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Abstract: This paper considers the problem of inferring the structure and dynamics of an
unknown network driven by unknown noise inputs. Equivalently we seek to identify direct causal
dependencies among manifest variables only from observations of these variables. We consider
linear, time-invariant systems of minimal order and with one noise source per manifest state. It
is known that if the transfer matrix from the inputs to manifest states is minimum phase, then
this problem has a unique solution, irrespective of the network topology. Here we consider the
general case where the transfer matrix may be non-minimum phase and show that solutions are
characterized by an Algebraic Riccati Equation (ARE). Each solution to the ARE corresponds
to at most one spectral factor of the output spectral density that satisfies the assumptions made.
Hence in general the problem may not have a unique solution, but all solutions can be computed
by solving an ARE and their number may be finite.

Keywords: Linear networks, Closed-loop identification, Identifiability, Noise power spectrum,
Biological networks

1. INTRODUCTION

Many phenomena are naturally described as networks of
interconnected dynamical systems and the identification
of the dynamics and structure of a network has recently
become an important problem. Given a model class, the
problem is typically underdetermined and additional as-
sumptions on the network structure are made, such as
sparsity or restriction to particular topologies. We focus
here on Linear, Time-Invariant (LTI) systems, for which
there are still many interesting theoretical questions out-
standing, and leave the network structure unrestricted.

Gonçalves and Warnick (2008) characterized identifiability
in the deterministic case where targeted, known inputs
may be applied to the network. In practice however, and
often in biological applications, these types of experiments
are not possible or are expensive to conduct. One may
simply be faced with the outputs of an existing network
driven by its own intrinsic variation. This problem has
been considered in various forms in the literature.

In Shahrampour and Preciado (2013) for example, net-
works of known, identical subsystems are treated, which
can be identified using an exhaustive grounding procedure
similar to that in Nabi-Abdolyousefi and Mesbahi (2012).
Materassi and Salapaka (2012a) present a solution for
identifying the undirected structure for a restricted class of
polytree networks; and in Materassi and Salapaka (2012b)
for “self-kin” networks. In Van den Hof et al. (2013) the
problem is posed as a closed-loop system identification
problem for a more general, but known, topology; and in
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Dankers et al. (2012), the authors claim that their method
can also be applied to networks with unknown topology.

In all of the above-cited work, the intrinsic variation is
modeled as unknown noise sources applied only to the
states that are measured. Whilst being an unrealistic as-
sumption in some applications, this input requirement was
shown in Gonçalves and Warnick (2008) to be necessary for
solution uniqueness even in the deterministic case. Under
this assumption, in Hayden et al. (2014) we characterized
all minimal solutions to this problem for minimum-phase
transfer matrices with the result that both the network
topology and dynamics are uniquely identifiable. Here we
extend this approach to include all transfer matrices, in
which case the solution is not necessarily unique.

Section 2 provides necessary background information on
spectral factorization, structure in LTI systems and the
network reconstruction problem. The main results are then
presented in Section 3, followed by some discussion and a
numerical example. Conclusions are drawn in Section 4.

Notation

Denote by A(i, j), A(i, :) and A(:, j) element (i, j), row i
and column j respectively of matrix A. For a matrix A with
block (i, j) given by aij , define a

(k)
ij as block (i, j) of Ak.

Denote by AT the transpose of A and by A∗ the conjugate
transpose. We use I and 0 to denote the identity and
zero matrices with implicit dimension, where ei := I(:, i),
and diag(a1, . . . , an) to denote the diagonal matrix with
diagonal elements a1, . . . , an. We use standard notation to
describe linear systems and omit the dependence on time
t or Laplace variable s when the meaning is clear. We also
define a signed identity matrix as any square, diagonal
matrix J that satisfies J(i, i) = ±1.
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2. PRELIMINARIES

2.1 Spectral Factorization

Consider systems defined by the following Linear, Time-
Invariant (LTI) representation:

ẋ = Ax+Bu

y = Cx+Du
(1)

with input u(t) ∈ Rm, state x(t) ∈ Rn, output y(t) ∈ Rp,
system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m and transfer function:

G(s) = C(sI −A)−1B +D

Make the following assumptions:
Assumption 1. The matrix A is Hurwitz.
Assumption 2. The system is driven by unknown white
noise u(t) with covariance E[u(t)uT (τ)] = Iδ(t− τ).
Assumption 3. The system (A,B,C,D) is globally mini-
mal.

