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Abstract: For complex industrial plants with multiphase and multimode characteristic, traditional 

multivariate statistical soft sensor methods are not applicable as Gaussian distribution assumption of data 

is not met. Thus Gaussian mixture model (GMM) is used to approximate data distribution. In the 

previous GMM-based soft sensor modeling researches, GMM is only used to identify operating mode, 

then other regression algorithms like PLS are used for quality prediction in different localized modes. In 

this article, an existing method—Gaussian mixture regression (GMR) is introduced for soft sensor 

modeling, which has been already successfully applied in robot programming by demonstration (PbD). 

Different from past GMM-based soft sensors, GMR is directly used for regression. In GMR, data mode 

identification and regression are incorporated into one model, thus there is no need to switch prediction 

model when data mode has changed. Feasibility and efficiency of GMR based soft sensor are validated in 

the fermentation process and TE process. 
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1. INTRODUCTION 

To improve process efficiency and product quality, key 

product variables are essential for process operations like 

process control and optimization in many industrial plants. In 

some cases, the processes often encounter the great challenge 

of lacking accurate real-time measurements of these key 

process variables. Over the past decades, soft sensors have 

been widely used to predict key process variables through 

those that are easy to measure online (Ge, Huang et al. 2013; 

Kaneko and Funatsu 2013; Kim, Okajima et al. 2013). The 

most commonly used soft sensors are the data-driven 

modeling methods, which construct inferential models using 

abundant process measurement data. As a category of data-

driven soft sensors, the multivariate statistical techniques 

such as principal component analysis (PCA)(Jolliffe 2005), 

partial least squares (PLS)(Kim, Okajima et al. 2013), and 

independent component analysis (ICA)(Kaneko, Arakawa et 

al. 2009) are extensively researched and applied to diverse 

processes. This class of methods often extract the variable 

features by projecting the original measurement data onto a 

linear subspace. In addition, machine learning based methods 

like support vector machine(SVM)(Ge and Song 2010) have 

also been successfully applied to soft sensor modeling. 

Though different types of soft sensor modeling techniques 

have been applied for quality prediction, most of them are 

based on the assumption the process data come from a single 

operating region and follow a unimodal Gaussian 

distribution. For complex multiphase and multimode 

processes that are running at multiple operating conditions, 

the basic assumption of multivariate Gaussian distribution is 

not met because of the mean shifts or covariance changes. 

Consequently, data distribution may be complicated with 

arbitrary non-Gaussian patterns. As mixture models can 

represent arbitrarily complex probability density functions, 

they are ideal tools for modeling complex multi-class data 

set. 

The most commonly used mixture model is the Gaussian 

mixture model (GMM). By taking sufficient linear 

combinations of basis single multivariate Gaussian 

distributions, GMM can smoothly approximate almost any 

continuous density to arbitrary accuracy. Thus the state-of-

the-art GMM technique has shown strong ability in dealing 

with non-Gaussian data and been successfully applied in 

fields like speech recognition(Lu, Ghoshal et al. 2013), image 

segmentation(Greggio, Bernardino et al. 2012), and robotic 

learning(Núñez, Rocha et al. 2013) in past researches. With 

respect to the process industrial, GMM is widely utilized for 

multiphase and multimode process monitoring and soft 

sensor. For example, a novel multimode process monitoring 

approach based on finite Gaussian mixture models and 

Bayesian inference strategy is proposed in(Yu and Qin 2008). 

Another application example in the soft sensor area is the 

integration of multiway Gaussian mixture model and 

adaptive kernel partial least squares for online quality 

prediction in(Yu 2012). 

Despite a plenty of applications for GMM, most of them only 

use GMM for classification problems, not for the regression 

ones. Even for soft sensor regression in (Yu 2012), GMM is 

exploited in order to identify and isolate different operating 

phases, then the KPLS models are built for regression in 
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different identified phases. However, the GMM can also be 

extended to solve regression problems, which is denoted as 

Gaussian mixture regression (GMR). A relation model is 

directly constructed between the input and output variables in 

GMR. The detailed implementation of GMR algorithm is 

described in(Sylvain 2009). As mentioned in the paper, GMR 

is easy to implement, and satisfies robustness and smoothness 

criterions that are common to a variety of fields. Although 

the theoretical considerations of GMR were presented two 

decades ago, it has come out with only few applications. This 

is surprising since GMM algorithm has been put into practice 

in various fields. By far, GMR has mainly been utilized in 

area of robot programming by demonstration (PbD) for 

imitation learning of multiple tasks(Calinon, Guenter et al. 

