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Abstract: This paper studies the synchronization problem of networked uncertain Euler-
Lagrange systems with intermittent communication in the presence of irregular communication
delays and possible information loss. The interconnection between agents is described by a
directed graph containing a spanning tree. Based on the small-gain framework, we propose an
adaptive distributed control algorithm to steer all agents’ positions to a common position with
a prescribed desired velocity available to only some leaders. The communication between agents
is intermittent in the sense that neighboring agents exchange their information in a discrete
manner with possible packet dropout. Numerical simulation is provided to demonstrate the
effectiveness of the proposed synchronization scheme.
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1. INTRODUCTION

Motion coordination of mechanical systems modeled by
Euler-lagrange dynamics has received an increased interest
in the control community due to the potential applications
involving groups of unmanned vehicles and robotic systems
[Ren and Cao, 2011]. The coordinated control of these
systems can be formulated as synchronization or consensus
problems, where the goal is to drive the networked systems
(or agents) to a common state. Recently, extensive efforts
have been devoted to the design of control algorithms for
the synchronization of networked Lagrangian systems [see,
for instance, Spong and Chopra, 2007, Ren, 2009, Chung
and Slotine, 2009, Mei et al., 2012, Wang, 2013b]. While
various problems related to systems dynamics, such as
uncertainties, and the communication topology between
the team members have been addressed in these references,
several problems remain unsolved especially in the pres-
ence of communication constraints.

In Spong and Chopra [2007], it has been shown that the
passivity-based approach is robust to constant communi-
cation delays if the interconnection graph is directed, yet
balanced and strongly connected. A similar property was
shown in Chung and Slotine [2009] for unbalanced graphs
using the contraction theorem. In Münz et al. [2011], a
delay-robust control scheme is proposed for strictly passive
relative-degree two systems with nonlinear interconnec-
tions. In Nuño et al. [2011], an adaptive synchronization
algorithm is presented under a directed graph and con-
stant communication delays. A virtual systems approach
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has been suggested for networked Lagrangian systems in
Abdessameud and Tayebi [2011a] and for a different class
of nonlinear systems in Abdessameud and Tayebi [2013]
to account for input saturations in the presence of con-
stant communication delays. With the same assumption
on the delays, an adaptive cooperative tracking controller
is proposed in Wang [2013a] for networked robotic sys-
tems in the task space. The more general case of time-
varying irregular communication delays has been recently
considered in Abdessameud et al. [2014] under a directed
communication graph.

An important problem in the above mentioned papers
dealing with communication delays is that position syn-
chronization, i.e., all positions converge to a common
value, is achieved with zero final velocity. The only cases
where the final velocities match a non-zero value assume a
full access to a reference trajectory or to a leader’s states
(position and velocity). This problem can also be seen in
the literature of nonlinear multi-agent systems [see, for
instance, Abdessameud and Tayebi, 2011b, Abdessameud
et al., 2012]. Another issue that can be observed in all the
aforementioned results is the assumption that information
is transmitted continuously between agents. In fact, it is
not clear if these results still apply in situations where
agents are allowed to communicate with their neighbors
only on some disconnected time intervals or instants, due
to environmental constraints, such as communication ob-
stacles, or temporary sensor failure. In the ideal case of no
communication delays, it has been shown that linear multi-
agent systems [Wen et al., 2012b, 2013] and some globally
Lipschitsz nonlinear systems [Wen et al., 2012a] can still
achieve consensus with intermittent communication. Un-
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fortunately, these results cannot be applied to networked
lagrangian systems, due to the nonlinear and generally
uncertain systems dynamics, especially if one considers
varying delays and possible packet loss.

In this paper, we consider the synchronization problem
of networked uncertain heterogeneous Lagrangian systems
with intermittent communication under a directed com-
munication topology. Here, it is required that all systems
achieve position synchronization with some non-zero de-
sired velocity available to only some systems in the group
acting as leaders. Based on the small-gain approach, we
propose a continuous-time distributed adaptive control
algorithm that allows agents to communicate with their
neighbors only at some irregular discrete time-intervals
and achieve our control objective. A discrete-time consen-
sus algorithm is also used to handle the partial access of
the desired velocity. In the case where no desired velocity is
assigned to the team, the proposed synchronization algo-
rithm achieves position synchronisation with some velocity
agreed upon by all agents. In both cases, it is proved
that, under some sufficient conditions, synchronization is
achieved in the presence of unknown irregular communica-
tion delays and packet loss provided that the directed com-
munication graph contains a spanning tree. The derived
conditions impose a maximum allowable interval of time in
which a particular agent does not receive information from
some or all of its neighbors. This interval can be specified
arbitrarily with a choice of the control gains. Simulation
results on a team of ten robot manipulators are provided
to show the effectiveness of our theoretical results.