The meaning of Assumption 3 is explained below. From
y(t), the most information about the system that can be
obtained is the output spectral density:

Φ(s) = E[Y (s)Y ∗(s)] = G(s)G∗(s)

The spectral factorization problem (see for example Youla
(1961)) is that of obtaining spectral factors G′(s) that
satisfy: G′G′∗ = Φ. Note that the degrees of two minimal
solutions may be different; hence the following definition.
Definition 1. (Global Minimality). For a given spectral
density Φ(s), the globally-minimal degree is the smallest
degree of all its spectral factors.

Any system of globally-minimal degree is said to be
globally minimal. Anderson (1969) provides an algebraic
characterization of all realizations of all spectral factors as
follows. Given Φ(s), define the positive-real matrix Z(s)
to satisfy:

Z(s) + Z∗(s) = Φ(s) (2)

Minimal realizations of Z are related to globally-minimal
realizations of spectral factors of Φ by the following lemma.
Lemma 1. (Anderson (1969)). Let (A,Bz, C,Dz) be a min-
imal realization of the positive-real matrix Z(s) of (2),
then the system (A,B,C,D) is a globally-minimal realiza-
tion of a spectral factor of Φ if and only if the following
equations hold:

RAT +AR = −BBT

RCT = Bz −BDT

2Dz = DDT

(3)

for some positive-definite and symmetric matrix R ∈ Rn×n.

This result was used by Glover and Willems (1974) to
provide conditions of equivalence between any two such
realizations.
Lemma 2. (Glover and Willems (1974)). If (A,B,C,D)
and (A′, B′, C ′, D′) are globally-minimal systems, then
they have equal output spectral density if and only if:

A′ = T−1AT (4a)
C ′ = CT (4b)

SAT +AS = −BBT + TB′B′TTT (4c)
SCT = −BDT + TB′D′T (4d)
DDT = D′D′T (4e)

for some invertible T ∈ Rn×n and symmetric S ∈ Rn×n.

For any two systems that satisfy Lemma 2 for a particular
S, all additional solutions for this S may be parameterized
by Corollary 1. This is adapted from Glover and Willems
(1974) where it was stated for minimum-phase systems.
Corollary 1. If (A,B,C,D) and (A′, B′, C ′, D′) satisfy
Lemma 2 for a particular S, then all systems that also
satisfy Lemma 2 with (A,B,C,D) for the same S are given
by:

(T ′A′T ′−1, T ′B′U,C ′T ′−1, D′U)

for some invertible T ′ ∈ Rn×n and orthogonal U ∈ Rm×m.

2.2 Structure in LTI Systems

We now suppose that there is some unknown underlying
system (A0, B0, C0, D0) with transfer function G0 and we
wish to obtain some information about this system from its
spectral density Φ0. Clearly from Lemma 2 and Corollary 1
its transfer function can only be found up to some choice of
orthogonal U and symmetric S. Even given G0, the system
matrices can clearly only be found up to some change in
state basis. Hence the following assumption is made:
Assumption 4. The matrices C = [I 0] and D = 0.

The form of C implies a partitioning of the states into
manifest variables which are directly observed and latent
variables which are not. The form of D restricts the sys-
tems to be strictly proper, and hence causal. For this
class of systems we seek to identify causal dependencies
among manifest variables, defined in Gonçalves and War-
nick (2008), as follows.

