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Abstract: This paper deals with boundary optimal control problem for coupled parabolic PDE-
ODE systems. The problem is studied using infinite-dimensional state space representation of
the coupled PDE-ODE system. Linearization of the non-linear system is established around a
steady state profile. Using some state transformations, the linearized system is formulated as a
well-posed infinite-dimensional system with bounded input and output operators. It has been
shown that the resulting system is a Riesz Spectral system. The LQ-control problem is studied
on the basis of the solution of the corresponding eigenvalues problem. The results have been
applied to the case study of catalytic cracking reactor with catalyst deactivation. Numerical
simulations are performed to illustrate the performances of the developed controller.

1. INTRODUCTION

Many chemical and biochemical processes are modelled
by coupled parabolic PDEs and ODEs. Two types of
coupling can exist between PDEs and ODEs. The first one
arises through the boundary conditions of the distributed
portion of the process. Indeed, the boundary conditions are
functions of the state variables of the lumped parameter
system. A tubular reactor and a well mixed reactor in
series is a simple example for this coupling. These kind of
systems are called cascaded PDE-ODE systems and their
control was the subject of few recent studies (Krstic [2009],
Susto and Krstic [2010]). The second type of coupling
takes place in the domain of the PDE, which means the
parameters of the distributed part (e.g., the coefficients)
are functions of the states of the lumped parameter system.
Examples of this kind of coupling include catalytic reactor
with catalyst deactivation, where the deactivation kinetics
is described by a set of ODEs, or a heat exchanger with
a time varying heat transfer coefficient. Most biochemical
processes are also modelled by a set of coupled PDE-ODE
with in-domain coupling (e.g., in-situ bioremediation).

In this work, we are interested in the boundary control
of a system described by a set of nonlinear parabolic
PDEs and ODEs using the infinite dimensional state space
description. To the best of authors knowledge, there is
no published work on the infinite dimensional optimal
control of coupled parabolic PDEs-ODEs with in-domain
coupling and this work is the first step on the study of
infinite dimensional optimal controller for these systems.
In Mohammadi et al. [2011, 2012], the control problem for
parabolic PDEs with spatially varying coefficients has been
studied and the corresponding Riccati equation has been
solved by using the eigenvalues and eigenfunctions of the
system generator. Here, the previous work is extended to
the case of coupled parabolic PDEs and ODEs. Note that
control problem of hyperbolic PDEs has been treated in

Aksikas et al. [2008] for time-invariant case and in Aksikas
et al. [2009] for time-varying case.

The paper is organized as follows. Section 2 focuses on
the mathematical description of the system of interest.
The nonlinear system is to be linearized around a steady
state profile. Some state transformations are used to write
the linearized system as a well posed infinite-dimensional
system. In section 3, the eigenvalues problem is solved
by adopting the method used for the heat equation of
composite media (de. Monte [2002]). The generation and
stabilizability properties are the focus of Section 4. Some
necessary and sufficient conditions are given to guarantee
the β-stabilizability of the system. Section 5 deals with
the linear quadratic problem. By using the system spectral
properties, the operator Riccati equation is converted to
a set of coupled algebraic equations which can be solved
numerically. In Section 6, we consider the case study of a
tubular reactor wherein the Van de Vusse reaction takes
place. This reaction scheme consists of two series parallel
reactions. The mass balance for the reactor results in a
set of coupled nonlinear parabolic PDEs, in particular a
triangular operator. It is also assumed that the parameters
of the reactive term are modelled by a set of ODEs which
represent the deactivation kinetics.

2. MATHEMATICAL MODEL DESCRIPTION

Let us consider the following set of quasi-linear parabolic
PDEs coupled (in-domain) with a set of nonlinear ODEs:

∂z

∂t
= D0

∂2z

∂ξ2
−V

∂z

∂ξ
+ F(k, z)

dk

dt
= g(k)

(1)

with the following initial and boundary conditions

D0
∂z

∂ξ
|ξ=0 = V(z|ξ=0

− zin) and
∂z

∂ξ
|ξ=l = 0

z(ξ, 0) = z0 and k(0) = k0

(2)
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where z(., t) = [ z1(., t) · · · zn(., t) ]
T ∈ H := L2(0, l)n

denotes the vector of state variables of the distributed
parameter portion, k = [ k1(t) · · · km(t) ]

T ∈ K := Rm
denotes the vector of state variables for the lumped pa-
rameter portion of the model. ξ ∈ [0, l] ∈ R and t ∈ [0,∞)
denote position and time, respectively. D0 and V are
matrices of appropriate sizes. F is a Lipschitz continuous
nonlinear operator from H ⊕ K into H. g is a vector of
appropriate size whose entries are functions defined in R.