2. PROBLEM FORMULATION

2.1 System model

Consider a network of n not necessarily identical systems
described by Euler-Lagrange equations of the form

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi) = ui, (1)

for i ∈ N , {1, ..., n}, where qi ∈ R
m is the vector of

generalized configuration coordinates, Mi(qi) ∈ R
m×m

is the inertia matrix, Ci(qi, q̇i)q̇i ∈ R
m is the vector of

centrifugal/Coriolis forces, Gi(qi) ∈ R
m is the vector of

potential forces, and ui ∈ R
m is the vector of torques asso-

ciated with the ith system. The inertia matricesMi(qi) are
symmetrical and positive definite uniformly with respect
to qi. Other common properties of Euler-Lagrange systems
(1) are as follows.

P.1 Each system in (1) admits a linear parametrization
of the form Mi(qi)ẋi + Ci(qi, q̇i)xi + Gi(qi) =
Yi(qi, q̇i,xi, ẋi)θi, whereYi(qi, q̇i,xi, ẋi) is a known
regressor matrix and θi ∈ R

k is the vector of the
system’s parameters.

P.2 The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.
P.3 There exists kci ≥ 0 such that |Ci(qi,x)y| ≤ kci |x| ·

|y| holds for all qi, x, y ∈ R
m. In addition, Mi(qi)

and Gi(qi) are bounded uniformly with respect to qi.
Here, | · | denotes the Euclidean norm of a vector.

2.2 Graph theory preliminaries

Let G = (N , E) be a directed graph, with a set of nodes
(or vertices) N , and a set of ordered edges (pairs of nodes)
E ⊂ N ×N . An edge (j, i) ∈ E is represented by a directed
link (arc) leaving node j and directed toward node i; in

this case, node j is called a neighbor of node i. A directed
graph G is said to contain a spanning tree if there exists at
least one node that has a “directed path” to all the other
nodes in the graph; by a directed path (of length q) from
j to i is meant a sequence of edges in a directed graph of
the form (j, l1), (l1, l2), . . . , (lq−1, lq), with lq = i, where for
q > 1 the nodes j, l1, . . . , lq−1 ∈ N are distinct. Node r is
called a root of G if it is the root of a directed spanning
tree of G; in this case, G is said to be rooted at r.

A weighted directed graph Gw consists of the triplet
(N , E ,A), where N and E are, respectively, the sets of
nodes and edges defined as above, and A is the weighted
adjacency matrix defined such that aii , 0, aij > 0 if
(j, i) ∈ E , and aij = 0 if (j, i) /∈ E . Note that thus defined
graph does not contain self-links at any node and will
have the same properties as the unweighted graph with
the same sets of nodes and edges. The Laplacian matrix
L := [lij ] ∈ R

n×n of the weighted directed graph Gw is
defined such that: lii =

∑n

j=1 aij , and lij = −aij for i 6= j.

2.3 Problem statement

It is assumed throughout the paper that the vectors of
agents’ parameters θi ∈ R

k, i ∈ N , are constant and
unknown. Also, the interconnection topology in the net-
work is represented by a directed graph G = (N , E), where
N describes the set of all agents (or systems modeled
by (1)) in the network, and an edge (j, i) ∈ E indicates
that the i-th agent can receive information from the j-
th agent. While G is fixed, the communication process
between neighbouring agents is not continuous but dis-
crete in time and intermittent; in particular, it may be
performed only over a certain sequence of discrete time
instants and is subject to time-varying communication
delays, information losses, and blackout intervals. Specifi-
cally, the communication process is described as follows. It
is assumed that there exists a sequence of communication
instants tk := kT ∈ R+, k ∈ Z+ = {0, 1, . . .}, where T > 0
is a fixed sampling period which is common for all agents,
such that each agent is allowed to send information to all
or some of its neighbors at instants tk, k = 0, 1, . . .. This
discrete-time communication is subject to time-varying
communication delays and information losses. Formally,
for each pair (j, i) ∈ E , there exist a sequence of communi-