Partition (1) under Assumption 4:[
ẏ
ż

]
=

[
A11 A12

A21 A22

] [
y
z

]
+

[
B1

B2

]
u, y = [I 0]

[
y
z

]
(5)

where z(t) ∈ Rl are the l = n − p latent states. Taking
the Laplace transform of (5) and eliminating Z yields
sY = WY + V U , for proper transfer matrices:

W := A11 +A12 (sI −A22)
−1

A21

V := B1 +A12 (sI −A22)
−1

B2

(6)

Define WD := diag(W (1, 1), . . . ,W (p, p)) and subtract
WDY from both sides to give Y = QY + PU , where

Q := (sI −WD)
−1

(W −WD)

P := (sI −WD)
−1

V
(7)

are strictly-proper transfer matrices of dimension p × p
and p×m respectively. Note that Q is constructed to have
diagonal elements equal to zero (it is hollow).
Definition 2. (Dynamical Structure Function). Given any
system (1) under Assumption 4, the Dynamical Structure
Function (DSF) is defined as (Q,P ), where Q and P are
given in (7).
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The DSF defines a digraph with only the manifest states
and inputs as nodes. There is an edge from Y (j) to Y (i) if
Q(i, j) ̸= 0; and an edge from U(j) to Y (i) if P (i, j) ̸= 0.
In this sense, the DSF characterizes causal relations among
manifest states Y and inputs U in system (1). The transfer
function G is related to the DSF as follows:

G = (I −Q)−1P (8)

where, given G, the matrices Q and P are not unique in
general, hence the following definition is made.
Definition 3. (Consistency). A DSF (Q,P ) is consistent
with a transfer function G if (8) is satisfied.

The relationship between state space, DSF and transfer
function representations is illustrated in Figure 1, which
shows that a state-space realization uniquely defines both
a DSF and a transfer function. However, multiple DSFs
are consistent with a given transfer function and a given
DSF can be realized by multiple state-space realizations.

All realizations of a particular G are parameterized by the
set of invertible matrices T ∈ Rn×n. A subset of these will
not change the DSF as follows.
Definition 4. ((Q,P)-invariant transformation). A state
transformation T of system (A0, B0, C0, D0) with DSF
(Q0, P0) is (Q,P )-invariant if the transformed system:

(TA0T
−1, TB0, C0T

−1, D0)

also has DSF (Q0, P0).

The blue region in Figure 1(a) is the set of all (Q,P )-
invariant transformations of (A0, B0, [I 0] , 0).

2.3 Network Reconstruction

The network reconstruction problem was cast in Gonçalves
and Warnick (2008) as finding exactly (Q0, P0) from G0.
Since in general multiple DSFs are consistent with a given
transfer function, some additional a priori knowledge is
required for this problem to be well posed. It is common
to assume the following structure of P .
Assumption 5. The matrix P is square, diagonal and full
rank.

This is a standard assumption in the literature (Shahram-
pour and Preciado (2013); Materassi and Salapaka (2012b);
Van den Hof et al. (2013)) and equates to knowing that
each of the manifest states is directly affected only by one
particular input. The following theorem is adapted form
Corollary 1 of Gonçalves and Warnick (2008):
Theorem 1. (Gonçalves and Warnick (2008)). There is at
most one DSF (Q,P ) with P square, diagonal and full
rank that is consistent with a given transfer function G.

Given a G0 for which the generating system is known to
have P0 square, diagonal and full rank, one can therefore
uniquely identify the “true” DSF (Q0, P0).

2.4 A Realization for Diagonal P

The presence of latent states allows some freedom in the
choice of realization used to represent a particular DSF.
It will be convenient to use a particular form for systems
with P square, diagonal and full rank, defined here.

..

(a)

.

(b)

.

(c)

.

State space

.

DSF space

.

TF space

.

G0

.

(Q0, P0)

.

(A0, B0, [I 0], 0)

Fig. 1. Pictorial representation of relationship between state space,
DSF space and transfer function space for a particular system
(A0, B0, [I 0], 0). In (a) is contained the set of state transforma-
tions of this system by matrices T that preserve C0 = [I 0]; in
red is the particular realization with T = I and in blue the set
of realizations with the same DSF (Q0, P0). In (b) is the set of
all DSFs that have realizations in (a); in blue is the particular
DSF (Q0, P0). In (c) is the single transfer function G0, with
which are consistent all DSFs in (b) and which can be realized
by all realizations in (a).

Lemma 3. The matrix V (and hence P ) is diagonal if and
only if the matrices:

B1 and A12A
k
22B2

for k = 0, 1, . . . , l − 1 are diagonal, where l = dim(A22).

