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Abstract: Many practical applications, such as the fuel control of a gas turbine engine, can be modeled
by a feedback connection of a linear controller in series with a Hammerstein system, where the
nonlinearity provides a representation of the control element or actuator. An iterative gradient-based
method is proposed to simultaneously identify the nonlinear fuel valve characteristic and a low-order
linear plant model in gas turbine applications that leverages a priori knowledge of both the nonlinearity
and engine dynamics. The identification is a nonlinear prediction error minimization method in a closed-
loop Hammerstein model framework. It is applied to data from a high-fidelity simulation of a 5 megawatt
TaurusT M 60 industrial gas turbine.
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1. INTRODUCTION

The performance of the fuel control system in a gas turbine
engine is critical to maintain stability and achieve performance
targets. A digital feedback controller meters fuel into the com-
bustion chamber using measurements of shaft speed, stage
temperatures, pressures, and power. The fuel control valve(s)
typically possess a nonlinear position to flow area relation-
ship. The control system requires knowledge of this nonlinear
characteristic to accurately regulate fuel flow. Uncertainty or
degradation of the physical fuel valve’s flow characteristic can
lead to instability or operational limitations of turbine engine.
Sources of uncertainty vary from manufacturing variability to
contamination due to sulfur deposits on the valve’s control
surface [Cézac et al. (2008)]. Maximization of machine avail-
ability is essential to operators and the cost of unplanned service
interruption is typically greater than the cost of preventative
maintenance and returning the unit to service. The motivation
of this paper is the identification of uncertainty in a nonlinear
actuator characteristic in closed-loop operation.

Breikin et al. (2004) demonstrated that low-order linear plant
models effectively capture the relationship from fuel flow to
output power and Dai and Wang (2006) presented similar re-
sults for the relationship from fuel flow to shaft speed. Mea-
surement and simulation data are only available from closed-
loop operation. The nonlinear flow control valve, assumptions
on linear behavior of the turbine engine over limited operating
range, and closed-loop data fit nicely into a closed-loop Ham-
merstein model framework. The Hammerstein model structure
comprises an input nonlinearity in series with a linear dynamic
model. This model structure can be used to identify the uncer-
tainty in the actuator nonlinearity and approximate the dynam-
ics of the turbine engine via a linear plant model.

Identification of closed-loop Hammerstein systems has focused
on instrumental variable (IV) based methods as they mitigate
the bias due to the correlation of output noise and the input
and output signals. Laurain et al. (2009) presented an iterative

refined IV identification algorithm for LTI systems and later
for LPV systems [Laurain et al. (2010)]. Han and De Callafon
(2011) applied iterative IV identification to the problem using
piecewise triangle basis functions to parametrize the nonlinear
function. Laurain states that the IV methods provide a good ini-
tialization for use in statistically optimal prediction error meth-
ods that are sensitive to the initialization step. The IV methods
offer consistent parameter estimates on average, although with-
out optimality properties or convergence guarantees.

Prediction error minimization (PEM) methods offer an alter-
native. De Bruyne et al. (1999) developed generalized gra-
dient expressions for prediction error minimization in linear
closed-loop systems and also noted that exact gradient ex-
pressions can be developed for closed-loop nonlinear systems
where the controller is smooth and the system is bounded-
input, bounded-output (BIBO) stable around a stable trajectory.
Van Pelt and Bernstein (2000) used piecewise linear static maps
to parametrize the nonlinearities for system identification in
open-loop and closed-loop Hammerstein frameworks. Naren-
dra and Gallman (1966) applied an iterative gradient descent
algorithm for the open-loop case that motivates the closed-loop
formulation here.

