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Abstract: We present a new output control approach for a linear plant with input delay and an
unknown multiharmonic disturbance acting on the input and the output. To solve this problem,
we combine the well-known predictor feedback approach with the state observer and adaptive
scheme that identifies the frequency of the disturbance. Compared to the existing approaches,
the structure of our adaptive scheme is the simplest and the results apply to plants that are
unstable, non-minimum phase, and have an arbitrary relative degree.
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1. INTRODUCTION

In this paper we consider a unstable linear plant with
an additive multisinusoidal disturbance affected the input
and the output. The plant has a delay in the control
channel and the disturbance has unknown frequencies,
phases, amplitudes, and the common offset. We design
the adaptive control law that stabilizes the system and at
the same time cancels the unknown disturbance providing
stabilization and exponentially decaying to zero of the
state variables. First, we design the adaptive scheme
to identify the frequencies of the disturbance. Then we
establish the observer for the disturbance in current and
predicted time. And eventually we stabilize the plant with
predictor-based feedback, the concept that originated with
the Smith predictor (Smith [1959]).

A lot of papers exist today that devoted to dealyed system
with various problem formulation. The most important of
them deal with input delay. Fundamental and elegant solu-
tions were found and investigated for linear and nonlinear
unstable systems (Krstic et al. [2008], Krstic [2009]).
However the control problem for systems with uncertain
input and output disturbances and the input delay is still
actual because of difficulty. The stability result (Krstic
et al. [2008], Krstic [2009]) for unstable linear system
with the input delay was extended for the case of can-
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cellation the unknown external disturbance (Pyrkin et al.
[2010 a,b]). In this paper we would like to focus on more
general case, complicated by unknown input and output
disturbance, the input delay and open-loop instability of
the nonminimum-phase plant.

The problem of the output disturbance can be found in
the real technical plants. For example, the external dis-
turbance exists and drives the plant somehow. Regulated
variables are not significantly changing while the sensors
located on the plant moves because of the disturbance.
Such problem is very actual in dynamic positioning sys-
tems of the surface vessels.

With the understanding that the literature overview below
may not be exhaustive, we consider some of the most well-
known modern approaches to such problems as developed
by researches R. Marino and P. Tomei and the co-authors
(Marino et al. [2007, 2008], Marino and Tomei [2011,
2013]).

In (Aranovskii et al. [2009]) the algorithm is proposed
to the design of an adaptive observer for an unknown
sinusoidal disturbance that affects the output of a non-
minimum phase linear control plant. In serial of works
the frequency estimation approaches was significantly im-
proved (Bobtsov and Pyrkin [2012], Pyrkin et al. [2010
a,b]). In (Pyrkin et al. [2010 a,b]) the exponential conver-
gence of frequency estimator has been proved. In (Bobtsov
and Pyrkin [2010]) the frequency estimation scheme
was extended to a multisinusoidal case. Moreover, the
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frequency estimation scheme proposed in (Bobtsov and
Pyrkin [2010], Pyrkin et al. [2010 a,b]) is simpler in com-
parison with known analogues (Hsu et al. [1999], Marino
et al. [2007, 2008], Marino and Tomei [2011, 2013], Xia
[2002]).

2. PROBLEM FORMULATION

In this paper we will consider the plant of the following
view

ẋ(t) = Ax(t) +Bu(t−D) +Bδ(t), (1)

y(t) = Cx(t) + αδ(t), (2)

where x ∈ Rn is the unknown vector of state variables, y(t)
is the measurable scalar output, u(t) is the scalar input
with initial condition u(t − D) = 0 for t < D, D ≥ 0 is
known constant delay, A, B, C are corresponding matrices
with known parameters, α is a non-zero number.

The input disturbance δ(t) has a view:

δ(t) = σ +

k∑
i=1

[µi sin(ωit) + νi cos(ωit)] , (3)

and represented by sum of k sinusoids δi(t) with unknown
amplitudes µi and νi that are not equal to zero simulta-
neously, frequencies ωi, and σ is the common offset.

The objective is to find the control u(t) that achieves
regulation of the output

lim
t→∞

x(t) = 0 , (4)

under the following assumptions:

Assumption 1. A, B, C, and α are known.

Assumption 2. (A,B,C) is a completely controllable and
observable triple.

Assumption 3. A lower bound on the disturbance frequen-
cies is known.