The proof is omitted but follows from expressing V in
(6) as a Neumann series and making use of the Cayley-
Hamilton Theorem. It is clear that P is diagonal if and
only if V is. Then without loss of generality, we may order
the manifest states of any system (A0, B0, C0, D0) with
P0 square, diagonal and full rank such that it can be
transformed using (Q,P )-invariant transformations into
one in the following form (see Hayden et al. (2013)).
Lemma 4. Any DSF (Q,P ) with P square, diagonal and
full rank has a realization with A12, A22, B1 and B2 as
follows:

[
A12 B1

A22 B2

]
=



0 0 I 0 0 0 0
0 γ22 0 0 0 0 0
× × × γ34 0 0 B22

× × × α14 I 0 0
× × × α24 0 I 0
α31 0 × α34 0 0 0
× × × α44 0 0 0


(9)

where B22 ∈ Rp3×p3 and γ22 ∈ Rp2×p2 are square, diagonal
and full rank and × denotes an unspecified element.
The dimension of B1 is p = p1 + p2 + p3 and the matrix
α31 ∈ Rp1×p1 is square and diagonal but not necessarily
full rank. The matrix A22 satisfies the following property
for i = 1, . . . , p1:

α31(i, :) = α
(2)
31 (i, :) = · · · = α

(ki−1)
31 (i, :) = 0T

α
(ki)
31 (i, :) = α

(ki)
31 (i, i)eTi ̸= 0T

α
(ki)
34 (i, :) = 0T

for some ki such that 0 < ki < l, where l = dim(A22) and
α
(k)
ij denotes block (i, j) of Ak

22.

The proof is omitted but follows by applying state trans-
formations to the original system and showing that the
transformed system still satisfies Lemma 3. From Theorem
1 any state transformation that preserves P diagonal is
(Q,P )-invariant.
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3. NETWORK RECONSTRUCTION BY SPECTRAL
FACTORIZATION

Given an underlying system (A0, B0, C0, D0) with DSF
(Q0, P0), transfer function G0 and output spectral density
Φ0 under Assumptions 1 - 5, we seek to identify (Q0, P0)
from Φ0. From Theorem 2 of Hayden et al. (2014) we know
that G0J , and hence (Q0, P0J), can be found up to a choice
of signed identity matrix J from Φ0 if G0 is minimum
phase. Using Corollary 1 we can extend this as follows.
Corollary 2. If two systems (A,B,C,D) and
(A′, B′, C ′, D′) under Assumptions 1 - 5 with DSFs (Q,P )
and (Q′, P ′) satisfy Lemma 2 for a particular S, then
all additional systems that also satisfy Lemma 2 with
(A,B,C,D) for the same S have DSFs:

(Q′, P ′J)

for some signed identity matrix J . Each solution S to
Lemma 2 therefore corresponds to at most one solution
for the DSF (Q′, P ′J) for some choice of J .

In this section we prove that for a given system (A,B,C,D),
solutions S to Lemma 2 can be partitioned into two parts:
the first must be zero and the second must solve an
Algebraic Riccati Equation (ARE) whose parameters are
determined only by the original system.

3.1 Main Results

The main result is obtained by evaluating solutions to
Lemma 2 for any two realizations that satisfy Assumptions
1 - 5 and are in the form of Lemma 4. Immediately (4)
yields:

A′ = T−1AT (10a)
B′

1B
′T
1 = B1B

T
1 (10b)

A12S2 = B1B
T
1 T

T
1 (10c)

S2A
T
22 +A22S2 = −B2B

T
2 + T1B1B

T
1 T

T
1 (10d)

+ T2B2B
T
2 T

T
2

where

S =

[
0 0
0 S2

]
and T =

[
I 0
T1 T2

]
(11)

with S2 ∈ Rl×l, T1 ∈ Rl×p and T2 ∈ Rl×l. We can further
partition S2 as follows.
Lemma 5. For any two systems (A,B,C,D) and
(A′, B′, C ′, D′) in the form of Lemma 4 that satisfy As-
sumptions 1-5 and Lemma 2, the matrix S2 in (11) satis-
fies:

S2 =

[
0 0
0 s22

]
where s22 ∈ R(l−p)×(l−p).

