller is a set of initial states such that each
trajectory starting from the set, finally converges to the controller’s
desired goal.

Fig. 1. Four-legged robot RQuad developed at Delft Center
for System and Control, TU Delft.

control is not adequate for the legged robot. Therefore, one
has to resort to nonlinear controllers in order to control the
robot in a sufficient range of its configuration space.

In this paper, we investigate the nonlinear counterpart of
the linear quadratic regulator (LQR), which is called state-
dependent Riccati equation (SDRE) controller (Cloutier,
1997). This approach has been successfully applied to
various nonlinear systems, see, for example, (Dang and
Lewis, 2005) where an inverted pendulum is controlled
using SDRE controller.

The paper is organized as follows. A brief review of
the Segway model and the legged robot is presented in
Section 2. In Section 3, a standard LQR is designed to
stabilize the legged robot in the balancing position. In
addition, the performance of the LQR in terms of its DA
is investigated. Section 4, first, reviews the main concepts
of the SDRE controller. Then, an SDRE controller is
designed to stabilize the robot in its upright position.
Moreover, the DA of the SDRE controller is compared
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with the DA of the LQR. Finally, Section 5 concludes the
paper.

2. PHYSICAL MODEL OF BALANCED LEGGED
ROBOT

In order to design an SDRE controller, which is a model-
based controller, we need to develop a mathematical model
of the balancing robot in the sagittal plane. Denote by

q = [α φ]
T

the vector of the configuration variables, with
α the angle between the body and the vertical axis and φ
the wheel angle, as illustrated in Fig. 2. Let c be the ratio
of the pivot point distance from the wheel’s center to the
wheel’s radius. Parameter c can be set to a value between
zero and one to make a gradual transition from the wheel
to a semi-circular leg. As c increases, the nonlinearity of
the system becomes more severe.

Fig. 2. The transition from balancing a wheeled robot
(Segway) to balancing a RHex-type legged robot.
Parameter c denotes the ratio of the pivot point
distance from the wheel’s center to the wheel’s radius.

Using Euler-Lagrange equations, the following model is
obtained:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + Fext (1)

with the inertia matrix M(q) ∈ Rn×n, the Coriolis and
centrifugal forces matrix C(q, q̇) ∈ Rn×n, the gravity
matrix G(q) ∈ Rn, the input vector B(q) ∈ Rn and the
vector of the external forces Fext ∈ Rn. These matrices
are given by:

M(q) =

[
mbl

2 + Ib mbrl cos(α) +M1

mbrl cos(α) +M1 (mw +mb)r2 + Iw +M2

]
C(q, q̇) =

[
0 C1

−mbrlα̇ sin(α) + C2 C3

]
G(q) =

[
−mblg sin(α)

G1

]
(2)

B(q) = [−2 2]
T

Fext =
[
2bj(φ̇− α̇) −2bg − 2bj(φ̇− α̇)

]T
with

M1 = cmbrl cos(α− φ), M2 = c2mbr
2 + 2cmbr

2 cos(α),

C1 = cmbrlφ̇ sin(α− φ), C2 = −cmbrlα̇ sin(α− φ),

C3 = −cmbr
2φ̇ sin(φ), G1 = −cmbrg sin(φ). (3)

The symbols are explained in Table 1. It also lists the
values of the RQuad’s physical parameters. These values
were found partly by measuring and partly estimated using
nonlinear system identification.

While the RQuad robot stands on its hind legs, the motors
of both legs are controlled with the same control input.
This fact is modeled by the matrix B(q) which doubles the
torque value that one motor exerts on a leg. The torque τ
delivered by the motors is given by the following model of
the DC motor:

τ = Ngτm

τm =
Kt

Rm
(V −Keθ̇m) (4)

θ̇m = Ng(φ̇− α̇)

V = Nsv.

The subscript m refers to the motor variables and v is
the control input normalized in the range [−1, 1]. The
matrix Fext includes the friction force in the pivot joint
and the rolling friction force due to the contact between
the legs and the ground. We assume that the legs do not
slip. Additionally, though the RQuad’s legs are made of a
flexible material, in the model they are considered as rigid
bodies.