cation delays (τ
(j,i)
k )k∈Z+

that take values in {R+ ∪ +∞}
such that the information sent by agent j at instant tk is

available to agent i starting from the instant tk + τ
(j,i)
k . In

particular, it is possible that τ
(j,i)
k = +∞ for some k ∈ Z+,

which corresponds to a situation where the agent j has not
sent information at instant tk to neighbour i at all, or the
corresponding information was never delivered possibly
due to packet loss in the communication channel. The
following assumption is imposed on the communication
process between neighbouring agents.

Assumption 1. For each (j, i) ∈ E there exist numbers
k∗ ∈ N, h ≥ 0, and an infinite strictly increasing sub-

sequence K(j,i) := {k(j,i)0 , k
(j,i)
1 , . . .} ⊂ {0, 1, . . .} satisfying

i) k
(j,i)
0 ≤ k∗, and k

(j,i)
l+1 − k

(j,i)
l ≤ k∗, l ∈ {0, 1, . . .},

ii) τ
(j,i)
k ≤ h for each k ∈ K(j,i).

Assumption 1 essentially means that, for each pair (j, i) ∈
E , and per any k∗ consecutive sampling instants, there
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exists at least one sampling instant at which agent j has
sent information to agent i, and this information has been
successfully delivered with delay less than or equal to h.
Assumption 1 also implies that, for each pair (j, i) ∈ E , the
maximal interval between two consecutive instants when
agent i receives information from agent j is less than or
equal to

h∗ := k∗T + h. (2)

The objective of this work is to design a control algorithm
for (1) such that q̇i(t) → q̇d and qi(t) − qj(t) → 0 for all
i, j ∈ N as t → +∞, where q̇d ∈ R

m is a constant desired
velocity available to only a subset of systems in the group.
For this, let L ⊂ N denote the set of indices of the agents
having access to the desired velocity, which play the role
of leaders. The rest of agents, referred to as followers, do
not know the desired velocity nor do they know who the
leaders are.

3. MAIN RESULTS

In this section, we present synchronization schemes that
achieve our objectives using discrete-time intermittent
communication between the agents in the presence of time-
varying communication delays and information losses. To
solve this problem, a continuous-time control algorithm
that takes into account the communication constraints
will be developed for each agent in the team. In addition,
since the desired velocity is not available to all agents,
each follower (i.e., each i-th agent with i ∈ F := N \
L) will run a discrete-time consensus-seeking algorithm,
updated at instants σT , σ ∈ Z+, that provides an estimate
v̂i(·) of the desired velocity vector q̇d. This desired ve-
locity estimate is transmitted through the communication
channels to the neighbouring agents together with the
position information and the corresponding time-stamp.
Specifically, for each (j, i) ∈ E and each k ∈ Z+, let
Qi

j(k) := [qj(kT ), v̂j(k), k] denote the information that
can be transmitted from agent j to agent i at t = kT ,
where qj(kT ) is the position of the j-th system at t = kT ,
v̂j(k) is the desired velocity estimate 1 , and k is the time-
stamp (i.e., the sequence number at which information
was sent).

For each (j, i) ∈ E and σ ∈ Z+, denote l
(j,i)(σ) := max{l ∈

Z+ : T l+τ
(j,i)
l < σT }. By definition, l(j,i)(σ) is the largest

sequence number such that the data Qi
j(l

(j,i)(σ)) has been
received by the i-th agent before the instant t = σT .
Consider the following consensus-seeking algorithm

v̂i(σ + 1) =v̂i(σ), for i ∈ L, (3)

v̂i(σ + 1) =
1








Ni(σ)









∑

j∈Ni(σ)

v̂ij(σ), for i ∈ F , (4)

where v̂i(0) = q̇d for i ∈ L, and v̂i(0) for i ∈ F can be
set equal to arbitrary finite values, Ni(σ) := {i} ∪Nji(σ),

where Nji(σ) := {j : (j, i) ∈ E , l(j,i)(σ) > l(j,i)(σ − 1)}
denotes the set of the neighbours of the i-th follower
such that the most recent data from these neighbours has
been received during the interval [(σ − 1)T, σT ),








Ni(σ)









denotes the number of elements in Ni(σ), and

v̂ij(σ) :=

{

v̂j(l
(j,i)(σ)) if j 6= i,

v̂i(σ) if j = i.
(5)

1 For simplicity, we use throughout the paper the notation x(k),
k ∈ Z+, instead of x(kT ) for the discrete-time signals.

