
Modelling and Analysis of Natural Language
Controlled Robotic Systems

Yu Cheng ∗ Yunyi Jia ∗ Rui Fang ∗∗ Lanbo She ∗∗ Ning Xi ∗ Joyce Chai ∗∗

∗ Department of Electrical and Computer Engineering, Michigan State
University, East Lansing, MI 48824, USA (Tel: 517-432-1925; e-mail:

chengyu9@msu.edu, jiayunyi@msu.edu, xin@egr.msu.edu).
∗∗ Department of Computer Science and Engineering, Michigan State
University, East Lansing, MI 48824, USA (Tel: 517-432-9239; e-mail:
fangrui@cse.msu.edu, shelanbo@cse.msu.edu, jchai@cse.msu.edu).

Abstract: Controlling a robotic system through natural language commands can provide great conve-
nience for human users. Many researchers have investigated on high-level planning for natural language
controlled robotic systems. Most of the methods designed the planning as open-loop processes and
therefore cannot well handle unexpected events for realistic applications. In this paper, a closed-loop
method is proposed for task-planning to overcome unexpected events occurred during implementation
of assigned tasks. The designed system is modeled and theoretically proved to be able to stabilize the
robotic system under unexpected events. Experimental results demonstrate effectiveness and advantages
of the proposed method.

Keywords: natural language, robot, action scheduling, task planning, controllability, observability,
Lyapunov stability.

1. INTRODUCTION

Instructing with unconstrained natural language is an intuitive
and flexible way to interact with robots, which has attracted
increasing attention for its obvious convenience. Firstly, people
no longer need to get trained for how to control the robot with
constrained language, which is not flexible and convenient at all
for users. In addition, it is not necessary for users to get acquaint
with the complicated mathematical model, any programming
skills or even the graphical interfaces, which reduces users’
cognitive loads. Furthermore, normally, robot operators have
to keep an eye on their screens to monitor the performance of
the robots, with their hands controlling a keyboard or joystick.
While using natural language control to control robots, their
eyes and hands are freed from monitoring and manipulation,
reducing personnel requirements and fatigue. Natural language
controlled robotic systems would greatly benefit people, espe-
cially for the old and disabled.

Currently, there exist two main challenges for natural language
controlled robotic systems. One is to represent natural language
commands in a formal representation understandable for the
robots, since robots are not able to understand and process
natural language commands directly. The other is to design
a reliable and task-independent task planner for the robotic
system which takes the language commands in formal repre-
sentation transformed from natural language and produces an
implementable action sequence that can lead to desired behav-
iors.

⋆ This research work is partially supported under U.S. Army Research Office
Contract No. W911NF-11-D-0001, and U.S. Army Research Office Grant No.
W911NF-09-1-0321 and W911NF-10-1-0358, and National Science Founda-
tion Award No. CNS-1320561 and IIS-1208390

Research on natural language controlled robots mainly moves
along two directions. One is to teach the robots new behaviours
using natural language commands based on their prior knowl-
edge (Rybski et al. 2007)(Yoon and Rybski 2007)(Chen and
Mooney 2011)(Cantrell et al. 2012), sometimes with the help
of human demonstrations. The other is to command the robots
to accomplish assigned tasks with natural language directives
(Barabas et al. 2012)(Duvallet et al. 2013). All these efforts
involved in producing appropriate event trajectories in task
planning layer based on given natural language input. It is a key
step for the natural language controlled robots. The approaches
to perform the action scheduling process can be classified into
two types: probabilistic model and logic model.

Probabilistic models (Kollar et al. 2010)(Matuszek et al. 2012),
provide possible action sequences for each natural language
command. Useful features, such as predicates, subjects, loca-
tions and so forth, are extracted from natural language com-
mands, and then are used to calculate the probability of corre-
spondence between atomic actions and natural language com-
mands. Finally the one with the highest likelihood is looked as
the most appropriate interpretation for the language command.