Table 1. Physical parameters of the RQuad
robot.

Physical parameter Symbol Value Unit

Body inertia Ib 2.60 · 10−2 Kgm2

Body mass mb 2.55 Kg
Wheel inertia Iw 4.54 · 10−4 Kgm2

Wheel mass mw 3 · 10−1 Kg
Gravity g 9.81 ms−2

Body half length l 13.8 · 10−2 m
Wheel radius r 5.5 · 10−2 m
Rolling friction bg 6.5 · 10−3 Nms
Joint friction bj 1 · 10−4 Nms
Torque constant Kt 3.15 · 10−2 NmA−1

Back EMF Ke 3.15 · 10−2 NmA−1

Rotor resistance Rm 5.21 Ω
Gear ratio Ng 35 −
Input gain Ns 25 V

Note that by setting c = 0 functions Mi, Ci and Gi in
equations (3) become equal to zero and we obtain the
standard Segway model.

3. LQR AND DOMAIN OF ATTRACTION ANALYSIS

We first investigate the equilibrium manifolds of the Seg-
way and the legged robot. Then, an LQR is designed
to stabilize the RQuad robot in the balancing position.
In order to study the performance of the controller, its
domain of attraction is investigated for different values
of parameter c. It is well known in the literature that
the DA of a nonlinear controller is a complex set, see,
e.g., (Vannelli and Vidyasagar, 1985; Chiang et al., 1988).
Generally, an analytical representation is only found for
trivial systems as discussed by Genesio et al. (1985). In
this paper, we simulate the control system with various
initial conditions to approximate the DA of the controller.

3.1 Equilibrium Manifold

For c = 0, the pivot is in the wheel’s center and the legged
robot is equivalent to an ordinary Segway. To stabilize the
Segway in the upright position, the angle α between the
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Fig. 3. The equilibrium manifold of the robot when c = 0 (Segway) and when c = 1 (legged robot).

body and the vertical axis has to be zero, but the wheel
angle φ can take any value. The equilibrium manifold of
the Segway is shown at the left side of Fig. 3. This manifold
illustrates that the equilibrium points of the Segway lie at
the zero value of the body angle.

If the pivot point moves from the wheel’s center to the
wheel’s rim, the position of the equilibrium point will
depend on the robot’s configuration. The robot will be
stable if the centers of mass of the body and the wheel
lie exactly above each other and the angular velocities
are zero as well, see the right side of Fig. 3. The goal of
controller is to stabilize the robot in one of the equilibrium
points (not necessarily at the zero angles).

3.2 Linear Quadratic Controller

We first design an LQR to stabilize the RQuad robot in the
balancing position. However, we expect the performance
of the linear controllers to be limited as parameter c
increases. The main purpose of this section is to analyze
the effect of c on the controller’s performance with respect
to its DA.

Define the state vector of the system as:

x =
[
α φ α̇ φ̇

]T
(5)

where α̇ and φ̇ are the angular velocities of the body
and the wheel, respectively. The equations of motion are
written in the general input-affine nonlinear state-space
form:

ẋ = f(x) + g(x)u. (6)

To design a linear controller, such as LQR, functions f(x)
and g(x) have to be linearized around the operating point
of the system (chosen at x = 0 here), yielding:

ẋ = Ax+Bu. (7)

Given matrices A and B, one can now design an LQR
described by:

u = −(R−1BTP )x = −Kx, (8)

where R is a positive definite matrix and P is the solution
of the algebraic Riccati equation:

ATP + PA− PBR−1BTP +Q = 0 (9)

whit Q is a positive definite matrix.

3.3 LQR: Domain of Attraction Analysis

First an LQR is designed based on the linearized state
space model. The value of parameter c determines the
position of the pivot joint. In order to investigate the
performance of the controller, we compute its DA for dif-
ferent values of c, using numerical simulation. To compute
the DA, the controller is applied to stabilize the robot
starting at different initial states. The initial value of the
body angle ranges from −π/2 rad to +π/2 rad. Similarly,
the initial value of the wheel angle is defined within the
range of −30 rad to +30 rad. These ranges are discretized
at 100 samples. The discretization step of α and φ therefore
equals to 0.031 rad and 0.6 rad, respectively.