It should be noted that the update law for the followers,
given in (4)-(5), is based on the agent’s own velocity
estimate and its neighbours’ most recent velocity estimates
that have been successfully delivered and have not been
used in the update law at the previous update instants. On
the other hand, the leaders do not update their estimates
(according to (3)). Also, the parameter l(j,i)(σ) and the
set Ni(σ) can be evaluated easily, at each σT , by simple
comparison between the successfully received time stamps.

Now, define the following filtered reference velocity esti-
mate
{

vr
i = q̇d, for i ∈ L,

v̈r
i (t) = −kdi v̇

r
i − kpi (v

r
i (t)− v̂i (⌊t/T ⌋)) , for i ∈ F

(6)
where vr

i (0) and v̇r
i (0), for i ∈ F , can take arbitrary finite

values, and kpi , k
d
i are strictly positive gains. Also, for each

pair (j, i) ∈ E and each time instant t ≥ 0, let k
(j,i)
t denote

the largest integer number such that Qi
j(k

(j,i)
t ) is the most

recent information of agent j that is already delivered to
agent i at t, i.e.,

k
(j,i)
t := max{k ∈ Z+ : kT + τ

(j,i)
k ≤ t}, (7)

and define

q
(i)
j (t) := qj(k

(j,i)
t T ) + ǫ

(j,i)
t , (8)

where ǫ
(j,i)
t can be seen as a corrective term for the received

position of the j-th agent, which has changed since its last
information has been sent (and successfully received). This
term is selected as

ǫ
(j,i)
t = v̂j(k

(j,i)
t ) · (t− k

(j,i)
t T ), (9)

where v̂j(k
(j,i)
t ) is maintained constant in the interval

[k
(j,i)
t T, t) (until the next most recent information is re-

ceived). Again, k
(j,i)
t can be obtained by a simple compar-

ison of the received time stamps.

Consider the following control algorithm for each system

ui = Yi(qi, q̇i,ηi + vr
i , η̇i + v̇r

i )θ̂i − ksi si,
˙̂
θi = −ΠiYi(qi, q̇i,ηi + vr

i , η̇i + v̇r
i )

⊤si,
(10)

where θ̂i ∈ R
k can take arbitrary initial values, the matrix

Πi is symmetric positive definite and ksi > 0 is a scalar
gain. The variable si is defined as

si = q̇i − vr
i − ηi, (11)

with ηi satisfying










η̇i = −kηi ηi − λi (κiqi −ψi)

ψ̇i = −ψi + κiv
r
i +

n
∑

j=1

aijq
(i)
j (t) , (12)

for i ∈ N , where ηi(0), ψi(0) can be selected arbitrar-
ily, kηi , λi are strictly positive scalar gains, and κi :=
(
∑n

j=1 aij). The coefficients aij ≥ 0 are defined such

that the matrix A = [aij ] ∈ Rn×n is the weighted ad-
jacency matrix of the weighted directed graph, denoted
Gw = (N , E ,A), having the same vertex and edges sets
as G. Our result is given in the following theorem and is
proved in Section 4.2.

Theorem 1. Consider the network of n-systems described
by (1), where the interconnection between the systems
is described by the directed communication graph G =
(N , E), and suppose Assumption 1 holds. Consider the
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control algorithm (10)-(12) with (6)-(9) and the discrete-
time observer (3)-(5). If the directed communication graph
G contains a spanning tree with a root r ∈ L 6= ∅, then
vr
i (t) → q̇d as t → +∞ for i ∈ F . In addition, if

µi

κi

> 1 + 2 · h∗, for i ∈ N̄ , (13)

where N̄ = {i : i ∈ N and κi 6= 0} and µi :=
−max (Re(µi,1),Re(µi,2)), µi,1, µi,2 are the roots of p2 +
kηi p + λiκi = 0, then q̇i(t) → q̇d and (qi(t) − qj(t)) → 0
for all i, j ∈ N as t → +∞.
Furthermore, if L ≡ ∅ and G contains a spanning tree,
then (q̇i(t) − q̇j(t)) → 0 and (qi(t) − qj(t)) → 0 for all
i, j ∈ N as t → +∞. �

Theorem 1 gives a solution to the synchronization problem
of the class of nonlinear systems (1) with relaxed commu-
nication requirements. In fact, each agent needs to send
its information to its prescribed neighbors only at some
instants of time. This information transfer is also subject
to constraints inherent to the communication channels
such as irregular communication delays and packet loss.
An important feature of the above result is that it gives
sufficient conditions for synchronization, given in (13),
that can be easily satisfied with an appropriate choice of
the control gains. Notice that the constant h∗ := (k∗T+h)
can be easily estimated in practice, and is simply defined
as the maximum blackout interval of time an individual
agent does not receive information from each one of its
neighbors. Then, the control gains, namely kηi , λi and κi,
can be freely selected to satisfy (13), which is imposed
for all agents that receive information. In particular, we
can show that µi

κi
can be made arbitrarily large with some

choice of these gains. On the other hand, condition (13)
is equivalent to 0 < h∗ < µi

2·κi
− 1

2 , which specifies the
maximal allowable time interval during which each agent
can run its control algorithm without receiving informa-
tion from its neighbors. Then, this allowable interval can
be made arbitrarily large.

4. PROOF OF MAIN RESULT

4.1 Definitions and Preliminary result

Before we present proof of our main result, we give a
preliminary result that will be used in the subsequent
analysis. Consider an affine nonlinear system of the form

ẋ = f(x) + g1(x)u1 + . . .+ gp(x)up,
y1 = h1(x),
...
...
...

yq = hq(x),

(14)

where x ∈ R
N , ui ∈ R

m̃i for i ∈ Np := {1, . . . , p}, yj ∈
R

m̄j for j ∈ Nq := {1, . . . , q}, and f(·), gi(·), for i ∈ Np,
and hj(·), for j ∈ Nq, are locally Lipschitz functions of
the corresponding dimensions, f(0) = 0, h(0) = 0. We
assume that for any initial condition x(t0) and any inputs
u1(t), . . . , up(t) that are uniformly essentially bounded on
[t0, t1), the corresponding solution x(t) is well defined for
all t ∈ [t0, t1].

Theorem 2. Consider a system of the form (14). Suppose
the system is weakly input-to-output stable (WIOS) 2

with linear IOS gains γ0
ij ≥ 0. Suppose also that each

input uj(·), j ∈ Np, is a Lebesgue measurable function
satisfying

uj(t) ≡ 0 for t < 0, (15)

and

|uj(t)| ≤
∑

i∈Nq

µji · sup
s∈[t−ϑji(t),t]

|yi(s)|+ |δj(t)|, (16)

for almost all t ≥ 0, where µji ≥ 0, all ϑji(t) are Lebesgue
measurable uniformly bounded nonnegative functions of
time, and δj(t) is an uniformly essentially bounded signal
that satisfy |δj(t)| → 0 at t → +∞. Let Γ := Γ0 ·
M ∈ R

q×q, where Γ0 :=
{

γ0
ij

}

, M := {µji}, i ∈ Nq,

j ∈ Np. If ρ (Γ) < 1, where ρ (Γ) is the spectral radius
of the matrix Γ, then the trajectories of the system (14)
with input-output constraints (15), (16) are well defined
for all t ≥ 0 and such that all the outputs yi(t), i ∈ Nq,
and all the inputs uj(·), j ∈ Np, are uniformly bounded
and satisfy |yi(t)| → 0, |uj(t)| → 0 as t → +∞. �

Theorem 2 is a version of [Theorem 1 Abdessameud et al.,
2014]; in particular, the proof follows the same lines and,
therefore, is omitted. Both Theorem 2 above and [Theorem
1 Abdessameud et al., 2014] are special cases of a more
general result given in Polushin et al. [2013].