Proof. The proof is given for the case where p3 = p2 = 0,
for which the notation is considerably simpler. The proof
of the general case follows in exactly the same manner. In
this case, (9) simplifies to:[

A12 B1

A22 B2

]
=

 0 I 0 0
× × α14 I
α31 × α34 0
× × α44 0

 (12)

Equations (10c) and (10d) now simplify to:
A12S2 = 0 (13a)
S2A

T
22 +A22S2 +B2B

T
2 − T2B2B

T
2 T

T
2 = 0 (13b)

from which S2 and T2B2 are required to be in the following
forms, partitioned as A22 and B2:

S2 =

s11 0 s12
0 0 0
sT12 0 s22

 and T2B2 =

[
t1
0
t3

]
(14)

We will now prove by induction that we must have s11 = 0
and s12 = 0 to satisfy (13) for any valid choice of T2.

Hypothesis

Recall that for i = 1, . . . , p1, the number ki is the
smallest value of j in the range 0 < j < l such that
α
(j)
31 (i, i) ̸= 0. Hypothesize that the following statement

holds for i = 1, . . . , p1 and for all j = 1, . . . , ki − 1:

α
(j)
34 (i, :)s

T
12 = 0T

α
(j)
34 (i, :)s22 = 0T

(15)

Base case: j = 1

Multiply (13b) by A12(i, :) on the left for some i in the
range 1 ≤ i ≤ p1 with ki > 1:

A12(i, :)S2A
T
22 +A12(i, :)A22S2

+A12(i, :)B2B
T
2 −A12(i, :)T2B2B

T
2 T

T
2 = 0T

and note that directly from (12) and (14) terms one, three
and four are zero. Hence we have:

A12(i, :)A22S2 = 0T (16)

Since α31(i, :) = 0T (because ki > 1), (16) gives:
α34(i, :)s

T
12 = 0T and α34(i, :)s22 = 0T

The hypothesis (15) therefore holds for j = 1 for all
i = 1, . . . , p1 with ki > 1.

Induction

Suppose for some i in the range 1 ≤ i ≤ p1 with ki > k,
the hypothesis holds for j = k − 1. This implies that:

α
(k−1)
34 (i, :)sT12 = 0T and α

(k−1)
34 (i, :)s22 = 0T (17)

Now show that the hypothesis is satisfied for j = k as
follows. First multiply (13b) on the left by A12(i, :)A

k−1
22

to give:
A12(i, :)A

k−1
22 S2A

T
22 +A12(i, :)A

k
22S2

+A12(i, :)A
k−1
22 B2B

T
2

−A12(i, :)A
k−1
22 T2B2B

T
2 T

T
2 = 0T

(18)

Since α
(k−1)
31 (i, :) = 0T , the expression A12(i, :)A

k−1
22 S2

is equal to zero from (17) and hence the first term in
(18) is equal to zero. The third term is also zero due to
α
(k−1)
31 (i, :) = 0T . The remaining two terms give:

α
(k)
34 (i, :)sT12 − α

(k−1)
34 (i, :)t3t

T
1 = 0T (19a)

α
(k)
34 (i, :)sT22 − α

(k−1)
34 (i, :)t3t

T
3 = 0T (19b)
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where we have used the fact that α
(k)
31 (i, :) = 0T since

ki > k. Now multiply (19b) on the right by α
(k−1)
34 (i, :)T ,

which, from (17), gives:

α
(k−1)
34 (i, :)t3t

T
3 α

(k−1)
34 (i, :)T = 0

which implies α
(k−1)
34 (i, :)t3 = 0T . This eliminates all T2

terms from (19), giving the desired result:

α
(k)
34 (i, :)sT12 = 0T and α

(k)
34 (i, :)sT22 = 0T

By induction the hypothesis (15) therefore holds for all
i = 1, . . . , p1 for j = 1, . . . , ki − 1.