Given that that the input nonlinearity (fuel valve) is smooth and
partially known and linear dynamic models have been shown
to accurately capture the dynamic response of gas turbines over
a small operating range during closed-loop control, there is an
opportunity to expand the application of systematic closed-loop
identification Hammerstein systems. We seek to apply closed-
loop Hammerstein system identification that exploits a priori
knowledge of the input actuator (control valve) for a targeted
identification of uncertainty in the flow characteristic of the
fuel valve and to evaluate the method on a high-fidelity first
principles simulation of a gas turbine generator control system.
Results are presented from closed-loop data from a high-fidelity
simulation of a TaurusT M 60 conventional combustion gas
turbine generator.
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2. PROBLEM FORMULATION

The objective of this paper is to identify a low order linear
dynamic system with possible static nonlinearity in the form of
a Hammerstein model to capture the dynamics of a high-fidelity
nonlinear turbine model with a non-linear, but static fuel valve
characteristic. The nonlinear thermodynamic Matlab/Simulink
model of a gas TaurusT M 60 turbine generator and feedback
control system is used to generate data for use in identification.
The high-fidelity model contains a full model of the Brayton
cycle that includes each stage of the cycle in addition to the full
fuel control, actuator and sensor models. The engine portion
of the simulation used in this discussion, depicted in Figure
1, is comprised of the major engine sub-assembly models, i.e.
compressor, burner, rotor, power turbine and exhaust, and their
interconnections.

Fig. 1. High-fidelity engine simulation implemented in Matlab
/ Simulink.

3. MODEL DESCRIPTION

For the sake of the approximation problem formulated in this
paper, the fuel control of a gas turbine is represented by the
closed-loop BIBO stable nonlinear system model M , shown in
Figure 2. The known controller K(q), and static nominal ac-
tuator mapping f0(·), with output w(t) is explicitly included in
the model. The uncertain static memoryless nonlinearity δ(·), in
the series connection of f0(·) with linear dynamics G(q) jointly
capture any deviation of the fuel valve characteristic from f0(·)
and nonlinear behavior of the gas turbine. The problem is to
identify the unknown nonlinear map δ(·), and linear dynamics
G(q). For identification, an additive and persistently exciting
reference signal is applied to the shaft speed set point r(t). The
data set contains the uniformly sampled input-output signals of
r(t), u(t), and y(t) with sampling time Ts over N samples. Sys-
tem identification applies a two stage iterative gradient-descent
procedure within a prediction error minimization framework to
estimate δ(·) and a low-order linear dynamic plant G(q).

Since δ(·) jointly captures uncertainty in f0(·) and the non-
linearity of the turbine plant, we introduce δw(t) in the series
connection of the static nonlinearity and linear plant dynamics
to be identified. The noise v(t), is assumed as inherent to the
physical system and in this context, the noise model is not
important to the identification objective. Since an output error
(OE) model structure is used for identification, the noise is
assigned a zero mean sequence v(t) ∼ N(0,λ) as a matter of
convention and a noise model is not estimated, i.e. H0(q) = 1.
The signal w(t), represents the flow area of the control valve is
a known function of the controller output u(t) that is given by,

w(t) = f0(u(t)). (1)

Fig. 2. Closed-loop Hammerstein system model M .

To facilitate parameter estimation, δ(·) is approximated by a set
of orthogonal basis functions that allow δw(t) to be written

δw(t) =
M

∑
j=1

ρ j(w(t))µ j. (2)

The linear dynamic process G(q) is the linear time invariant
plant,

G(q) = q−td B(q)
A(q)

, (3)

of polynomials A(q) and B(q), with the time shift operator q−1,
and input time delay td . Similarly, the controller may be written

K(q) =
D(q)
C(q)

. (4)

The following assumptions apply throughout the discussion:

A1: The reference input r(t) is known, control output u(t), and
noisy output y(t) are measured for identification.

A2: The system is closed-loop BIBO stable.
A3: The nominal f0(·) in (1) is a known, monotonic, continu-

ously differentiable function.
A4: The input time delay td , to the linear plant is known.
A5: The reference input r(t), is persistently exciting for the

identification of G(q).

Note: It is not assumed that u(t) excites the full input range of
the static nonlinearity δ(·) and plant. We will specifically use
the series connection of δ(·) and G(q) to identify δ(·) over a
limited range.