In a catalytic reactor, F represents the reaction terms and
g represents the deactivation kinetics.

The nonlinear system (1)-(2) can be linearized around the
steady state profile and the resulting linear system is:

∂z̃

∂t
= D0

∂2z̃

∂ξ2
−V

∂z̃

∂ξ
+ N1(ξ)z̃ + N2(ξ)k̃ (3a)

dk̃

dt
= M0k̃ (3b)

where z̃ and k̃ are the state variables in deviation form and
N1,N2 and M0 are the Jacobians of the nonlinear terms
evaluated at the steady state.

N1(ξ) =
∂F(k, z)

∂z
|ss,N2(ξ) =

∂F(k, z)

∂k
|ss and M0 =

dg

dk
|ss.

The equation (3a) is of type diffusion-convection-reaction
PDE. In view of solving the eigenvalues problem, it is
much easier to convert the equation to a diffusion-reaction
type. In order to do so, let us consider the following
transformation

θ = Tz̃ = exp

(
−D−10 V

2
ξ

)
z̃ (4)

The resulting system is:

∂θ

∂t
= D

∂2θ

∂ξ2
+ M1(ξ)θ + M2(ξ)k̃ (5a)

dk̃

dt
= M0k̃ (5b)

where

M1(ξ) = T

[
N1(ξ)− 1

4
VD−10 V

]
T−1

and
M2(ξ) = TN2(ξ), D = TD0T

−1

Let us put u = Vx̃in and define a new state vector

x =

[
xd
xl

]
:=

[
θ

k̃

]
(6)

Now, we are in a position to formulate the system (5)
as an abstract boundary control problem on the infinite-
dimensional space H = H⊕K given by

ẋ(t) = Ax(t), x(0) = x0
Bx(t) = u(t)

y(t) = Cx(t)

(7)

where A is a linear operator defined on the domain

D(A) = {x ∈ H : xd and
dxd
dξ

are absolutely continuous,

d2xd
dξ2

∈ H, D
dxd
dξ |ξ=l

= −V

2
xd|ξ=l}

(8)

and is given by

A =

[
D 0
0 0

]
d2.

dξ2
+

[
M1 M2

0 M0

]
· I :=

[
A11 A12

0 A22

]
(9)

The boundary operator B : H → U := Rn is given by

Bx(.) =

[
−D ∂·

∂ξ
+

V

2
· 0

] [
xd
xl

]
ξ=0

(10)

Since M2 in Equation (9) is generally non-zero, xd and xl
are coupled. By introducing the following transformation,
the system can be transformed to decoupled subsystems:

Λ =

[
I J
0 I

]
∈ L(H) & x̂ = Λx (11)

The operator A will be transformed to

Â = ΛAΛ−1 =

[
A11 −A11J + A12 + JA22

0 A22

]
(12)

with D(Â) = D(A). Therefore, if there exists a J that sat-

isfies the following equation, operator Â will be decoupled.

−A11J + A12 + JA22 = 0 (13)

Remark: The Equation (13) is a Sylvester equation and
admits a unique solution if and only if σ(−A11)∩σ(A22) =
∅. Laub [2005] . The solution is given by

J =

∫ ∞
0

T11(t)A12T12(t)dt (14)

where T11 and T22 are C0-semigroups generated by −A11

and A22, respectively (see Emirsajlow [1999]).

The resulting decoupled system is given by
˙̂x(t) = Âx̂(t), x̂(0) = x̂0

B̂x̂(t) = u(t)

y(t) = Ĉx̂(t)

(15)

where B̂ = BΛ−1 and Ĉ = CΛ−1.