Termination

To show that s11 and s12 must be equal to zero, multiply
(13b) on the left by A12(i, :)A

ki−1
22 for any i such that

1 ≤ i ≤ p1. Recall that:

α
(ki)
31 (i, :) = α

(ki)
31 (i, i)eTi ̸= 0

α
(ki)
34 (i, :) = 0T

and hence the equivalent of (19) is:

α
(ki)
31 (i, i)s11(i, :)− α

(ki−1)
34 (i, :)t3t

T
1 = 0T (20a)

α
(ki)
31 (i, i)s12(i, :)− α

(ki−1)
34 (i, :)t3t

T
3 = 0T (20b)

Since the hypothesis (15) holds for j = ki − 1, we know
that α

(ki−1)
34 (i, :)sT12 = 0T . Multiply (20b) on the right by

α
(ki−1)
34 (i, :)T to give α

(ki−1)
34 (i, :)t3 = 0T and (20) then

simplifies to:

α
(ki)
31 (i, i)s11(i, :) = 0T ⇒ s11(i, :) = 0T

α
(ki)
31 (i, i)s12(i, :) = 0T ⇒ s12(i, :) = 0T

Since the above holds for every i = 1, . . . , p1, we therefore
have s11 = 0 and s12 = 0.

The result of the above lemma significantly simplifies (10).
Whilst there is some freedom in the choice of T1 and T2,
the number of solutions for (Q,P ) is always bounded by
the number of solutions for s22, as follows.
Theorem 2. Two systems (A,B,C,D) and (A′, B′, C ′, D′)
in the form of Lemma 4 that satisfy Assumptions 1-5 have
equal output spectral density if and only if the following
equations are satisfied:

s22ā+ āT s22 − s22b̄b̄
T s22 = 0 (21)

α34s22 = 0 (22)

T1B1 =

0 0
0 0
0 s22γ

T
34B22

 (23a)

T2B2 =

 t1 0
0 0

s22
[
αT
14 αT

24

]
t1 0

 (23b)

A′ = T−1AT for T =

[
I 0
T1 T2

]
(23c)

B′
22 = B22J (23d)

for some symmetric s22 ∈ R(l−p)×(l−p), where ā = αT
44,

b̄ =
[
γT
34B

−T
22 αT

14 αT
24 αT

34

]
, t1 ∈ R(p1+p2)×(p1+p2) is

orthogonal and J ∈ Rp3×p3 is a signed identity matrix.

Proof. The proof follows directly from Lemma 5 by

substituting S2 =

[
0 0
0 s22

]
into (10).

Remark 1. From Corollary 2, the number of DSFs that
have equal spectral density to that of any given (Q0, P0)
(up to a choice of signed identity matrix) is therefore at
most equal to the number of solutions to the ARE (21).
This significantly restricts the solution set.
Remark 2. It is straightforward to see that (ā, b̄) is control-
lable due to the minimality of (A,B,C,D). The number
of solutions to (21) is therefore a function of the Jordan
Form of α44 and in particular is finite if and only if every
eigenvalue of α44 has geometric multiplicity of one (see
Lancaster and Rodman (1995)). In general the solution
will not be unique.
Remark 3. Any solution to the ARE must also satisfy (22)
in order to satisfy Theorem 2. In general this condition will
not necessarily be satisfied, reducing the size of the DSF
solution set. Given any system (A0, B0, C0, D0) with DSF
(Q0, P0), the solution set of (21) can be calculated; for
any solution that also satisfies (22) it is straightforward to
choose T and J to satisfy (23) and hence construct the set
of DSFs with equal spectral density to (Q0, P0).
Remark 4. Given a particular spectral density Φ0, one
can partition (3) in Lemma 1 to obtain equations similar
to (21)-(23). This provides a constructive procedure to
compute all DSFs with spectral density Φ0.