4. PARAMETRIZATION

4.1 Static nonlinearity

The nonlinear mapping in (2) is written as a linear combination
of orthogonal basis functions ρ j(w(t)), with weights µ j. The
weighting vector µ, of function δ(·), in this basis is an M-vector
parameter to be identified. The basis uses the grid

m = [ m1 · · · mM ]
T
, (5)

to define the center locations of the basis functions and satisfies
[m1 ≤ w(t)≤ mM], ∀ t ∈ [1..N]. In practice, the entire range of
u(t), and therefore w(t), may not be able to be excited due to
operational constraints on the physical system. The choice of
the M-vector of basis functions ρ(w(t)), is closely related to
the identification objective and structure of the nonlinearity. A
basis that facilitates a good approximation with parsimony in
the parameters is desirable. Han and De Callafon (2011), for ex-
ample, apply a set of piecewise triangular basis functions to the
problem. In this study, we seek specifically to locally identify
δ(·) in the series connection of a smooth valve characteristic
f0(·), and linear dynamics G(q). Lippmann (1991) discusses
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various basis function choices and states that Gaussian bases
excel at characterizing local properties and based on this, a
Gaussian basis is used here. The radial basis functions at grid
node m j, are defined as

ρ j(w(t)) = exp

(
−(w(t)−m j)

2

σ2
j

)
where σ j controls the spread of the basis functions. The choice
of σ j is a design parameter and is taken to be constant. The
center values m j, are taken on a uniformly spaced grid. The
vector of basis functions ρ(w(t)), and parameter µ, are written

ρ(w(t)) = [ ρ1(w(t)) · · · ρM(w(t)) ]T , (6)

µ = [ µ1 · · · µM ]
T (7)

The vector µ, specifies the weights of the basis functions at the
grid points in (5) and δ(w(t)) can be written in vector notation
as

δw(t) = ρ
T (w(t))µ. (8)

4.2 Closed-Loop Model Parametrization

The model G(q) is parameterized by G(q,η) = B(q,η)/A(q,η)
where

A(q,η) = 1+a1q−1 + · · ·+anaq−na ,
B(q,η) = b0 +b1q−1 + · · ·+bnbq−nb .

The stacked plant parameter vector η, is constructed from

ηa = [ a1 · · · ana ]
T
, ηb = [ b0 · · · bnb ]

T

as
η = [ ηa ηb ]

T (9)
The predictor of y(t), using an OE model structure of the linear
plant, is given by

ŷ(t) =
B(q,η)
A(q,η)

ρ
T (ŵ(t− td))µ. (10)

Substituting the expression for w(t) from (1) allows the set of
closed-loop signal relations, from Figure 2 to be written:

M (η,µ)


ŷ(t) =

B(q,η)
A(q,η)

ρT (ŵ(t− td))µ

ŵ(t) = f0(û(t))
û(t) = K(q)(r(t)− ŷ(t))

(11)

The prediction in (10) can be written as a linear combination of
the parameter dependent regressor φT (t,θ), and a non-minimal
parameter θ, as

ŷ(t,θ) = φ
T (t,θ)θ. (12)

The parameter θ, and noise free data regressor ϕ(t,θ), vectors
are written

θ =

[
θa
θbµ

]
and ϕ(t,θ) =

[
ϕa(t,θ)
ϕbµ(t,θ)

]
. (13)

The elements of (13) are given by

θa = [ a1 · · · ana ]
T

θbµ =
[

b0µT · · · bnbµT
]T

,

ϕa(t,θ) = [−ŷ(t−1) · · · −ŷ(t−na) ]
T
,

ϕbµ(t,θ) =
[

ρT (ŵ(t− td))) · · · ρT (ŵ(t− td−nb)
]T

.

(14)

The regressor matrix built from N data samples is given by
Φ

T (θ) =
[

ΦT
a (θ) ΦT

bµ(θ
]

(15)

=

ϕT
a (1,θ) ϕT

bµ(1,θ)
...

...
ϕT

a (N,θ) ϕT
bµ(N,θ)

 ∈ℜ(N×nM ) (16)

where nM = na +(nb +1)M.