System (15) is in the form of a standard abstract boundary
control problem, then by following a similar approach to
Mohammadi et al. [2011, 2012] it can be converted to a
well-posed infinite dimensional system with bounded input
and output operators. The procedure is given below.
Define a new operator A by

Ax̂ = Âx̂

D(A) = D(Â) ∩ ker (B̂)

= {x̂ ∈ H : x̂ and
dx̂

dξ
are a.c.,

d2x̂

dξ2
∈ H

and D
dx̂d
dξ
|ξ=0 =

V

2
x̂d|ξ=0,D

dx̂d
dξ
|ξ=l = −V

2
xd|ξ=l}

(16)

If A generates a C0-semigroup on H and there exists a B
such that the following condition holds:

Bu ∈ D(Â) and ∀u ∈ U, B̂Bu = u, (17)

then system (15) can be transformed into the following
infinite dimensional system with bounded input operator
on the state space He = H ⊕ U{

ẋe(t) = Aexe(t) +Beũ(t)

ye(t) = Cexe(t)
(18)

where

Ae =

[
0 0

ÂB A

]
, Be =

[
I
−B

]
, Ce = C [B I ] (19)
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and ũ(t) = u̇(t) and xe(t) = [ u(t) x̂(t)−Bu(t) ]
T

are the
new input and state variables.

Remark: Consider B̃ = Λ−1B, then the condition (17)

becomes B̃u ∈ D(Â) and BB̃u = u.

One can assume that B̃ = [Bd Bl ]
T

, then the following
conditions are equivalent to (17)

D
dBd(0)

dξ
− V

2
Bd(0) = I

D
dBd(l)

dξ
+

V

2
Bd(l) = 0

Bl ∈ K

(20)

Bd can be any function that satisfies the above conditions.
For simplicity one can assume that Bd is a matrix of
polynomials. Bl is any arbitrary matrix in K. Finally B
can be calculated by

B = ΛB̃ =

[
Bd + JBl

Bl

]
(21)

The infinite dimensional system (18) is in the form of a
standard infinite dimensional system and now we are in the
position to proceed with dynamical properties and optimal
control design for this system. It should be mentioned
that, since all of the transformations introduced in this
section are exact and there was no approximation involved,
all of the dynamical properties of the original linearized
system are preserved. Hence, we can perform analysis and
controller formulation on the transformed system (18), and
then apply the designed controller to the original system.
In order to study the dynamical properties and solve the
control problem, we need to solve the eigenvalues problem
for the system (18).

3. EIGENVALUES PROBLEM

In this section, the solution of the eigenvalues problem
that was introduced in Mohammadi et al. [2011, 2012] is
extended to the case of coupled PDE-ODE systems. There
is no general algorithm for analytical solution of eigen-
values problem for a general form of parabolic operator.
Therefore, in this section we will consider the following
assumptions:

(1) N1 in (3a) is lower triangular, which leads to lower
triangular form of A11. In most chemical engineering
processes, one can use a transformation to triangu-
larize the system.

(2) The number of state variables in (3a) is two. Exten-
sion to more than two variables is straightforward.

(3) Assume that M0 is diagonalizable. Then without loss
of generality, we can assume that M0 is diagonal.

Then the eigenvalue problem of interest will be:

Aeφ = λφ (22)

where Ae is given by (19) and

A = diag(A11,A22)

A11 :=

[
F11 0
F21 F22

]
=

 d11
d2

dξ2
+ h11 0

h21 d22
d2

dξ2
+ h22


A22 = diag(α11, α22)

(23)

3.1 Eigenvalues and Eigenfunctions of A

The operator A is a block diagonal operator, therefore
σ(A) = σ(A11) ∪ σ(A22). Since A11 is a lower triangular
operator σ(A11) = σ(F11)∪σ(F22). Then, σ(A) = σ(F11)∪
σ(F22)∪ σ(A22). Observe that F11 and F22 have the same
following form:

d
d2

dξ2
+ h(ξ) · I

Since h depend on the space variable ξ, then calculation of
the spectrum is a challenging issue. In Mohammadi et al.
[2012], the spectrum is calculated by dividing the space
interval into finite number N of subintervals [ξi−1, ξi], in
which it is assumed that the values of h are constant,
denoted by hi. Let λn and χn be eigenvalues and eigen-
functions of the operator F11 and µn and ψn be eigenvalues
and eigenfunctions of the operator F22. Then according to
Mohammadi et al. [2012], the eigenvalues of the operator
A11 are

σ(A11) = σ(F11)∪σ(F22) = {λn, µn, n = 1, · · · ,∞} (24)

and the associated eigenfunctions are:{[
χn

(λnI −A22)−1A21χn

]
,

[
0
ψn

]}
n = 1, · · · ,∞ (25)