Logic models (Kress-Gazit et al. 2008)(Kress-Gazit et al.
2009), use formal representations as the input to the task plan-
ner to drive the evolution of robotic systems. Language com-
mands are first transformed into some formal representations
(like linear temporal logic), and then a discrete controller for
the robot is synthesized based on these formal formulas if no
behaviours violate the given specifications.

All these proposed methods offer primary solutions to the real-
ization of natural language controlled robots, and provide use-
ful insights for subsequent research. However, for most of the
proposed approaches, the task-planning processes is designed

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11767



as open-loop, which neither guarantee the performance of the
robotic system to satisfy given task specifications, nor are able
to tackle uncertainties happened during the implementation. In
addition, these action-schedulers have not been proved to have
the ability to work reliably in real applications.

In this paper we develop a closed-loop action scheduling
method, which is capable of guaranteeing the robot’s perfor-
mance consistent with the natural language instructions, espe-
cially reasonably react to immediate changes of environment.
We demonstrate the usefulness and feasibility of the proposed
method by applying it to a natural language controlled robot
with several simple but illustrative scenarios. This paper also
reports the uncertainty encountered in some detail and tries
to provide at least partial remedies for the action scheduling
problem.

The rest of this paper is organized as follows. Section 2 presents
the design for both the plant and controller. Section 3 ana-
lyzes the properties of the proposed action scheduling process.
Section 4 provides experimental configurations and results. We
close this paper with conclusions and future work.

2. MODELING NATURAL LANGUAGE CONTROL

In this section, we first explain how we use supervisory control
framework (Ramadge and Wonham (1989)) to model the task
planner for the natural language controlled robotic system, and
then introduce the control strategy used to search for a shortest
action plan for each given specific task.

Supervisory control is widely used in the domains of manufac-
turing system, vehicular traffic, computer and communication
networks and so on. However, it is the first time to be used in
the natural language controlled robotic system. The advantages
will be illustrated in detail in Section 2 and 3.

2.1 Preliminaries and Robotic System Model

Supervisory control framework is an effective discrete extrac-
tion of a continuous process. It can be used to describe a system
that evolves in accordance with external events at possibly un-
known and irregular time. Additionally, it can be compositional,
which enables the construction of complicated robot behaviours
from simple ones. Furthermore, it has a close relationship with
both language and control. Due to these inherent features of
the framework, we use it to capture the subset of physical
behaviours of the robotic system for task planning.

Here, we use a six-tuple automaton
G = {Q,Σ,δ ,Q0,Qm,Ev} (1)

to model the robotic system, where

Q is a finite nonempty set of states abstracted from the robotic
system, denoting the status of the plant.

Σ represents the discrete set of events, in which the elements
drive the system to change from one state to another. The
events of Σ can be classified into two parts: Σc in which events
can either be enabled or disabled, and Σu where events are
set to be always enabled by default. By continuously enabling
actions from Σ, actions are implemented one by one and thus a
state trajectory as well as an action sequence will be produced.
Since the language generated by an automaton is comprised of
elements from event set Σ, it is also called an alphabet.

δ : Σ×Q → Q is the transition function that captures condition-
al state changes.

Q0 : elements of Q0 denote the initial states from where a
language or a system starts.

Qm ⊂ Q : a subset of the state set Q, called the set of marker
states. Usually, Qm are used to represent the successfully com-
pleted tasks.

Ev is defined as the set of valid event trajectories, denoting the
event sequences that are physically possible in G.

The behaviours of an automaton G can be described by the set
of the output event trajectories, also called strings or languages,
and G is called a language generator in this case.

Let Σ∗ represents the set of all the finite strings s comprised of
elements from Σ, including the empty string ε . The language
L(G) is the set of all event trajectories that are physically
possible for the plant

L(G) = {s : s ∈ Σ∗, δ (q0,s) is defined, q0 ∈ Q0}. (2)
The marker language Lm(G), describes all the event sequences
that can reach the marker states

Lm(G) = {s : s ∈ Σ∗, δ (q0,s) ∈ Qm, q0 ∈ Q0}. (3)
In the following part, we present the behaviour models that
capture the grasp-move-place manipulation of the plant and
the design for the task-planner with a simple but illustrative
example, to demonstrate how a satisfactory action trajectory
can be generated to obey given task specifications. In this
scenario, we consider a 7 DOF robot arm mounted on a mobile
base in front of which there are four objects to be manipulated.