2007; Cederborg, Li et al. 2010). To our best knowledge, this 

method has not been applied in other fields yet. Especially, 

no literature has been found for soft sensor using GMR 

model in chemical process up to now. Therefore, the use of 

GMR in soft sensor framework has yet to be explored. In this 

study, GMR based soft sensor model will be established for 

quality prediction of key variables in chemical process. 

The remaining of this paper is organized as follows. In 

Section 2, the definition of GMM and the EM algorithm for 

parameter estimation are briefly revisited. Then the 

regression derivation the GMM (GMR) is introduced for soft 

sensor in Section 3. In Section 4, the algorithm is validated 

on two application examples: the fermentation process for 

penicillin production and the Tennessee Eastman (TE) 

process. Finally, the conclusions and future directions are 

presented in Section 5. 

2. GAUSSIAN MIXTURE MODEL 

2.1 Introduction to GMM 

 Assuming d
x R to be a d-dimensional data point from a 

single d-dimensional multivariate Gaussian model with 

parameters  ,  ∑ (   is the mean vector and ∑  is the 

covariance matrix), then the probability density function of 

the single Gaussian component is given by 

  11
( | ) exp 1 / 2( ) ( )

(2 )

T

d

f x x x  




   ∑

∑

  (1) 

If x  is from a mixture Gaussian model, then its probability 

density function can be formulated as following(Yu 2012) 
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where K means the number of Gaussian components included 

in GMM, 
k

  is the probabilistic weight of the kth Gaussian 

component and subjects to the equation
1
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model.    1 2 K 1 1 2 2
, , , , , , ,

T

K K
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the total parameters of all the Gaussian components, 

respectively. 

The derivation of the probability density function of GMM 

can also be explained like the following: 

Define the hidden state  0,1
k

z  , where 1
k

z  denotes 

that x is in the kth Gaussian component and vice versa. Hence 

we have 
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Let  1 2
, , ...

K
Z z z z , the joint probability distribution of Z 

and conditional probability distribution of x on Z can 

formulated as 
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The total probability distribution of x is 
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where
1 1 1 2 2 2

{{ , , },{ , , }, { , , }}
K K K

       ∑ ∑ ∑ .It is 

easy to see that formula (5) is equivalent to formula (2). 

Meanwhile, formula (5) is more conducive to the derivation 

of EM algorithm for parameter estimation.  

2.2 EM algorithm for GMM 

To use a GMM, the unknown parameter set  of 

probabilistic weights and model parameters of each Gaussian 

component should be estimated first. Common methods for 

this problem include the maximum likelihood estimation 

(MLE) and expectation maximization (EM). Given a set of 

training samples
1 2

{ , , , }
N

X x x x and their corresponding 

hidden states 1 2 N
{Z , Z , , Z }

T
Z  with its nth entry equal 

to
1 2

{z , z , , z }
n n n n

K
Z   , the likelihood function is  
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The corresponding log-likelihood function is 

 
1 1

log ( , ) {log( ( | )) log }

N K

n

k n k k

n k

L X z f x  
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The parameters are estimated by maximizing the log-

likelihood function. In practice, the EM algorithm is used to 

estimate parameters of the maximum likelihood function. By 

giving an initial parameter set (1)
 and successively applying 

the E step and M step, the EM algorithm can produce a 

sequence of parameters (1) ( 2 ) ( )
{ , , , , }

m
   . The details of 

these two steps are performed as follows(Yu 2012): 
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E-step:  
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where
( ) ( )

( | , )
m j m

k j
z x  denotes the posterior probability of 

the jth training sample with the kth Gaussian component at 

the mth iteration. 
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where ( 1)m

k


 , ( 1)m

k


 , ( 1)m

k


∑ are the probabilistic weight, mean 

and covariance of the kth Gaussian component at the (m+1)th 

iteration, respectively. 

3. GAUSSIAN MIXTURE REGRESSION AND GMR-

BASED SOFT SENSOR 

3.1 Gaussian mixture regression 

This sub-section introduces the derivation of GMR. Assume 

the data sample x in GMM consists of two parts: the input I
x  

and output O
x . Subsequently, the mean and covariance can be 

divided into the input and output parts like the following 
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For a given input variable I
x and its corresponding Gaussian 

component k, O
x obeys the Gaussian distribution. The 

expected distribution of O
x can be defined by 

 
^ ^

( | , ) ~ ( | , )
O I O

kk
p x x k f x x ∑   (11) 
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x and covariance

^
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In fact, we only know the input I
x while the component label 

k is unknown. Considering the complete GMM, the expected 

distribution of output O
x consists of K parts as  
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where
k

h corresponds to the probability that k is responsible 

for I
x . By the Bayes formula, we can get 

k
h  as 
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Finally, given I
x , the expectation and covariance of output 

can be approximated as 
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The detailed derivation of GMR can be found in (Sylvain 

2009). 