The corresponding bi-orthonormal eigenfunctions can be
computed by solving the eigenvalue problem for A∗11 and
are given by:{[

χn
0

]
,

[
(µnI −A11)−1A21ψn

ψn

]}
n = 1, · · · ,∞

(26)
A22 is a diagonal matrix and its eigenvalues are {α11, α22}
with the associated eigenvectors {[1, 0]

T
, [0, 1]

T }. Finally:

σ(A) = {λn, µn, α11, α22} n = 1, · · · ,∞ (27)

and the associated eigenfunctions are
 χn

(λnI −A22)−1A21χn
0
0

 ,
 0
ψn
0
0

 ,
 0

0
1
0

 ,
 0

0
0
1


 (28)

The corresponding bi-orthonormal eigenfunctions are
 χn00

0

 ,
 (µnI −A11)−1A21ψn

ψn
0
0

 ,
 0

0
1
0

 ,
 0

0
0
1


 (29)

3.2 Eigenvalues and Eigenfunctions of Ae

Assume that the operator A has eigenvalues {σk, k ≥ 1}
and biorthonormal pair {(φk, ψk), k ≥ 1}. The spectrum
of the operator Ae is given by σ(Ae) = σ(A) ∪ {0} and
λ0 = 0 has a multiplicity of m, where m is the number of
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manipulated variables. The corresponding eigenfunctions
for λ0 are given for i = 1, · · · ,m by

Φi0 =

[
ei

−A−1(ÂB)

]
=

 ei
∞∑
k=0

1

σk
〈ÂB,ψk〉φk

 , (30)

where ei, i = 1, · · · ,m is the orthonormal basis for U =
Rn. The corresponding bi-orthonormal eigenfunctions of
Ae are

Ψi
0 =

[
ei
0

]
, i = 1, · · · ,m (31)

For λ ∈ σ(A), the associated bi-orthonormal pair are

Φn =

[
0
φn

]
& Ψn =

[ 1

σn
(ÂB)∗ψn

ψn

]
(32)

4. SYSTEM PROPERTIES

In this section, we will investigate the generation and
stabilizability properties of the extended system. Let us
start by the generation property.

Theorem 1. Consider the operator A given by Equation
(23). Then A is the infinitesimal generator of a C0-
semigroup on H. Consequently, the operator Ae given
by Equation (18) is an infinitesimal generator of C0-
semigroup on He.

The next theorem gives a necessary and sufficient condi-
tion for the extended system to be β-exponentially stabliz-
able.

Theorem 2. Consider the linear system
∑

(Ae, Be, Ce)
given by Equation (18). Assume that B is a finite rank
operator defined by

Bu =

m∑
i=1

biui

A necessary and sufficient condition for
∑

(Ae, Be,−) to
be β-exponentially stabilizable is that for all n such that
λn ∈ σ+

β (A)

rank

 〈b1, ψn1
〉 · · · 〈bm, ψn1

〉
...

...
〈b1, ψnrn〉 · · · 〈bm, ψnrn〉

 = rn (33)

where rn is the multiplicity of the eigenvalue λn.

5. LQ CONTROL OF PDE-ODE SYSTEMS

This section deals with the design of linear quadratic
(LQ) state feedback optimal controller for the infinite
dimensional system (18)-(19). The aim is to minimize the
quadratic cost function:

J(ũ) =

∫ ∞
0

〈ye(s), ye(s)〉+ 〈ũ(s), Rũ(s)〉ds (34)

where R = R0 ·I and R0 is a self-adjoint positive matrix. It
is known that the solution of this optimal control problem
can be obtained by solving the following algebraic Riccati
equation (ARE) (Curtain and Zwart [1995]):

〈Aex1,Πx2〉+ 〈Πx1, Aex2〉+ 〈Cex1, Cex2〉
−〈Be

∗
Πx1, R

−1Be
∗
Πx2〉 = 0

(35)

When (Ae, Be) is exponentially stabilizable and (Ce, Ae)
is exponentially detectable, the algebraic Riccati Equation

(35) has a unique non-negative self-adjoint solution Π ∈
L(He) and for any initial state x0 ∈ He the quadratic cost
is minimized by the optimal control uo given by

uo(s) = −R−1Be
∗
Πx(s). (36)

Let us set x1 = Φm and x2 = Φn and assume that
Πnm = 〈Φn,ΠΦm〉. Therefore the solution of the optimal
control problem for this system can also be found by
solving the set of algebraic equations given by:

(σn + σm)Πnm + Cnm −
∞∑
k=0

∞∑
l=0

ΠnkΠlmBnm = 0 (37)

where

Cnm = 〈CeΦn, CeΦm〉, and Bnm = 〈R−1BeΨn, B
eΨm〉.