To implement the assigned tasks we need to know two types
of information about the gripper: the open-close status and its
current position. In order to describe the complete task, these
two types of behaviours should be synchronized. The finite-
state diagrams for the open-close status and positions of gripper
are given in Fig. 1 and Fig. 2, respectively.

Fig. 1. Gripper status, 0 for open and 1 for close

Fig. 2. Position of the gripper, i, j ∈ {0,1,2,3,4}, i ̸= j

The synchronous composition of these two behaviours is shown
in Fig. 3, where nodes represent the states of the plant, and
the symbols over arcs denote the events from Σ. States of the
plant are characterized with two bit numbers, where the first bit
means the position of the gripper: 0 denotes a fixed initial po-
sition and 1∼4 represent four flexible object positions. And the
second bit means the status of the gripper, indicating whether
or not there is an object in it. The event set: Σ = {mi j,c,o,0 ≤
i, j ≤ 4, i ̸= j}, where c and o are actions of closing and opening

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11768



Fig. 3. The shuffle of the weighted product

gripper, separately, and mi j denotes moving from position i to
position j (i ̸= j). The initial state is not limited to a fixed one,
however, it can be any state of the finite state machine. This
is also the case for the final state of the task. The marker set of
states Qm is comprised of all the states above, i.e. Q0 =Qm =Q.
The state transition functions are shown in the synchronous
finite-state diagram.

2.2 Controller Design

In Section 2.1 all legal behaviours in the task domain have
been captured in the plant model. Our aim is to design a task
planner (also discrete controller) capable of generating appro-
priate event sequences which satisfy the specific task require-
ments transformed from real-time natural language commands.
Additionally, it should be able to stabilize the system where
environment changes may cause current action plan no longer
fitting the task requirements.

The working procedure is shown in Fig. 4. Natural language
commands are firstly transformed into formal representation by
the natural language processing module. In the meanwhile, the
controller keeps updating its internal and external environment
information. It takes formal representation and current status
information about the robot as input and generates an action for
continuous controller to control the robotic system. Then both
the information of the robot and its working environment are
dispatched to the action-scheduler for reference to produce the
next action.

Our goal is not only to accomplish the desired task, but also to
implement it with minimun transitions. With the given formal
representation input, desired status can be determined, and with
sensor feedback, the current status of the robot can be obtained.
Now the problem is formulated as finding an action path with
minimum moves among all the possible paths. In order to find
the shortest action sequence, we assign each action a cost value,
and the path that has the minimum cost would be regarded as
the optimal action plan. There are plenty of developed shortest
path algorithms suitable for our situations, such as Bellman-
Ford, Floyd-Warshall, Dijkstra, and so forth. The weighted
automaton is shown in Fig. 3.

Fig. 4. Block diagram of control scheme

With the shortest path algorithm and real-time sensor informa-
tion feedback, the robot can produce an action sequence with
minimum moves, also, it is capable of reacting reasonably to
abrupt changes during each execution. For instance, if the target
is moved to another position before picking up manipulation,
which leads to the failure of current action plan. The task
planner is able to regenerate a new action plan for the changed
environment layouts.

The number of minimum moves can be defined as
min = inf{n : ξ (s,q0) = qm,s = σ1σ2...σn,σi ∈ Σ}. (4)

And the corresponding shortest event path is defined as
smin = σ1σ2...σmin. (5)

The language generated by the controlled robotic system can be
represented as
L(C/G)= {smin : ξ (smin,q0)= qm, q0 ∈Q0,qm ∈Qm,smin ∈Σ∗}.

(6)

3. SYSTEM ANALYSIS

It is essential and necessary to analyze properties of the de-
signed controller before real application. In this section, we
analyze the properties of the controller from the perspective
of control, and demonstrate the controller has several excellent
properties which guarantee the robotic system’s performance
with respect to given task requirements.