Fig. 4 illustrates how the DA of the LQR changes regarding
to parameter c. Observe that the DA shrinks as the non-
linearity increases. When c changes from 0 to 0.25, the DA
shrinks slightly, but for c increased to 0.75 the DA becomes
very small. In conclusion, as the system’s nonlinearity
becomes more severe, the LQR controller cannot stabilize
the system properly. Therefore, we implement the SDRE
controller, which is a nonlinear counterpart of LQR.

4. SDRE CONTROLLER AND DOMAIN OF
ATTRACTION ANALYSIS

This section first reviews the main concepts of the SDRE
method. Then, an SDRE controller is designed to stabilize
the RQuad robot in the balancing position. In addition,
the DA of the controller is plotted for different values of
parameter c. Finally, the result achieved for both the LQR
and the SDRE controller are compared with respect to the
nonlinearity of the system.

4.1 SDRE Controller

State-Dependent Riccati Equation controller is a nonlinear
counterpart of the LQR, see (Çimen, 2008). This method
has recently become popular as it provides an algorithm
for designing nonlinear state feedback controllers. The
SDRE based controllers accept nonlinearity for the state
space model. They also offer the flexibility of using state-
dependent design matrices Q(x) and R(x). SDRE method
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Fig. 4. The domain of attraction of LQR for different values of parameter c.

has been developed for infinite horizon suboptimal prob-
lems in nonlinear systems that are autonomous and ob-
servable. The state-space equations are input-affine in the
form of (6) and the task is to minimize the performance
index defined as:

J =
1

2

∫ ∞
t0

(
xTQ(x)x+ uTR(x)u

)
dt, (10)

where x ∈ Rn, u ∈ Rm, f(x) ∈ Rn, g(x) ∈ Rk, Q(x) ∈
Rn×n and R(x) ∈ Rm×m, with the assumptions that
f(0) = 0 and g(x) 6= 0, ∀x. To apply the SDRE method,
the nonlinear system defined in (6) needs to be represented
in a state-dependent linear-like structure:

ẋ = A(x)x+B(x)u, (11)

where A(x) and B(x) are the state-dependent matrices.
Under the assumption f(0) = 0 and f(x) ∈ Rn, the state-
dependent matrix A(x) : Rn → Rn×n can be found by
mathematical manipulation; however, A(x) is not unique.
This fact offers some flexibility in the control design. In
any case, A(x) has to be selected such that the full state
measurement for the system is available and the pair
(A(x), B(x)) is point-wise controllable (Dang and Lewis,
2005).

The main concept of computing the control law in SDRE
is solving the algebraic Riccati equation:

A(x)TP (x) + P (x)A(x)− P (x)B(x)R(x)−1

B(x)TP (x) +Q(x) = 0 (12)

to obtain P (x) ≥ 0, which is then applied in the feedback
control law given as:

U = −K(x)x (13)

with K(x) = R(x)−1B(x)TP (x). The main difference be-
tween an SDRE controller and LQR is the fact that, in the
SDRE controller the matrices A(x) and B(x) and also the
weighting matrices Q(x) and R(x) are state-dependent.
The SDRE method provides flexibility in choosing the
weighting matrices which can lead to optimize the control
accuracy and the control effort. However, the obtained
controller is not necessarily optimal with respect to the
performance index (10) (Çimen, 2010). Additionally, the
closed-loop matrix ACL(x) which is computed as:

ACL(x) = A(x)−B(x)K(x) (14)

is point-wise Hurwitz. Thus, the origin of the closed-
loop system is locally asymptotic stable, see (Erdem and
Alleyne, 2004).