6. CASE STUDY: CRACKING REACTOR

In this section, the proposed approach is applied to a
catalytic cracking reactor with the assumption that the
catalyst deactivates with time.

6.1 Model description

The reaction scheme is given by Equations

A
k1−→ B

k2−→ C and A
k3−→ C (38)

with the kinetic equations given by

rA = −(k1 + k3)y2A = −k0y2A and rB = k1y
2
A − k2yB

It is assumed that the catalyst deactivation will only affect
the pre-exponential factor of the main reaction, and k1 will
be modelled by

dk1
dt

= αk1 + β, k1(0) = k10 (39)

The above equation for the rate of deactivation of the
catalyst, is equivalent to the exponential decay assump-
tion, which is a common assumption for modelling catalyst
deactivation. It is in agreement with the observation that
the catalyst deactivation consists of three phases: rapid
initial deactivation, slow deactivation and stabilization
(Kallinikos et al. [2008]). The model of the reactor will
be:

∂yA
∂t

= Da
∂2yA
∂ξ2

− v ∂yA
∂ξ

+ rA,

∂yB
∂t

= Da
∂2yB
∂ξ2

− v ∂yB
∂ξ

+ rB ,

dk1
dt

= αk1 + β

(40)

Initial and boundary conditions are:

Da
∂yA
∂ξ
|ξ=0 = v(yA|ξ=0 − yAin),

Da
∂yB
∂ξ
|ξ=0 = v(yB |ξ=0 − yBin),

∂yA
∂ξ
|ξ=l = 0,

∂yB
∂ξ
|ξ=l = 0,

yA(ξ, 0) = yA0
(ξ), yB(ξ, 0) = yB0

(ξ), and k1(0) = k10
(41)

By defining the new state and input variables

θ(t) =

[
yA − yAss
yB − yBss
k1 − k1ss

]
, u(t) = v(yAin − yAin,ss) (42)
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the set of equations (40) can be linearized and then
converted to a diffusion-reaction system by using the
transformation given in Equation (4).

The infinite dimensional representation of the linearized
system on the Hilbert space H has the form (7), where
the operator A is given by:

A =


Da

∂2

∂ξ2
− k̂1(ξ) 0 −y2Ass

2k1ssyAss(ξ) Da
∂2

∂ξ2
− k̂2 y2Ass

0 0 α

 (43)

D(A) = {x ∈ H : x and
dx

dξ
are a.c.,

dx2

dξ2
∈ H,

Da
dx1
dξ
|ξ=l = −v

2
x1|x=l,

Da
dx2
dξ
|ξ=l = −v

2
x2|x=l, Da

dx1
dξ
|ξ=0 =

v

2
x1|x=0}

(44)

and the boundary operator B by

Bx(.) =

[
−Da

∂

∂ξ
+
v

2
0 0

] x1x2
x3


ξ=0

(45)

Assuming that, the control variable is x2, the output
operator C is:

C = C0I = [ 0 1 0 ] (46)

By performing the transformation (11), the operator A can
be converted to a block diagonal form and the decoupled
infinite dimensional system (15) will be computed. Using
Equation (14), the operator J in Equation (11) is

J =

∫ ∞
0

T11(t)A12T22 (47)

T11 and T22 are the C0-semigroups generated by −A11 and
A22. The operators A11,A22 and A12 are given by

A11 =

Da
∂2

∂ξ2
− k̂1(ξ) 0

2k1ssyAss(z) Da
∂2

∂ξ2
− k̂2

 ,
A12 =

[
−y2Ass
y2Ass

]
, A22 = [ α ]

(48)

By defining Â = ΛAΛ−1, B̂ = BΛ−1 and Ĉ = CΛ−1, the
decoupled abstract boundary control problem becomes:

dx̂(t)

dt
= Âx̂(t), x̂(0) = x̂0

B̂x̂(t) = u(t)

y(t) = Ĉx̂(t)