5. OPTIMIZATION

5.1 Prediction Error and Objective Function

The prediction error ε(t,θ), is given by

ε(t,θ) = y(t)−ϕ
T (t,θ)θ. (17)

In batch estimation with N data points, the measurement vector
Y , prediction vector Ŷ (θ), and RMS prediction error vector
E(θ) = 1√

N
[Y − Ŷ (θ)], are given by:

Y = [ y(1) · · · y(N) ]
T

Ŷ (θ) = [ ŷ(1,θ) · · · ŷ(N,θ) ]
T

E(θ) =
1√
N
[ ε(1,θ) · · · ε(N,θ) ]

T (18)

We seek θ̂ to minimize the quadratic cost function

V N
OE(θ) =

1
2N

N

∑
t=1

ε
2(t,θ) =

1
2

E(θ)T E(θ). (19)

The minimization of (19) is an OE minimization where V N
OE(θ)

is inherently non-convex in θ due to the dependency of ϕ(t,θ)
in (17) on θ. Furthermore, V N

OE(θ) is over-parameterized in
θ due to the multiplicative elements in θbµ from (14). De-
spite these difficulties, we develop an iterative gradient-based
algorithm that is robust to over-parameterization and ensures
convergence to at least a local minima. Details on the iterative
gradient-based algorithm are presented in the next subsection.

5.2 Dealing With Overparametrization

The non-minimal structure of the parameter θbµ is common to
identification of Hammerstein systems with an arbitrary gain
that must be distributed between the nonlinearity and linear
plant. Bai (1998) presents an optimal rank one method for de-
composing θbµ with freedom to obtain uniqueness in the param-
eters by normalizing ‖bi‖2 or ‖µ j‖ to one and applying a SVD
procedure. While this yields a unique estimate, it might not
conform to physical reality. In our analysis, we seek to identify
a local range of δ(·) and dynamic plant model, and will achieve
uniqueness of the parameter estimates by constraining a single
function value of δ(·). The excitation is additive and symmetric
about a constant speed reference r0. This corresponds to a
steady-state operating point [r0,u0,w0,y0]. Define ū(t) = u0 and
with (1), define the grid (5) such that it contains a central grid
point mi = w̄(t) = f0(ū(t)) and set δ(w̄(t)) = 0. This constraint
allows us to use a priori knowledge of f0(·) within the model
structure as it corrects for the nonlinearity as the system moves
from the operating point. This allows the linear dynamic plant
to capture the steady state gain as well as the dynamics of the
physical system. In addition, this enables the comparison of δ(·)
from successive batches of data.

From the definition of the parameter vector in (13), we define
an auxiliary parameter matrix

Γ,


b0µ1 b0µ2 · · · b0µM
b1µ1 b1µ2 · · · b1µM

...
...

. . .
...

bnbµ1 bnbµ2 · · · bnbµM

 .
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The optimal rank one estimate of the parameter vectors η̂b and
µ̂ from the parameter estimate θ̂T

bµ, are obtained by minimizing

[µ̂, η̂b] = argmin
µ∈ℜM , ηb∈ℜ

nb+1
||Γ− Γ̂(θT

bµ)||2, (20)

where Γ̂(θ̂T
bµ) is assembled using the blockvec operator as

Γ̂(θ̂T
bµ) =blockvec(θ̂bµ)

=


θ̂T

bµ(1 : M)

θ̂T
bµ(M+1 : 2M)

...
θ̂T

bµ(nbM+1 : (nb+1)M)

 .
To assert the constraint δ(w̄(t)) = 0, first set an initial value of
b̂0 = 1 and µ̂0 = θ̂T

bµ(1 : M), which gives δ̂0(w(t)) = ρT (w(t))µ̂0

and δ̂0(w̄) = ρT (w̄)µ̂0. Define Ω as the mapping of M points in
[ w1 · · ·wM ] within the range [m1,mM] as

Ω =

 ρ1(w1) · · · ρM(w1)
...

. . .
...

ρ1(wM) · · · ρM(wM)

 ∈ℜ
(MxM). (21)

A unique inverse of Ω is guaranteed to exist by its construction
as an orthogonal set of basis functions. If the correction

µ̂ = µ̂0−Ω
−1

δ̂0(w̄) (22)
is applied to the weighting parameter vector, then δ(w(t)) =
ρT (w(t))µ̂ satisfies δ(w̄(t)) = 0 and b̂i is updated using µ̂ as

b̂i =
µ̂T Γ̂(i, :)

µ̂T µ̂
, (23)

where the ith row of the Γ̂ matrix is Γ̂(i, :) in this notation. For
an estimate θ̂N , η̂a, η̂b, and µ̂ are created from (9), and (7)
respectively.

