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Abstract: We present a new stabilization approach for unstable linear plants with long input
delay, unknown parameters and disturbance. The predictor-based algorithm providing plant
identification and stabilization is proposed. Also the extension is considered with estimation
and cancellation of an unknown disturbance. A numerical examples are given to illustrate the
efficiency of our adaptive controller.
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1. INTRODUCTION

Control of systems with delays is one of fundamental
problems of modern control theory. For now we skip a com-
prehensive review of the results obtained recently in the
field (see, e.g., Arstein [1982], Bobtsov and Pyrkin [2010,
2012], Krstic and Smyshlyaev [2008], Krstic [2009], Kwon
and Pearson [1980], Manitus and Olbrot [1979], Niculescu
and Annaswamy [2004], Parsheva and Tsykunov [2001],
Pyrkin et al. [2010 a,b], Pyrkin [2010], Smith [1959])
within the bounds of a single conference paper. Lyapunov-
Krasovskii functionals became more common for stability
analysis and replaced the traditional Lyapunov functions
approach in this sense (see, e.g., Pyrkin et al. [2011],
Pyrkin and Bobtsov [2011]). Initially this technique was
adapted mostly for state delays, while more complex
problems related to time-delays in the control signal was
not covered. The landmark work of Otto Smith (Smith
[1959]) introduced a novel control design approach provid-
ing invariance of system stability and performance with
respect to time-delays. However, applicability of this result
was restricted by a class of asymptotically stable systems
with known parameters. In subsequent years researchers
across the world concentrated their efforts on extensions to
more generic algorithms, e.g. for parametrically uncertain
(see Parsheva and Tsykunov [2001]) and unstable plants
(Krstic and Smyshlyaev [2008], Krstic [2009], Pyrkin
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et al. [2010 a,b]). Nevertheless, works (Parsheva and
Tsykunov [2001]) considered only open-loop stable cases,
while (Krstic and Smyshlyaev [2008], Krstic [2009]) didn’t
offer any solution for the actual problem of simultaneous
external disturbance rejection. In (Pyrkin et al. [2010 a,b])
the complex task of stabilization and disturbance rejection
was solved only for systems with known parameters.

This work describes the stabilization algorithm for a
parametrically uncertain linear time-invariant plant under
unknown external disturbance. This algorithm is based on
synthesis of the predictor analogous to one described in
(Krstic and Smyshlyaev [2008], Krstic [2009]). Proof of
the exponential stability of the closed-loop system with
such predictor based on the Lyapunov functions analysis
allows us extend this result for the cases of unknown
delays as well as for parametric, signal and structural
disturbances in the system. In contrast to the well known
Smith predictor the approach introduced in (Kwon and
Pearson [1980]) and (Manitus and Olbrot [1979]) can be
effectively implemented for open-loop unstable systems.

2. PROBLEM FORMULATION

Consider the LTI plant

ẋ(t) = Ax(t) +Bu(t−D) +Bf, y(t) = Cx(t), (1)

where x ∈ Rn is a measurable vector of state variables, u(t)
is a scalar input, y(t) is a scalar output, D ≥ 0 is a known
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constant delay, A, B, C are matrices with corresponding
dimensions involving unknown parameters, f = const is
an unknown disturbance.

We assume that u(t−D) = 0 for t < D.

The control goal is to design a state-feedback controller
that provides asymptotic stability of the equilibrium x = 0
and cancellation the unknown disturbance f .

3. PRELIMINARY RESULTS

We start from a classical result dealing with stabilization of
unstable systems with input delay (Krstic and Smyshlyaev
[2008], Krstic [2009], Kwon and Pearson [1980], Manitus
and Olbrot [1979]).

It is well known that for the system (1) with known
parameters, under condition of full controllability, for f =
0 and D = 0 it is possible to design the control law as

u = Kx(t), (2)

where the vector K such that state matrix of the closed-
loop A + BK is Hurwitz, i.e. all its eigenvalues have a
negative real part.

For the case D > 0 the control law (2) may be rewritten
as

u(t) = Kx(t+D), (3)

where x(t+D) is predicted value of the state x(t) after D
seconds. It is clear that the controller (3) is unrealisable,
because the vector x(t + D) is not available for direct
measuring. However the vector x(t+D) can be calculated
basing on a priori plant information.