(49)

The abstract boundary control problem (49), can be
converted to a well-posed infinite dimensional system with
bounded input and output operators using Equations (16)-
(19). In the Equation (19), B can be calculated using the

discussion in Remark 2. Since B̃ is any arbitrary function

that satisfies conditions (20), we assume that Bd =

[
B1

B2

]

and B1 and B2 are both second order polynomials. Using
the conditions (20), B1 and B2 are:

B1 =
−2

4Dal + vl2
ξ2 +

2

v
(50)

B2 = − 1

4Dal + vl2
ξ2 +

1

4Da + vl
ξ +

2Da

4Dav + v2l
(51)

Bl is any arbitrary number in R and we assume that
Bl = 1. Finally B becomes:

B =

[
B1 + J1Bl
B2 + J2Bl

Bl

]
(52)

7. NUMERICAL SIMULATIONS

In this section the performance of the proposed approach is
demonstrated. The LQ controller discussed in the previous
section was studied via a simulation that used a nonlinear
model of the reactor given in Equations (40)-(41). Values
of the model parameters can be found in Weekman [1969].

The control objective is to regulate the trajectory of yB at
the desired steady state profile. Deactivation of catalyst
has a negative impact on yB and our objective is to
calculate the optimal values of inlet yA to keep trajectory
of yB at the desired profile and eliminate the effect of
deactivation. Using the nominal operating conditions, and
the model given in Equations (40)-(41), the steady-state
profiles of yA and yB were computed. Then, the nonlinear
model was linearized around the stationary states and
transformed to the self-adjoint form of Equations (39)-
(41). Spectra of operators A11 and A22 were calculated
using the algorithm discussed in §3. In order to compute
the spectrum of A11, it was assumed that the length of the
reactor is divided into 50 equally-spaced sections and the
coefficient of the reaction term is constant in each section.
First five eigenvalues of the operator A11 are:

λ = { − 2.39× 10−5,−1.34× 10−4,−4.46× 10−4,

− 1.12× 10−3,−2.35× 10−3}

First five eigenvalues of A22 are:

λ = { − 2.04× 10−6,−1.096× 10−5,−5.68× 10−5,

− 2.08× 10−4,−5.78× 10−4}
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Fig. 1. Second element of φ̂n

Finally, the spectrum of Ae was computed using Equations
(30)-(32). The first six eigenvalues of Ae is:

σ(Ae) = {0,−0.001,−2.39× 10−5,−2.04× 10−6,

− 1.34× 10−4,−1.096× 10−5}
(53)
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and the associated eigenfunctions are shown in Figures
1-2. Once the eigenvalues and eigenfunctions of the op-
erator Ae are calculated, the LQ-feedback controller can
be computed using Equation (37). Note that since Π is a
self-adjoint operator, 〈φn,Πφm〉 = 〈φm,Πφn〉, therefore

Πnm = Πmn. As a result, Equation (37) gives n(n+1)
2

coupled algebraic equations that should be solved simulta-
neously where n is the number of modes that are used to
formulate the controller. Since there are two orders of mag-
nitude difference between the first and sixth eigenvalues of
the operator Ae, the effect of higher order eigenvalues on
the dynamic of the system is considered to be negligible;
therefore, in this work the first five modes were used for
numerical simulation. The computed LQ controller was
applied to the nonlinear model of the reactor. Simulation
of the nonlinear system was performed using COMSOL R©.
The closed loop trajectory of error is shown in Figure 3 and
the optimal input trajectory is shown in Figure 4. Figure
3 illustrates that, as catalyst deactivates, the controller is
able to regulate the trajectory of yB at the desired steady
state trajectory.
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8. SUMMARY

The infinite dimensional LQ controller for boundary con-
trol of an infinite dimensional system modelled by coupled

Parabolic PDE-ODE equations was studied. This work is
an important step in formulation of an optimal controller
for the most general form of distributed parameter systems
consisting of coupled parabolic and hyperbolic PDEs, as
well as ODEs. The LQ controller was applied to a catalytic
fixed bed reactor, where the rate of catalyst deactivation
was modelled by an ODE. The closed loop performance
of the controller was studied via numerical simulations. It
was illustrated that the formulated controller is able to
eliminate the effect of the catalyst deactivation.
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