5.3 Initialization

The cost function in Eqn. (19) will likely contain multiple
local minima, which stresses the importance of a good initial
parameter estimate. Define n∗a and n∗b as such that the linear
plant model G(q, η̂) capture the plant dynamics. Breikin et al.
(2004) offers insight that first order linear models perform
adequately around local operating points. For initialization, we
increase the orders of na and nb to minimize the bias from the
nonlinear distortions and unmodeled dynamics on the dynamic
plant in the initialization. Define ne as the model order increase
such that the orders of the initial estimate follow na,0 = n∗a +ne
and nb,0 = n∗b +ne while the parameter µ retains dimension M.
A least squares initial estimate θ̂N

0 , is calculated generate η̂0and
µ̂0.

A subsequent model reduction via singular perturbation proce-
dure applied to G(q, η̂0) to generate a new linear plant estimate
η̂1 of orders n∗a and n∗b [Liu and Anderson (1989)]. Subse-
quently, θ̂N

1 is constructed with µ̂0 and η̂1.

The model order reduction reduces the computational expense
of the iterative gradient descent algorithm due to the significant
reduction in parameters. The matrix inverse in the iterative up-
date, detailed in the next section, dominates the computational
cost and is of order O(n3

M ). The model reduction enables the
use a high order initial estimate, while reducing the cost of each
subsequent iteration by O((neM+ne)

3).

5.4 Iterative Gradient Descent Estimation

The iterative gradient descent algorithm requires a parameter
estimate θs, and gradient of the cost function (19) with respect
to the parameter estimate, at each iteration step s. The gradient
is commonly defined as Ψ(θ) = −∇θV N(θ). The non-minimal
parametrization contains multiplicative elements of ηb and
µ. To relax the parametrization’s constraint on the gradient
direction we apply a two-step parameter update procedure. The
procedure first takes an iteration step in the µ direction, with η

held constant, that generates θ̂µ,s, and a step in the η direction,
with µ held constant, that generates θ̂s+1. The gradient descent
estimation requires that the cost function gradients Fµ(θ̂s) and
Fη(θ̂s), to be calculated at each iteration step.

Gradient Expressions The gradient expressions for Fµ(θ̂s)

and Fη(θ̂s) are developed in the following two lemmas. The
gradient is simply a function of theta, and the evaluation of the
gradient at θ̂s is found by substitution of θ = θ̂s.
Lemma 1. The gradient of the cost function (19) with respect
to µ, with η held constant, is given by

Fµ(θ) =− ∇µV N(θ)
∣∣
η
= Ψ

T
µ (θ)E(θ), (24)

where ∇µ =
[

∂

∂µ1
· · · ∂

∂µM

]
and Ψµ(θ) is the gradient of the

prediction error vector ∇µE(θ). For a time sample t,

ψµ(t,θ) =
[

∂ŷ(t)
∂µ1
· · · ∂ŷ(t)

∂µk
· · · ∂ŷ(t)

∂µM

]
(25)

and Ψµ(θ) ∈ℜ(N×M) is written

Ψµ(θ) =
1√
N

[
ψT

µ (1,θ) · · · ψT
µ (N,θ)

]T
. (26)

The prediction error gradient Ψµ(θ), is calculated by filtering
ŵ(t) using the parameters µ, η, and closed-loop signal relations
from (11).

Proof. With [r(t), û(t), ŵ(t), ŷ(t)] defined in (11),
∂ŷ(t)
∂µk

∣∣∣∣
η

=
1

A(q,η)
∂ŷ(t)
∂µk

+
B(q,η)
A(q,η)

ρ
T (ŵ(t− td)) (27)

+
B(q,η)
A(q,η)

(
∂ρT (ŵ(t− td)

∂ŵ(t− td))
∂ŵ(t− td)

∂µk

)
µ.