4.2 Proof of Theorem 1

Consider first the consensus algorithm (3)-(5). The interac-
tion between the agents in the system (3)-(5) is described
by a directed graph Gs = (N , Es), which can be formally
obtained from the directed graph G by modifying some of
its links, as follows: (1) removing the incoming arcs to each
leader node (or agent), (2) adding a directed link from any
leader node to any other leader node, and (3) adding a self
arc to each node in the graph. It can be verified that, if
the G is rooted at r ∈ L, then Gs is also rooted at r ∈ L.
In the case of no leaders (L = ∅), the above modifications
reduce to adding a self arc to each node; in this case, Gs is
rooted if G is rooted. Now, in view of the above definition,
the consensus algorithm (3)-(5) can be formally written as

v̂i(σ + 1) =
1








N̄i(σ)









∑

j∈N̄i(σ)

v̂j(σ − τ̂ (j,i)(σ)), (17)

for all i ∈ N , where N̄i(σ) = Ni(σ), for i ∈ F , and
,N̄i(σ) = L, for i ∈ L, and τ̂ (j,i)(σ) is a delay that takes
some integer value at σT and, in view of Assumption 1 and
(2), satisfies τ̂ (j,i)(σ) ≤ h∗

σ := ⌈h∗/T ⌉ for all σ = 0, 1, . . ..
Note that τ̂ (i,i)(σ) = 0 and τ̂ (j,i)(σ) = 0 for all σ if i, j ∈ L.
Proposition 1. Under the assumptions of Theorem 1, the
discrete-time consensus algorithm (17) achieves consensus
in the sense that v̂i(k) → vc as k → +∞ for all i ∈ N for
some constant vc ∈ R

m. In particular, vc = q̇d if L 6= ∅
and G is rooted at r ∈ L. Furthermore, vr

i is uniformly
bounded and vr

i → vc as t → +∞, for all i ∈ N . �

The next step in the proof is to use the small-gain theorem
(Theorem 2) to show that synchronization is achieved. Let

2 A definition of input-to-output stability (IOS) and WIOS can
be found, respectively, in [Sontag, 2008] and [Polushin et al., 2013,
Abdessameud et al., 2014].
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θ̃i = (θ̂i − θi), q̃i := κiqi − ψi, ψ̃i := ψi −
∑n

j=1 aijqj ,

∆qi :=
∑n

j=1 aij(qj −q
(i)
j ), and ˙̂qi :=

∑n

j=1 aij (q̇j − vr
i ),

where vr
i and q

(i)
j are defined in (6) and (8), respectively.

The closed loop dynamics of each agent i ∈ N̄ , i.e., κi 6= 0,
can be written as follows

ṡi = M−1
i (qi)

(

Yiθ̃i −Cisi − ksdsi

)

(18)

˙̃
θi = −ΠiY

⊤
i si (19)

˙̃qi = κi(ηi + si) + ψ̃i +∆qi (20)

η̇i = − kηi ηi − λiq̃i (21)

˙̃
ψi =− ψ̃i −∆qi − ˙̂qi (22)

where the arguments ofYi andCi are omitted, the vectors
si, η̃i, q̃i, ηi, and ψ̃i are the states, ˙̂qi and ∆qi are the
inputs and the output is given by: ξi := si + ηi.

Since it is assumed that G is directed and contains a
spanning tree, there is at most one agent with no incoming
links. In this case, the closed loop dynamics of the i-th
agent, with i ∈ N \ N̄ , can be obtained as

ṡi = M−1
i (qi)

(

Yiθ̃i −Cisi − ksdsi

)

, ˙̃
θi = −ΠiY

⊤
i si

η̇i = −kηi ηi + λiψi, ψ̇i = −ψi

which is similar to (18)-(22) with the output ξi and κi = 0,

q̃i = −ψ̃i = −ψi, and
˙̂qi = ∆qi = 0.

Proposition 2. Consider the overall closed loop system
that consists of the subsystems (18)-(22), for i ∈ N ,
with n outputs, given by yl := ξl for l ∈ N , and 2n

inputs ordered as: u2l−1 := ˙̂ql, u2l := ∆ql for l ∈ N ,
where the signals vr

i are obtained from (3)-(6). Then, the
overall system is WIOS, and the closed-loop gain matrix
Γ := Γ0 · M = {γ̄ij} in Theorem 2, with Γ0 ∈ R

n×2n,
M ∈ R

2n×n, is obtained as

γ̄ij =

{ aij
µi

(1 + 2 · h∗) , if κi 6= 0,

0 otherwise.

where µi and h∗ are defined in Theorem 1. In addition, all
the inputs uj, j ∈ {1, . . . , 2n}, satisfy (16) for some δj(t),
j ∈ {1, . . . , 2n}, that are uniformly bounded and satisfy
|δj(t)| → 0 as t → +∞. �

Using the result of Proposition 2, one can show that
ρ(Γ) < 1 if

∑n
j=1 γ̄ij < 1, for i ∈ N , which is satisfied

by (13). Therefore, all the conditions of Theorem 2 are

satisfied and one can conclude that ξi,
˙̂qs
i and ∆q̂i are

uniformly bounded and ξi(t) → 0, ˙̂qs
i (t) → 0, ∆q̂i(t) → 0

as t → +∞. Since ξi = (si + ηi) = (q̇i − vr
i ) → 0

as t → +∞, the result of Proposition 1 leads one to
conclude that q̇i(t) → q̇d as t → +∞ if L 6= ∅, and
(q̇i(t)− q̇j(t)) → 0 as t → +∞ if L = ∅.
In addition, it is easy to verify, from Proposition 2 and
the properties of systems (18)-(22) for i ∈ N , that si,

θ̃i, q̃i, ηi and ψ̃i are uniformly bounded and si(t) → 0,

q̃i(t) → 0, ηi(t) → 0 and ψ̃i(t) → 0 as t → +∞. This
implies that (κiqi −

∑n

j=1 aijqj) is uniformly bounded

and
∑n

j=1 aij(qi(t) − qj(t)) → 0 as t → +∞ for all

i ∈ N , which is equivalent to (L ⊗ Im)Q → 0, where
L is the Laplacian matrix of the communication graph

Fig. 1. Communication graph G.

Gw, Im is the m × m identity matrix, Q ∈ R
nm is the

vector containing all qi for i ∈ N , and ⊗ is the Kronecker
product. Finally, since (L ⊗ Im)Q = 0 implies that q1 =
. . . = qn if the directed communication graph contains
a spanning tree [Ren and Beard, 2005], we conclude that
(qi − qj) → 0 as t → +∞, for all i, j ∈ N . The proof is
complete.

5. SIMULATION RESULTS

In this section, we apply the proposed synchronization
scheme to a network of ten planar two-degrees of freedom
rigid manipulator arms (with revolute joints). The systems
models are described in Abdessameud et al. [2014]. The
interconnection between the systems in the network is
described by the directed graph G, given in Fig. 1, and
the communication process is described in Section 2.3 with
T = 0.1 sec and the parameter h∗ in (2) being estimated
to be smaller than or equal to 1.3 sec.

We implement the control scheme in Theorem 1 with
L = {1, 4}; the systems labeled 1 and 4 are the only
systems having access to the desired velocity q̇d =
(0.3, 0.6)⊤ rad/sec. The observer (3)-(5) is updated at
T , and the control gains are selected as: kpi = kdi = 2,
Πi = 0.3I5, k

s
i = 10, λi = 8, kηi = 2

√
λi · κi, and all the

weights on the communication links of Gw, which is the
same as G, are set such that κi = 1. Note that this choice
of the gains satisfies condition (13).

Fig. 2 and Fig. 3 illustrate the relative positions and
relative velocities defined as q1i := (q1 −qi), for i ∈ Ñ :=

N − {1}, and q̇1i := (q̇1 − q̇i) for i ∈ Ñ ∪ {d}, where
subscript ‘d’ is used for the desired velocity. It is clear
that all agents synchronize their positions and velocities
with the desired velocity. The output of the discrete-time
system (3)-(5) is given in Fig. 4, where it can be seen that
the desired velocity estimate of each agent converges to
the desired velocity available to the leader agents.
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6. CONCLUSION

We addressed the synchronization problem of uncertain
Euler-Lagrange systems interconnected under directed
graphs in the presence of communication constraints. Us-
ing the IOS small-gain framework, we proposed a dis-
tributed control algorithm that achieves position synchro-
nization, and all agents velocities match a desired velocity
available to only some leaders. In contrast to the available
relevant literature, the proposed control scheme allows
agents to exchange information at irregular discrete time-
intervals with irregular time-delays and possible packet
loss. In fact, we prove that synchronization is still achieved
even if each agent in the team runs its control algorithm
without receiving any information from its neighbors dur-
ing some allowable interval of time. The conditions for
synchronization derived in this paper can be satisfied by
an appropriate choice of the control gains. Future research
will consider the extension of this work to the case of
variable desired velocity.
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