4.2 SDRE: Domain of Attraction Analysis

In order to design an SDRE controller, the general input-
affine nonlinear form of the system, see (6), has to be writ-
ten in the state-dependent linear form (11). Substituting
equations (2) in (6) yields:

ẋ =

[
0 I

−M−1Gs −M−1C

]
x+

[
0

M−1B

]
u, (15)

where C is an identity matrix and G(q) = Gsq. There
are different options for matrix Gs that can respect both
equation (6) and (15). Exploiting this flexibility, one can
put emphasize on a specific state compared to the other
states. For example, in the case of the RQuad balancing,
the emphasize is on the body angle, due to the significant
role of the angle α in the stabilization. Matrix Gs is
therefore given by:

Gs =

 −mblg
sin(α)

α
0

−cmbrg
sin(φ)

α
0

 . (16)

By substituting equations (2) and (16) in (15) and doing
some manipulation, the state-dependent matrices of the
RQuad robot are derived. These equations for the case
c = 0 (just to simplify the presentation) are described as
follows:

A(x) =

 0 0 1 0
0 0 0 1
a31 0 a33 0
a41 0 a43 0

 (17)

B(x) =


0
0

K
(
Iw +mbrl cos(α) + r2(Ib +mb)

)
K
(
Ib +mbl

2 +mbrl cos(α)
)

 (18)

with

a31 = (K/α)
(
mblg

(
Iw + r2(mw +mb)

)
sin(α)

)
a33 = K

(
−m2

br
2l2 sin(α) cos(α)α̇

)
a41 = (K/α)

(
−m2

brl
2g sin(α) cos(α)

)
(19)

a43 = K
(
mbrl(Ib +mbl

2) sin(α)α̇
)

K =
1

(Ib +mbl2)
(
Iw + r2(mw +mb)

)
−m2

br
2l2 cos2(α)

.

When the state-dependent matrices are obtained, one can
compute the control input (13).

In order to assess the performance of the controller in
terms of its DA, we repeat the same simulations as for
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the LQR. The value of c increases from 0 to 1 and the
controller’s DA is computed. Fig. 5 illustrates the DA of
the SDRE controller just for the values 0.75 and 1 of c,
where there is a considerable improvement compared to
LQR.
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Fig. 5. The domain of attraction of SDRE controller for
two different values of parameter c.

Although the DA of the SDRE controller becomes smaller
as the nonlinearity becomes more severe, it is larger than
the DA of the LQR, both for low and high values of
parameter c. This is shown in Fig. 6 which plots for
different values of parameter c the maximum absolute
value of the initial body angle α(0), while φ(0) = 0,
for which the controller still can stabilize the robot. The
SDRE controller is considerably more effective than the
LQR, especially when c approaches 1 (the pivot joint lies
on the wheel’s rim and the wheeled robot changes to
RQuad).
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Fig. 6. Maximum absolute initial value of the body angle,
when the wheel angle is zero, such that the controller
still can balance the legged robot.

5. DISCUSSION AND CONCLUSIONS

We have compared nonlinear state-dependent Riccati
equation control and linear LQR in the task of balancing
a RHex-type legged robot on its hind legs. The LQR’s
domain of attraction is significantly smaller than that of
the SDRE controller and the LQR cannot stabilize the
robot. The most challenging part of the SDRE controller

design is the computation of the state-dependent matrices
from the model equations. Once the matrices are obtained,
an algebraic Riccati equation is solved for computing the
control input.

Besides using SDRE controller, one can apply methods
that use a collection of controllers designed for specific
parts of the state space. For example, sequential compo-
sition (Burridge et al., 1999) is an effective approach to
address complex dynamical systems. In sequential compo-
sition, a collection of simple local controllers with possibly
small domains of attraction are executed consecutively.
LQR-tree is another method which implements the DAs of
a series of local linear quadratic regulators (LQR) to create
a tree (path) from the initial state to the desired goal
through the state space (Tedrake et al., 2010). In addition,
a learning strategy has been recently introduced by Najafi
et al. (2013) which is an augmentation of the traditional
sequential composition by learning new controllers on a
need basis in runtime.

In composition based methods, the performance of each
local controller, particularly its DA, plays an important
role in the control synthesis. This paper showed that using
the SDRE method can effectively enlarge the DAs of local
controllers.
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