With ŵ(t) defined in (1),
∂ŵ(t)
∂µk

=−
(

∂ f0(û(t))
∂û(t)

)(
D(q)
C(q)

)(
∂ŷ(t)
∂µk

)
, (28)

and

∂ρT (ŵ(t))
∂ŵ(t)

=− 2
σ2

 (ŵ(t)−m1)ρ1(ŵ(t))
...

(ŵ(t)−mM)ρM(ŵ(t))


T

, (29)

for [m1 < ŵ(t) < mM]. With ŵ(t), (29) can be calculated from
t = 0,1, · · · ,N and ψµ(t) is then be calculated with (27) and
(28) to assemble Ψµ(θ).
Lemma 2. The gradient of the cost function (19) with respect
to η, with µ held constant, is given by

Fη(θ) =− ∇ηV N(θ)
∣∣
µ = Ψ

T
η(θ)E(θ) (30)

where

∇η =
[

∂ŷ(t)
∂a1
· · · ∂ŷ(t)

∂ana

∂ŷ(t)
∂b0
· · · ∂ŷ(t)

∂bM

]
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and Ψη(θ) is the gradient of the prediction error vector ∇ηE(θ).
For a time sample t,

ψη(t,θ) = ∇ηŷ(t) =
[

∂ŷ(t)
∂a1
· · · ∂ŷ(t)

∂ana

∂ŷ(t)
∂b0
· · · ∂ŷ(t)

∂bM

]
, (31)

and Ψη(θ) ∈ℜ(N× (na +nb +1)) is written

Ψη(θ) =
1√
N
[ ψη(1) · · · ψη(N) ]

T
. (32)

The prediction error gradient Ψη(θ), is calculated by filtering
ŵ(t) using the parameters µ, η, and closed-loop signal relations
from (11).

The proof of Lemma 2 follows the same format as Lemma 1
and is omitted due to space constraints.

Iterative Parameter Update: The parameter update is written
in terms of an iteration step in the µ direction that generates
θ̂µ,s, and a step in the η direction that generates θ̂s+1, using the
gradient expressions (26) and (32) and prediction error in (18).
Using the subscript s to denote the iteration step,

θ̂µ,s = θ̂s− γ(θ̂s)Nµ(θ̂s)
−1Fµ(θ̂s), (33)

θ̂s+1 = θ̂µ,s− γ(θ̂µ,s)Nη(θ̂µ,s)
−1Fη(θ̂µ,s), (34)

where Nµ(θ̂s) and Nη(θ̂s) are approximations of the Hessians
given by,

Nµ(θ̂s) =
[
I +Ψµ(θ̂s)γ(θ̂s)Ψ

T
µ (θ̂s)

]
,

Nη(θ̂µ,s) =
[
I +Ψη(θ̂µ,s)γ(θ̂µ,s)Ψ

T
η(θ̂µ,s)

]
.

In the parameter updates γ(θ̂µ,s) and γ(θ̂η,s) are the Levenberg-
Marquardt step sizes. Fµ(θ̂s) and Nµ(θ̂s) are calculated via (24)
to update θ̂µ,s. Then new estimates of ûµ,s(t) and ŷµ,s(t) are
generated via (11). Fη(θ̂s) and Nη(θ̂s) are calculated using
ûµ,s(t) and ŷµ,s(t) and (30). The parameter update θ̂s+1 is
calculated via (33). The two-step parameter updates in (33)
are repeated until the parameter converges using the stopping
criterion, for a user defined τ by,

‖θ̂s− θ̂s−1‖/‖θ̂s−1‖> τ. (35)

6. EXPERIMENTAL RESULTS

We apply the proposed procedure to closed-loop time domain
data from a first principles dynamic simulation of a 5 megawatt
TaurusT M 60 simple-cycle conventional combustion gas tur-
bine. In this experiment, the gas turbine is driving an electric
generator for power generation in an “island mode” opera-
tion. In island mode, the frequency, and therefore shaft speed
varies, as there is no utility grid to regulate the frequency. The
fuel control is operating in closed-loop to maintain the output
frequency at 60Hz (r0 = 100[%]). The system is uniformly
sampled at 10Hz and for a total of 16384 data samples of the
shaft speed reference input r(t) in [%], controller output u(t) in
[%], and shaft speed y(t) in [%] are recorded. Each experiment
used N = 8184 data points for identification and N = 8184 for
validation. The excitation is an additive band-limited uniformly
distributed noise signal re(t) ∈ [−4, 4 ] chosen to excite a sig-
nificant span of the fuel valve’s command input range such that
r(t) = r0 + re(t).