3.1 Controllability of Robotic System

The main objective of our goal is to design an action trajectory
generator (controller) that achieves overall controllability of
a system. This controller is capable of enabling or disabling
controllable events in order to ensure correct and desirable
behaviours of the system. A system is controllable if any
desired state of it can be reached based on current status
and appropriate control strategy. The existence of a controller
is guaranteed if all the desirable behaviours of the system
are controllable (Ramadge and Wonham 1987)(Ramadge and
Wonham 1989).

The closure of a language K, denoted by K, is the set of all
the prefixes of strings from language K, i.e., K = {s : s ∈
Σ∗ and (∃t) t ∈ Σ∗,st ∈ K}. Language K is said to be (Σu,L)−
invariant if KΣu ∩L ⊂ K. The controllability for a language can
be defined as follows (Ramadge and Wonham 1987)(Ramadge
and Wonham 1989).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11769



Definition of Controllability: Let K ⊂ Σ∗, L ⊂ Σ∗ be two
arbitrary languages generated by the automaton G. We say that
K is controllable if K ⊂ L(G) and K satisfies: KΣu ∩L ⊂ K.

In our case we set K = L(C/G) in (6), which means the
language generated by the plant under control, and L ⊂ Σ∗.
Then we have:

L(C/G)⊂ L(G).

In our language generator model, Σu = Σ−Σc = /0. We have
KΣu ∩L(G) = /0 ⊂ K.

Then we conclude the language generated by (1) is control-
lable.

3.2 Observability of Robotic System

Observability is the basis for the control over robotic system.
With the system observable, occurrences of events can be
sensed and offer feedback information to the controller.

A task is said to be observable if the event sequence generated
by the plant is observable. If the system fails to be observable,
then some events produced by the plant are indistinguishable to
the controller, which hampers the controller from tracking and
controlling. Here is the definition of observability (Ramadge
1986)(Lin and Wonham 1988).

Definition of Observability: A language is said to be observ-
able if it satisfies the condition that there exists a right congru-
ence γ such that ker P ≤ γ ≤ actK .

Here, both ker P and actK are right congruences (Lin and
Wonham 1988). A right congruence is an equivalence relation
θ on Σ∗ and satisfies s ≡ s′ (mod θ)⇒ st ≡ s′t (mod θ).

Then an analysis is provided to show the observability of
controlled language generated by the plant.

Firstly, we define a right congruence eq(G) on Σ∗:
s ≡ s′(mod eq(G)) iff δ (s,q0) = δ (s′,q0)

To show that the left inequality holds:

Let γ = eq(S), where S is a proper controller for (1) (Ramadge
and Wonham 1987). Since for S = {Σ,X ,ξ ,X0,Xm,Evx}, and ξ
is Σuo −null(Lin and Wonham 1988), then we can have:

ker P ≤ γ.
To show that the right inequality holds:
1) We claim that AK(s) ∩ IAK(s′) = /0. Otherwise ∃σ ∈
Σ that sσ ∈ K ∧ s′ ∈ K ∧ s′σ ∈ L(G)−K. Then we can have:

ξ (sσ ,x0) ̸= ξ (s′σ ,x0)

⇒ξ (σ ,ξ (s,x0)) ̸= ξ (σ ,ξ (s′,x0)),

while,
x′ = ξ (s,x0) = ξ (s′,x0),

we can have:
ξ (s,x′) ̸= ξ (s′,x′).

Because s ≡ s′ (mod eq(G)) ⇒ ξ (s,x′) = ξ (s′,x), a contra-
diction. And similarly, we can obtain

AK(s′)∩ IAK(s) = /0.
2) If s ∈ K ∩ Lm(G)∧ s′ ∈ K ∩ Lm(G), then s′ ∈ K ⊆ L(S/G),
and therefore δ (s′,q0)! and ξ (s′,q0)!. And then:

s ∈ k = Lm(S/G)

x = ξ (s,x0) = ξ (s′,x0) ∈ Xm

s′ ∈ Lm(G)⇒ δ (s′,x0) ∈ x0

⇒ s′ ∈ k

Similarly, with s′ ∈ k and s ∈ K ∩Lm(G)∧ s′ ∈ K ∩Lm(G) we
can get s ∈ K.