The fundamental solution of (1) for f ≡ 0 is as follows

x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bu(s−D)ds. (4)

From (4) we get a value x(t+D)

x(t+D) = eA(t+D)x(0) +

∫ t+D

D

eA(t+D−s)Bu(s−D)ds

= eADx(t) +

∫ t

t−D
eA(t−s)Bu(s)ds. (5)

It is known that x(t + D) can be calculated by (5) if
elements of matrices A and B are known and all values
of the control signal u on the interval [t−D; t] are known
as well. From (5) it is easy to get the control law, providing
stabilization of unstable systems with the input delay (see
Krstic [2009])

u(t) = KeADx(t) +K

∫ t

t−D
eA(t−s)Bu(s)ds. (6)

For the particular case D = 0 the control law (6) is the
same as (2).

Restrictions of the strategy (6) are the matrix exponential
eAD and the infinite-dimensional integral. One more strong
assumption is required because for the control law (6)
calculation plant parameters are necessary.

In the next section the adaptive controller is presented for
the problem when all parameters of the plant are unknown.

4. ADAPTIVE CONTROLLER FOR PLANT WITH
PARAMETRIC UNCERTAINTIES

In this section we present the controller design technique
and one numerical example.

4.1 Control design

We consider the control problem for the plant (1) with
matrices A, B and C that can have unknown parameters.
Assume that state vector x(t) is available for measuring
and defined in the canonical observable basis. Let the
unknowns present only in matrix A

A =


θ1 1 0 · · · 0
θ2 0 1 · · · 0
...

...
...

. . .
...

θn 0 0 · · · 0

 , B =


0
0
...
1

 , CT =


1
0
...
0

 .
To design the predictor-based controller (6) it is necessary
to know all plant parameters. Rewrite (1) as the system
of differential equations.

ẋi(t) = xi+1(t) + θi x1(t), i = 1, . . . , n− 1, (7)

ẋn(t) = u(t−D) + θn x1(t). (8)

Equations (7), (8) include unmeasurable variables, there-
fore, these equations could not be used directly to design
adaptation law for unknown parameters. Consider n linear
first-order filters for the each state variable and one filter
for the delayed control

ξ̇i(t) = −λ ξi(t) + λxi(t), i = 1, . . . , n, (9)

ξ̇u(t) = −λ ξu(t) + λu(t−D), (10)

where λ > 0 is a positive number.

After direct and inverse Laplace transformation in (7) and
(8) with respect to (9) and (10) we obtain the following
system of equations:

ξ̇i(t) = ξi+1(t) + θi ξ1(t) + εi(t), (11)

ξ̇n(t) = ξu(t) + θn ξ1(t) + εn(t), (12)

where exponentially decaying functions of time ε tend to
zero faster with increasing the coefficient λ.

From (11) and (12) it is possible to design the adaptive
update law for unknown parameters estimates (Ioannou
[1996])

˙̂
θi = kiξ1

(
ξ̇i − ξi+1 − θ̂iξ1

)
, ki > 0, (13)

˙̂
θn = knξ1

(
ξ̇n − ξu − θ̂n ξ1

)
, kn > 0. (14)
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It is not difficult to show that the adaptation algorithm

(13), (14) provides convergence for estimates θ̂i to true
values θi if the initial state is nonzero. If ξ1 ≡ 0 then
the algorithm (13), (14) does not work since the system is
frozen at the equilibrium state.

Consider estimate errors for the each parameter θ̃i = θi −
θ̂i. After differentiation

θ̃i = θi − θ̂i

and substitution (13), (14), and then (11), (12) we have
model of errors

˙̃
θi = −kiξ21 θ̃i + kiξ1εi, ki > 0. (15)

From (15) it is straightforward to show that all estimation

errors θ̃i go to zero that guarantees that all estimates θ̂i
converge to plant parameters θi.

Basing on θ̂i we can collect the state matrix estimate as

Â(t) =


θ̂1(t) 1 0 · · · 0

θ̂2(t) 0 1 · · · 0
...

...
...

. . .
...