The nominal fuel valve characteristic f0(·) is a 4th order poly-
nomial with known coefficients αp, and the contamination is
represented by ∆ f that has been constructed to represent an
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Fig. 3. (Top) Comparison of shaft speed y(t) from first princi-
ples simulation and ŷ(t, θ̂N

s ) for n∗a = 3 and n∗b = 2. (Bot-
tom) Estimation error ε(t, θ̂s).

approximate 10% reduction in the local flow area around a
command of 55 and 60%.

f0(·) =
4

∑
p=1

αpu(t)p
∆ f = κi exp

(
−(u(t)−ci)

2

χi

)
κi = [0.02,0.03], ci = [55,60], χi = [20,10]

In the estimation there are several design parameters avail-
able to the user, those related to identification of the linear
dynamics

[
n∗a,n

∗
b,ne

]
, and those related to identification of the

nonlinearity,[m,σ]. Table 1 compares the performance for vari-
ation in the linear plant parametrization.

Figure 3 demonstrates the prediction accuracy of the low-order
model,θ̂N

s , of shaft speed and the frequency response is of the
identified linear plant is compared to the frequency response
function (FRF) of the first principles simulation data in Figure
4 for . Identification of the nonlinearity δ(·), is demonstrated in
Figure 5 for an uncontaminated fuel valve and a contaminated
fuel valve.

σ = 0.35
N s n∗a n∗b ne M V N(θ)

θ̂N
0 8192 0 3 2 5 9 0.302

θ̂N
s 8192 5 3 2 0 9 0.214

θ̂N
0 8192 0 3 2 3 9 0.423

θ̂N
s 8192 10 3 2 0 9 0.314

θ̂N
0 8192 0 3 2 1 9 0.433

θ̂N
s 8192 10 3 2 0 9 0.343

Table 1. Experimental results illustrating the bene-
fit of the high order initializion on V N(θ) and the

number of iterations required for convergence.

7. CONCLUSION

The discussion demonstrates that a low-order linear dynamic
model within a Hammerstein model structure successfully cap-
tures the nonlinear behavior of a full nonlinear model of a gas
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Fig. 4. Frequency Response Estimates for (Input) δ̂w(t) (Out-
put) - Shaft Speed y(t) for the FRF and magnitude plots
of (Input) - δ̂w(t) and (Output) - ŷ(t) of initial high-order
G(θ̂N

0 ) and low-order G(θ̂N
s ) resembling the FRF.
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Fig. 5. Identified δ(·) for perfect knowledge of the fuel valve
characteristic f (·) = f0(·) (solid, © marker) and a con-
taminated fuel valve f (·) = f0(·)+∆ f (dashed,�marker).

turbine. The high-order parameter initialization and subsequent
model reduction procedure allows for a superior initial estimate
and parsimonious linear dynamic plant model compared to
methods where the model orders are held constant. The gradient
expressions are presented for the closed-loop system may be
used in a variety of optimization methods and nonlinearities
that may be approximated with a continuously differentiable
function. The approach to this specific problem should read-
ily extend to many applications where the system design is
well understood and similar condition monitoring objectives are
needed. This excitation level used in the simulation example is
typically not achievable in practice, although the use of simu-
lation to provide benchmark models for use on physical plants

in operation shows promise. The low order linear plant models
produced in this algorithm are realistic for use in operation with
lower levels of excitation. The iterative procedure is effective
at computing a low-order linear model in the Hammerstein
framework and while it is computationally intensive, with new
estimates of the noise free signal estimates as well as gradient
updates at each step, it is less computationally demanding than
computing the gradients using the non-minimal parametriza-
tion.
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