Thus we have γ ≤ actK . Language K is observable.

Lin and Wonham’s work provides a theorem (Lin and Wonham
1988) that if the language is both controllable and observable,
then properties like completeness, nonblockingness and nonre-
jectingness (Ramadge and Wonham 1987) are all guaranteed
automatically.

3.3 Stability of Natural Language Controlled Robot

Characteristics of an automaton are the inherent nonlinearity
and asynchronous occurrences of events. Attempting to control
such a real-time dynamic system introduces the stability of the
discrete event system. The work by Passino et al. (Passino et al.
1994) provides the foundation for analyzing the stability as well
as asymptotical stability in the sense of Lyapunov for system
modelled by automata.

An event sequence uniquely leads to a resulting state trajectory
with applying a specified sequence of δ . The set of possible
system states is limited by both physical and task specifications.
Those constraints on the admissible state space can be realized
by appropriate event trajectories. Thus a measure is needed
to determine whether or not the resulting state is limited to
a well-defined set (invariant set), which has no violation of
any imposed physical or task specifications, and is capable
of expressing boundedness of the state space by its values.
A metric on X is represented by ρ : X ×X → M and {X ,ρ}
denotes a metric space. The distance from point x to a set Xz
is defined as ρ(x,Xz) = inf{ρ(x,x′) : x′ ∈ Xz}. A functional
is defined as a mapping from an arbitrary set to the metric
space M. The set S(Xz;r) = {x ∈ X : 0 < ρ(x,Xz) < r,r >
0} denotes the r-neighbourhood of an arbitrary set Xz ⊆ X .
Let Ek represents an event sequence containing k-occurred
events where k ∈ N, and Ea denotes the set of allowed event
trajectories where Ea ⊆ Ev of (1).

Definition of Lyapunov Stability: A closed invariant set Xm ⊆
X of G is called stable in the sense of Lyapunov w.r.t. Ea if for
arbitrary ε > 0, a quantity δ > 0 can be found for any Ek such
that when ρ(x0,Xm)< δ we have ρ(X(x0,Ek,k),Xm)< ε for all
Ek that Ek ∈ Ea(x0) and k ∈ N.
Theorem 1. (Passino et al. 1994): A closed invariant set Xm ⊆X
of G is said to be asymptotically stable in the sense of Lyapunov
w.r.t. Ea, in a sufficiently small neighbourhood S(Xm;r) of the
set Xm, if it is necessary and sufficient to find a functional which
satisfies the following four conditions:

1) For an arbitrary small c1 > 0, a c2 > 0 can be found in such
a way that V (x)> c2 for x ∈ S(Xm;r) and ρ(x,Xm)> c1.

2) For an arbitrary small c3 > 0, a c4 > 0 can be determined
such that V (x)≤ c4, ∀x ∈ S(Xm;r), ρ(x,Xm)< c3.

3) V (X(x0,Ek,k)) is a nonincreasing function if for k ∈ N, x0 ∈
S(Xm;r), ∀k ∈ N, X(x0,Ek,k) ∈ S(Xm;r) and ∀Ek, EkE ∈
Ea(x0).

4) For all Ek that EkE ∈ Ea(x0) and for all k ∈ N that
X(x0,Ek,k) ∈ S(Xm;r), as k → ∞, V (X(x0,Ek,k))→ 0.

In our case, the concepts for stability change a little bit. Here
asymptotical stability means that the robotic system can reach
any given target state qm rather than a set from any initial state
q0 in Q0.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11770



From the definition and theorem 1 we could get that the sys-
tem is neither stable nor asymptotically stable in the sense
of Lyapunov without control. Since it is both controllabe and
observable, the system can be stabilized by some control strate-
gies. With the proposed control method, the system can achieve
asymptotical stability.

First we define the distance function:
ρ(q,qm) = inf{n : ξ (s,q) = qm,s = σ1σ2...σn,σi ∈ Σ} (7)

where q0 ∈ Q0, qm ∈ Qm.