θ̂n(t) 0 0 · · · 0

 .
The control law is formed using (6) as

u(t) = K̂(t)

[
eÂ(t)Dx(t) +

∫ t

t−D
eÂ(t)(t−s)Bu(s)ds

]
, (16)

where the vector-row K̂(t) is such that matrix Â(t) +

BK̂(t) is Hurwitz for all time instants t.

Since all estimates θ̂i tend to true values then the matrix
Â converges to the original matrix A. Parameters K̂ are
also go to some constant corresponding to the matrix A.
Thus, we obtain the control law (9), (10), (13), (14), (16)
for LTI plants with unknown parameters and the constant
input delay.

4.2 A numerical example I

Consider the unstable plant (1) with following parameters
n = 3, θ1 = 1, θ2 = 0, θ3 = −1, D = 1, xT(0) = [ 1 0 1 ].

Take four filters (9), (10) with coefficients λ = 10. Then
we design three update laws (13), (14) with parameters
k1 = 10, k2 = 10, k3 = 10.

To design the control law as (16) it is necessary to choose

the algorithm to calculate the vector K̂ =
[
K̂1 K̂2 K̂3

]
.

Consider characteristic polynomial Q(p) of the matrix

Â+BK̂

Q(p) = det
[
pI − (Â+BK̂)

]−1
= det

[ p 0 0
0 p 0
0 0 p

]
−

 θ̂1 1 0

θ̂2 0 1

θ̂3 + K̂1 K̂2 K̂3


= p3 + (−θ̂1 − K̂3)p2 + (−θ̂2 − K̂2 + θ̂1K̂3)p

+ (−θ̂3 − K̂1 + θ̂1K̂2 + θ̂2K̂3).

To provide desired quality of transients one can take the
etalon polynomial like

Q∗(p) = p3 + 3ω p2 + 3ω2 p+ ω3,

where ω > 0 is a positive number which defines transient
time and also a sensitivity with respect to external distur-
bances. This parameter is set by a designer of a control
system.

Controller’s gain K̂ =
[
K̂1 K̂2 K̂3

]
we get from an

equality between Q(p) and Q∗(p)

K̂3 = −3ω − θ̂1, (17)

K̂2 = −3ω2 − θ̂2 + θ̂1K̂3, (18)

K̂1 = −ω3 − θ̂3 + θ̂1K̂2 + θ̂2K̂3 (19)

It is well-known that the definite integral in the control
law (16) can be found as an area of the region bounded by
a graph of an integrand.

In fig. 1 results of a numerical simulation of the closed-
loop with ω = 3. As one can see the adaptive controller
successfully solves the given problem.

5. ADAPTIVE CONTROLLER WITH
DISTURBANCE CANCELLATION FOR UNKNOWN

PLANT WITH INPUT DELAY

5.1 Main result

In this section we present the main result, i.e. the adaptive
controller for the plant with the input delay, parametric
uncertainties and an unmeasurable disturbance.

We consider the following mathematical model of the plant

ẋ(t) = Ax(t) +Bu(t−D) +Bf, y(t) = Cx(t), (20)

where f = const is an unknown external disturbance.

To derive the main result for the plant (20) we use the
algorithm proposed in previous section.

Firstly, we consider the auxiliary filters, then we have
to design the update law for unknown parameters and
disturbance, and eventually we can form the control law.

Let suppose that we already introduced filters (9), (10).
Taking in account that the disturbance associated with
variable xn(t), one can check that we can get all formulas
(11), while the equation (12) should be modified as follows

ξ̇n(t) = ξu(t) + θn ξ1(t) + f + εn(t), (21)

where there is already used the fact that the reaction
of the filter with a transfer function λ

s+λ on a constant
disturbance f is equal to the same value f , while transient
process associated with the function εn(t).

Hence, the algorithm to estimate parameters θ1, . . . ,
θn−1 is given by (13). And the update laws for the
last parameter θn and an unknown disturbance presented
below.