3.2 Soft sensor development based on GMR 

The purpose of soft sensor is to build relation models 

between key process variables and easy-to-measure variables 

in industrial process. Obviously, GMR can be used for soft 

sensor modeling in multiphase and multimode processes. We 

assume the process input variables are x, and the output 

variables are y. There are K different operation modes in the 

process. The procedure of GMR for soft sensor can be 

explained as follows: 

Training step: firstly, we combine input variables x and its 

corresponding output variables y into a new variable 

vector T
[  ]

T T
v x y . Assume the probability density 

distribution of v follows the GMM distribution 

 
1

( ) ( ) ( | )

K

k

p v p k p v k
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Then by updating and recalculating the E-step and M-step of 

EM algorithm, the optimal probabilistic weights and 

Gaussian model parameters (described in (10)) can be 

obtained using the training data set. Thus a corresponding 

soft sensor can be constructed.  

Testing step: when a new data sample
new

x comes in, its 

posterior probability and the conditional probability density 

of y on xnew in the kth mode can be obtained by 
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where
^

,new k
y and 

^

,new k∑ can be calculated using (12). Therefore, 

the combined prediction output is given as 
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4. CASE STUDIES 

In this part, two case studies on a simulated fermentation 

process and TE process will be carried out to verify the 

validity and effectiveness of GMR. 

4.1  Fermentation process for penicillin production 

The fermentation process for penicillin production is a 

biochemical batch benchmark extensively used for soft 

sensor and fault diagnosis algorithm. An online simulation 

tool of this process can be found at the website of 

http://simulator.iit.edu/web/pensim/simul.html.The simulator 

contains a fermenter where the biological reaction takes place. 

Fig. 1 shows a flow sheet of the process, and a detailed 

description of the process can be found in reference (Birol, 

Ündey et al. 2002). For different demands, the simulator 

provides several settings including the controller, process 

duration, sampling rates, etc. The settings in this study are 

given as default in the webpage except that the sampling 

interval is 1 hour and the simulation time is 1000 hours. 

 

Fig. 1. The flow sheet of the fermentation process 

Table 1. Input variables in the fermentation process 

No. Variable description Units 

1 Aeration rate L/h 

2 Agitator power W 

3 Substrate feed rate L/h 

4 Substrate feed temperature K 

5 Substrate concentration g/L 

6 Dissolved oxygen concentration g/L 

7 Biomass concentration g/L 

8 Culture volume L 

9 Carbon dioxide concentration g/L 

10 pH — 

11 Fermentor temperature K 

There are totally 16 measured variables in the simulation 

plant. For soft sensor model construction, the penicillin 

concentration is chosen as the output variable. 11 variables, 

which are highly related to it, are selected as the input 

variables. The description of each variable is listed in Table 

1. In this study, a total of 1000 samples are generated. 500 of 

them are used for training set and the remaining for the 

testing set. 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Samples

P
e
n
ic

ill
in

 c
o
n
c
e
n
tr

a
ti
o
n
(g

/L
)

 

Fig. 2. Data characteristic of output variable 

In order to examine the multiphase behavior of the process 

data, the values of output variable are shown in Fig. 2. As can 

be seen from the figure, the entire penicillin fermentation 

process consists of three distinct phases: the lag phase, 

exponential phase and stationary phase. As a single global 

model cannot meet the demand of prediction accuracy, multi-

model method of GMR is necessary.  For performance 

comparison, the GMM-based PLS (GMM-PLS) model has 

also been used for quality prediction. In GMM-PLS 

algorithm, the input and output data are firstly divided into 

different specific blocks using GMM, then different localized 

PLS models are constructed in these blocks, respectively. For 

new testing sample, it is categorized into an individual phase 

through posterior probability calculation based on Bayesian 

inference. After that, output of quality variable is estimated 

using the corresponding localized KPLS model. For 

performance comparison, the root-mean-square error (RMSE) 

criterion is adopted in the following. 