Thus we have:
ρ(q,q′) = 0 if q = q′,

Choose the Lyapunov functional
V (q) = ρ(q,qm).

We can set a random state of the plant as initial state q0, and
another arbitrary state as the target state qm. Take r = 4.

1) We can choose c1 = c2 as small as possible, Since V (q) =
ρ(q,qm), for ρ(q,qm)> c1, we can always have V (q)> c2.

2) Choose c3 = c4 as small as possible, then, for ρ(q,qm)< c3,
we can always have V (q)< c4.

3) and 4) Any state of the plant can be set to be initial state or
target state. The control strategy, i.e., the shortest path al-
gorithm, minimizes the Lyapunov functional and makes the
system more robust to external exceptions, which are similar
to disturbances in continuous system. With the algorithm,
the generated formal languages, or the action sequences,
are represented as in (6). In each situation, the generated
event sequence will always have minimum moves. If some
errors or unexpected environment changes occur which lead
to the following state different than the expected one, the
controller is capable of regenerating a new event trajectory
based on the goal and the current state to satisfy the task re-
quirements. Thus, V (X(q0,Ek,k)) is a decreasing functional
for k ∈ N, and V (X(q0,Ek,k))→ 0 as k → ∞ (in our case it
only needs finite steps).

The robotic system achieves asymptotical stability under the
control strategy, which implies the robust performance of the
robotic system is consistent with task requirements.

4. EXPERIMENT RESULTS

The experiment setup is configured as described in Section 2. A
flat table is placed in front of the mobile base on which a 7 DOF
robot arm is mounted, and a camera is mounted right under
the arm to offer object recognition with each object position.
Then the visual information is dispatched to the robot and
processed by MOPED: a real-time object recognition software
run under ROS (robot operating system). On the table we have
four objects: three wooden blocks with different sizes, colours
and surfaces and an empty plastic bottle, which are all suitable
in size for a gripper to manipulate. The experiment platform is
shown in Fig. 5.

As Fig. 4 shows, at first a human operator gives the robot
a natural language command, which then is transformed into
formal representation. In our experiments, the work of natural
language recognition is done by Dragon Speech Recognition
software and transformed into formal representation by the col-
laborative effort from a research group of computer scientists.
Then based on the given target state and the sensed current state
from state feedback, the controller is able to produce an optimal

event trajectory for the following step by step implementation.
If some exceptions occur, a replanning process is invoked. It can
be easily seen that with the same task specifications, generated
action plans may vary a lot with different environment arrange-
ments and uncertainties encountered during implementation.

The experiment platform is shown below. Here are two example

Fig. 5. Experiment platform

scenarios for our proposed method. For the first one, the given
natural language instruction is ”Take the small brown block.” If
the gripper is idle, with the same command, the action sequence
would only include moving the gripper to the target position
and next moving down to grab the desired object. While now
the red block is in the gripper, i.e. the initial state is (31), so
firstly the gripper has to put down the object in it, and then
moves to the target position and picks up the desired object.
After speech recognition and natural language processing, the
target state (21) is obtained and sent to the controller for action
scheduling. With state feedback we can obtain current state
(31). Then the event trajectory is generated as: o → m32 → c,
and the corresponding state sequence is: (31)→ (30)→ (20)→
(21). The execution process is shown in Fig. 6.

If an uncertainty occurs during the implementation phase, for
instance, in scenario 2, the directive given is ”Grasp the big
brown block”, with the gripper idle as initial status. The final
target state is (11). And the action sequence with initial state
(00) is m01 → c, during the process of approaching the big
brown block, the positions of the target and red block are
switched, leading to the failure of current action plan. Based on
the feedback keeping updating, we can get current state. And
the controller will regenerate a new action plan: m13 → c, to
lead the system to accomplish the assigned goal. Fig. 7 tells the
whole process. Experiment results are shown in Table 1.