3.2 Example

A simple example is given in which two globally-minimal
systems with P diagonal have the same output spectral
density. These systems are obtained from the spectral
density by solving the equations in Lemma 1 to illustrate
that they are the only such systems with this particular
spectral density. Start with the following stable, minimal
system with two manifest states and one latent state:

A0 =

[−1 0 4
0 −2 5
−6 0 −3

]
, B0 =

[
1 0
0 1
0 0

]
,

with C0 = [I 0] and D0 = 0. The transfer matrix
G0 = C0 (sI −A0)

−1
B0 can be realized by an infinite

variety of A and B matrices, whereas the DSF:

Q0(s) =

[
0 0

−30
(s+2)(s+3) 0

]
, P0(s) =

[ s+3
s2+4s+27 0

0 1
s+2

]
is the only valid Q and diagonal P that is consistent with
G0. This system is represented graphically for state space
(a) and DSF (b) like so:

..x1 .

x2

.

x3

.
u1

.

u2

.

(a)

..y1 .

y2

.

x3

.
u1

.

u2

.
Q21

.P11 .

P22

.

(b)

The DSF describes causal interactions among manifest
states that may occur via latent states in the underlying
system. Compute the output spectral density Φ(s) for this
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system and from it construct the positive real matrix Z(s),
such that Z(s) + Z∗(s) = Φ(s). Construct any minimal
realization of Z by standard methods, such as:

A =

[ −3.9 −0.97 1.9
−3.6 −3.2 2.4
−15.5 −1.5 1.1

]
, B =

[
0.17 0.032
0.032 0.57
0.092 0.60

]
,

with C = [I 0] and D = 0. Partition Bz as B, then all
solutions to (3) are given by:

Bz =

[
Bz1

Bz2

]
, R =

[
Bz1 BT

z2
Bz2 R2

]
, B1 =

[
±1 0
0 ±1

]
where R2 must solve a scalar ARE. This ARE has exactly
two solutions: R2 = 1.02 or 1.65, and correspondingly

B2 = [1.49 0.5] or [0.28 −1.01]

with D = Dz = 0. Choose the signs of B1 to be
positive for simplicity, then there are exactly two solutions
(A,B,C,D), one for each of the possible choices of B2.
Transform both of these into the form of Lemma 4, then
the transformed systems are both realizations of DSFs with
diagonal P . The first corresponds to the original system
(A0, B0, C0, D0) and the second to the following stable,
minimal system:

A′ =

[−3.3 −2.9 4
−2.9 −5.7 5
−8.3 −3.7 3

]
, B′ =

[
1 0
0 1
0 0

]
,

with C ′ = [I 0], D′ = 0 and DSF:

Q′(s) =

[
0 −2.9(s+2.0)

s2+0.34s+23.3
−2.9(s+11.1)
s2+2.7s+1.3 0

]
,

P ′(s) =

[ s−3
s2+0.34s+23.3 0

0 s−3
s2+2.659s+1.3

]
Note that this system has a different network structure to
the original system for both state space (a) and DSF (b):

..x1 .

x2

.

x3

.
u1

.

u2

.

(a)

..y1 .

y2

.

x3

.
u1

.

u2

.

Q′
21

.Q′
12 .P ′

11 .

P ′
22

.

(b)

The reader may verify that these systems do indeed have
the same output spectral density Φ(s). It may also be
verified that (10) is satisfied for the following S and T :

S =

[
0 0 0
0 0 0
0 0 −0.15

]
, T =

[
1 0 0
0 1 0

−0.59 −0.73 1

]

These are the only two DSFs (up to a choice of signed
identity matrix) with this particular spectral density.

4. CONCLUSIONS

This paper characterizes solutions for the structure and
dynamics of an unknown network driven by unknown
intrinsic noise. For stable LTI systems with standard as-
sumptions on the noise, we provide necessary and sufficient

conditions that must be satisfied by any solution. One of
these conditions is an Algebraic Riccati Equation (ARE)
and we show that the number of solutions for the net-
work is at most equal to the number of solutions to this
ARE. From the output spectral density we can therefore
construct the network topology and dynamics of every
solution, regardless of the topology. To our knowledge this
is the first such result that places no restrictions on the
structure of the network. The fact that the solution may
be non unique highlights a fundamental limitation, whilst
the fact that the number of solutions may be finite is a very
positive result. This paper addresses the identifiability of
the network; how to efficiently find solutions in practice
remains the subject of substantial future work.
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