After differentiation (21) and neglecting the exponential
decayng term εn(t) we have
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Fig. 1. Transients for the closed-loop system

ξ̈n(t) = ξ̇u(t) + θn ξ̇1(t). (22)

From (22) and (14) we get the identification algorithm for
θn

˙̂
θn = knξ̇1

(
ξ̈n − ξ̇u − θ̂n ξ̇1

)
. (23)

The algorithm (23) is not realizable in this way since

the function ξ̈n is unmeasurable. Introduce an auxiliary
variable

χ = θ̂n − knξ̇1ξ̇n. (24)

Differentiation (24) yields

χ̇ = knξ̇1

(
ξ̈n − ξ̇u − θ̂n ξ̇1

)
− knξ̈1ξ̇n − knξ̇1ξ̈n

= −knξ̇1ξ̇u − knθ̂n ξ̇21 − knξ̈1ξ̇n. (25)

From (9) we obtain the expression to calculate ξ̈1

ξ̈1(t) = −λ ξ̇1(t) + λ ẋ1(t)

= −λ ξ̇1(t) + λx2(t) + θ1x1. (26)

From (26) we get the update law for the variable χ

χ̇ = −knξ̇1ξ̇u − knθ̂n ξ̇21
− knξ̇n

(
−λ ξ̇1(t) + λx2(t) + θ̂1x1

)
. (27)

The realizable algorithm for estimation the unknown pa-
rameter θn follows from (24)

θ̂n = χ+ knξ̇1ξ̇n. (28)

Basing on the update law for the parameterθn one can
design the observer for the external disturbance in the
following way

f̂(t) = ξ̇n(t)− ξu(t)− θ̂n ξ1(t). (29)

The control law that provides the disturbance rejection
looks like

u(t) = u0(t)− f̂(t), (30)

where u0 is the first control loop that is designed to
stabilize the plant. The function u0 is calculated in the
same form as (16) by the following formula

u0(t) = K̂(t)eÂ(t)Dx(t)

+ K̂(t)

∫ t

t−D
eÂ(t)(t−s)Bu0(s)ds. (31)

Since the all parameters are estimated with errors that
tend to zero asymptotically we conclude that the distur-
bance observer provides precise estimate of the signal f

lim
t→∞

(
f − f̂(t)

)
= 0. (32)

It is straightforward to show that the adaptive controller
(30) allows to cancel the disturbance completely in the

closed-loop system and choosing controller’s gain K̂(t)
provides stabilization the equilibrium x = 0 for the plant
(1).

5.2 A numerical example II

Consider the unstable plant (20) with the following pa-
rameters: n = 3, θ1 = −2, θ2 = −4, θ3 = 1, D = 1, f = 1,
xT(0) = [ 1 0 1 ].

Take four filters (9), (10) with coefficient λ = 15. Design
two update laws of the view (13) with gains k1 = 50,
k2 = 50. The parameter θ3 is estimated by the algorithm
(27), (28) with the gain k3 = 50.

The disturbance observer is given by (29). Eventually, the

control law is defined by (30), where gain K̂(t) is chosen
from (17)-(19) with coefficient ω = 2.

In fig. 2 the simulation results for the closed-loop without
disturbance cancellation scheme are presented. In this
example the stabilization loop works only. From fig. 2 one
can see that unstable plant is stabilized but the output
doesn’t converge to zero due to the disturbance.

In fig. 3 the simulation results for the closed-loop system
with disturbance compensation scheme are shown. In fig.
3 one can see that algorithm (30) provides stabilization
of the plant and the disturbance is cancelled such hat the
output variable asymptotically goes to zero.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11297



0 2 4 6 8 10
−0.2

0 

0.2

0.4

0.6

0.8

1 

 

t, s

y

(a) Output variable y(t)

0 2 4 6 8 10
−4

−3

−2

−1

0

 

t, s

u

(b) Control signal u

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

t, s
 

 

θ̂1

θ̂2

θ̂3

(c) Parameters estimates θ̂1(t), θ̂2(t), θ̂3(t)

Fig. 2. Transients for the closed-loop system: stabilization only
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Fig. 3. Transients for the closed-loop system with disturbance cancellation

6. CONCLUSION

In the paper the adaptive state-feedback controller based
on Smith predictor (Smith [1959]) and results Krstic
[2009] is proposed. The controller (30), (31) provides
rejection of the constant disturbance f and stabilization
the unstable plant (1) with unknown parameters in the
state matrix. The possible extension of presented approach
is the case of output-feedback controller for the same
problem and also more complicated forms of the external
disturbance.
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