The experimental results demonstrate two advantages of pro-
posed method. Firstly, the task-planner of robotic system gen-
erates action plans for a class of tasks rather than for a specific
task, i.e. the designed controller is task-independent. In addi-
tion, with the same task requirements, the task-planner is able
to make reasonable response to different initial environment ar-
rangements and layouts. Also, it can stabilize the robotic system
under uncertain events to guarantee system’s performance.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11771



Experiments Initial Status Commands Exception Action Sequence Final Status
Exp1 Big brown block in gripper Take that small brown block No o → m32 → c Small brown block in gripper
Exp2 Gripper is idle Grasp the big brown block Positions switched m01 → m13 → c Big brown block in gripper

Table 1. Experimental results

Fig. 6. ”Take that small brown block”

Fig. 7. ”Grasp the big brown block”

5. CONCLUSIONS

Most task planners for natural language controlled robotic
systems are designed as open-loop, and therefore have no
capability to guarantee the performance of the system to meet
given task specifications under unexpected events.

In this paper, we develop a method to model the behaviours of
robotic system with supervisory control framework combined
with shortest path algorithm of discrete level. Property anal-
ysis of the system demonstrate the advantage of the method
and great potential for real application. The effectiveness and
efficiency of the method are illustrated by experimental results.

For the future work, we are going to integrate information from
force and tactile sensors into current robotic behaviour model.
The new model is expected to be more powerful in guiding the
robot to do more complicated and subtle tasks.

REFERENCES

Barabas, P., Kovacs, L., and Vircikova, M. (2012). Robot
controlling in natural language. In Cognitive Infocommuni-

cations (CogInfoCom), 2012 IEEE 3rd International Confer-
ence on, 181–186. IEEE.

Cantrell, R., Talamadupula, K., Schermerhorn, P., Benton, J.,
Kambhampati, S., and Scheutz, M. (2012). Tell me when
and why to do it! run-time planner model updates via natural
language instruction. In Human-Robot Interaction (HRI),
2012 7th ACM/IEEE International Conference on, 471–478.
IEEE.

Chen, D.L. and Mooney, R.J. (2011). Learning to interpret
natural language navigation instructions from observations.
In AAAI, volume 2, 1–2.

Duvallet, F., Kollar, T., and Stentz, A. (2013). Imitation
learning for natural language direction following through
unknown environments. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, 1047–1053. IEEE.

Kollar, T., Tellex, S., Roy, D., and Roy, N. (2010). Toward
understanding natural language directions. In Human-Robot
Interaction (HRI), 2010 5th ACM/IEEE International Con-
ference on, 259–266. IEEE.

Kress-Gazit, H., Fainekos, G.E., and Pappas, G.J. (2008).
Translating structured english to robot controllers. Advanced
Robotics, 22(12), 1343–1359.

Kress-Gazit, H., Fainekos, G.E., and Pappas, G.J. (2009).
Temporal-logic-based reactive mission and motion planning.
Robotics, IEEE Transactions on, 25(6), 1370–1381.

Lin, F. and Wonham, W.M. (1988). On observability of
discrete-event systems. Information sciences, 44(3), 173–
198.

Matuszek, C., Herbst, E., Zettlemoyer, L., and Fox, D. (2012).
Learning to parse natural language commands to a robot
control system. In Proc. of the 13th Intl Symposium on
Experimental Robotics (ISER).

Passino, K.M., Michel, A.N., and Antsaklis, P.J. (1994). Lya-
punov stability of a class of discrete event systems. Automat-
ic Control, IEEE Transactions on, 39(2), 269–279.

Ramadge, P.J. (1986). Observability of discrete event systems.
In Decision and Control, 1986 25th IEEE Conference on,
volume 25, 1108–1112. IEEE.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control
of a class of discrete event processes. SIAM journal on
control and optimization, 25(1), 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77(1), 81–
98.

Rybski, P.E., Yoon, K., Stolarz, J., and Veloso, M.M. (2007).
Interactive robot task training through dialog and demon-
stration. In Human-Robot Interaction (HRI), 2007 2nd
ACM/IEEE International Conference on, 49–56. IEEE.

Yoon, K. and Rybski, P.E. (2007). Teaching procedural flow
through dialog and demonstration. In Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Confer-
ence on, 807–814. IEEE.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11772