Table 2. RMSE values of different models 

Soft sensors GMR GMM-PLS 

RMSE values 0.0203 0.0257 

To be fair, numbers of Gaussian components in GMM-PLS 

and GMR are both selected as 3. The component number of 

PLS is chosen as 6, which can explain most of the process 

data information. The RMSE values of GMR and GMM-PLS 

based quality predictions are shown in Table 2. It can be seen 

that GMR is superior to GMM-PLS as the RMSE value of 

GMR is smaller than that of GMM-PLS. Furthermore, the 

detailed trend plots of quality variable prediction results in 

the testing data are displayed in Fig. 3. The red and blue lines 

represent the trends of real and predicted values of penicillin 

concentration, respectively. Fig. 3(a) shows the results of 

GMR based soft sensor model while the results of GMM-

PLS based models are exhibited in Fig. 3(b). Though the 

predictive superiority is not obvious here, GMR based soft 

sensor model has more advantages than the GMM-PLS 

model. Firstly, the GMR simultaneously integrates 

classification procedure and regression step into a single 

model, while GMM-PLS takes two steps for soft sensor 

modeling. Secondly, GMR does not need to switch the 

prediction model if the running phase has been changed, 

which means its automation level is higher than that of 

GMM-PLS. 
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Fig. 3 Prediction results of the testing data on the 

fermentation process, (a) GMR, (b) GMM-PLS 

4.2 TE benchmark process 

TE process is a benchmark simulation process, which has 

been extensively used for algorithm testing and performance 

evaluation(Downs and Vogel 1993). It consists of five 

operating units: a reactor, a condenser, a compressor, a 

separator and a stripper. Fig. 4 presents the flowchart of TE 

process.  
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Fig. 4 The flowchart of TE process 

There are 41 measured variables and 12 manipulated 

variables in this process. Among the 41 measured variables, 

there are 19 component variables that are difficult to be 

measured online. For soft sensor purpose, C component in 

the product stream is selected as the output variable. 

Meanwhile, 16 easy to be measured variables are chosen as 

inputs, which are tabulated in Table 3.  

For soft sensor of GMR, six different operation modes are 

simulated. In each operation mode, a total of 2000 data 

samples are collected and equally partitioned into two parts: 

training data and testing data. Then the training data and 

testing data of different operation modes are incorporated, 

respectively. 

Table 3 Input variables in TE process 

No. Input variables No. Input variables 

1 A feed 9 Separator temperature 

2 D feed 10 Separator pressure 

3 E feed 11 Separator underflow 

4 A and C feed 12 Stripper pressure 

5 Recycle flow 13 Stripper temperature 

6 Reactor feed rate 14 Stripper steam flow 

7 
Reactor 

temperature 
15 

Reactor cooling water 

outlet temperature 

8 Purge rate 16 

Separator cooling 

water outlet 

temperature 
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Fig. 5 Data characteristic of 2 input variables 

To examine the multimode behavior of the data, the scatter 

plot of two representative input variables (the first and 8
th

 

input variables) is shown in Fig. 5. It can be seen that the data 

do not obey a single Gaussian distribution. Several typical 

different modes are highlighted in ellipses in the figure.  In 

addition, different modes overlap with each other. Therefore, 

mixture models are necessary to approximate the data 

distribution. 

Again, GMR and GMM-PLS based soft sensor models are 

constructed for quality variable prediction in the TE process.  

Here, K is set to six. Number of latent variables is determined 

as 8. Performance comparisons of the two methods are 

tabulated in Table 4. Similarly, the GMR based soft sensor 

model performs better than the GMM-PLS method as the 

RMSE value of the former is smaller than that of the latter. In 

detail, the prediction results of the two different soft sensor 

models are given in Fig. 6(a) and Fig. 6(b), respectively. 

From the figure, we can see that the predictive results of 

GMR based soft sensor are better than that of GMM-PLS 

based method. The predicted curve matches better with the 
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real curve of C component. Especially, at the switch points 

between different operating modes, the actual values of C 

component are better tracked by GMR based method than 

that of GMM-PLS. Comparison results show that GMR is 

very effective for soft sensor modeling. 

Table 4 RMSE values of different models 

Soft sensors GMR GMM-PLS 

RMSE values 0.3470 0.5322 
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Fig. 6 Prediction results of the testing data on TE process, 

(a) GMR, (b) GMM-PLS 

5.  CONCLUSION 

In the present paper, a new method of GMR based soft sensor 

model is introduced for quality prediction of multiphase and 

multimode processes. Different from other soft sensors for 

these processes, this method can simultaneously address 

cluster identification and regression in one model. Beside, the 

new soft sensor method can provide a predictive distribution 

for the output variables, which can give the uncertainty 

information of soft sensor. Through the fermentation process 

and TE process, the feasibility and efficiency of GMR based 

soft sensor are demonstrated. This is yet a fringe attempt of 

GMR application in soft sensor, further researches on this 

method will be carried out in detail. 
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