3. FREQUENCY ESTIMATION

Our first purpose is to find and reject the disturbance.
Consider the linear observer

˙̂x1(t) = Ax̂1(t) +Bu(t−D) + Lỹ1(t), (5)

ŷ1(t) = Cx̂1(t). (6)

Then the observer error is given by

x̃1(t) = x(t)− x̂1(t), (7)

˙̃x1(t) = (A− LC)x̃1(t) +Bδ(t)− Lαδ(t), (8)

ỹ1(t) = y(t)− ŷ(t) = Cx̃(t) + αδ(t), (9)

where the matrix L makes the matrix A− LC Hurwitz.

Passing to the Laplace images for (8) we can extract the
state vector of the observer error

x̃1(s) = (sI−(A−LC))−1 [(B−Lα)δ(s) + x̃1(0)] , (10)

where s is a complex variable, x̃1(s) = L{x̃1(t)} is a
Laplace image of the function x̃1(t)

Using (9) and (10) we obtain the Laplace images for ỹ1(t)

ỹ1(s) =
[
C(sI − (A− LC))−1(B − Lα) + α

]
δ(s)

+ C(sI − (A− LC))−1x̃1(0). (11)

From (3) we find δ(s)

δ(s) = σ
1

s
+

k∑
i=1

µi
ωi

s2 + ω2
i

+ νi
s

s2 + ω2
i

. (12)

Since the matrix A − LC is Hurwitz, after the inverse
Laplace transform of (11) we obtain

ỹ1(t) = σ̄ + ε̄(t) +

k∑
i=1

[µ̄i sin(ωit) + ν̄i cos(ωit)] , (13)

where σ̄, µ̄i, φ̄i are constants and ε̄(t) is exponentially de-
caying term. Since ε(t) is transients in stable system with
Hurwitz state matrix these functions can be represented
as a sum of decaying exponents multiplying constants,
polynomials, or sinusoids. Therefore, derivatives of these
functions are also exponentially decaying.

Following the idea presented in (Bobtsov and Pyrkin
[2010, 2012], Pyrkin et al. [2010 a,b]) we use the signal
ỹ1 to estimate the frequencies of the disturbance. We start
by introducing the linear filter

ξ(s) =
λ2k0
γ(s)

ỹ1(s), (14)

where λ0 > 0, γ(s) = s2k +γ2k−1s
2k−1 + · · ·+γ1s+γ0 is a

Hurwitz polynomial with 2k different eigenvalues λj , j =
1, . . . , 2k. Let γ0 = λ2k0 and λ = minj=1,..., 2k{|Reλj |}.
Lemma 1. For the filter (14) and the input signal (13) the
relation

ξ(2k+1)(t) = ΩT (t)Θ̄ + ε(t) (15)

holds, where ΩT (t) =
[
ξ(2k−1)(t) . . . ξ(3)(t) ξ(1)(t)

]
is a

regressor of functions ξ(j)(t) that are derivatives of the
output variable of the linear filter (14)

ξ(j)(s) =
λ20s

j

γ(s)
ỹ1(s), (16)

and Θ̄T =
[
θ̄1 . . . θ̄k−1 θ̄k

]
is a vector of parameters

depending on frequencies
θ̄1 = θ1 + θ2 +· · ·+ θk,
θ̄2 = −θ1θ2 − θ1θ3 −· · · − θk−1θk,
...
θ̄k = (−1)k+1θ1θ2· · · θk.

(17)

where θi = −ω2
i , the function |ε(t)| ≤ ρ0e

−λt and its
derivatives are bounded by an exponentially decaying
function.

Proof 1. It is well known (Bobtsov and Pyrkin [2010,
2012]) that signal (13) is the solution of the system

p2k+1ỹ1(t) = θ̄1p
2k−1ỹ1(t)+. . .+θ̄kpỹ1(t) + ε1(t), (18)

where p = d/dt is the differentiation operator, ε1(t) is an
exponentially decaying function of time accosiated with
the term ε̄(t) in (13).

Taking the Laplace transformation in (18) we obtain

s2k+1ỹ1(s) = θ̄1s
2k−1ỹ1(s)+. . .+θ̄ksỹ1(s)+d(s), (19)

where the polynomial d(s) denotes initial conditions and
terms caused by ε1(t).

Multiplying (19) on
λ2k
0

γ(s) with respect to (14) yields

s2k+1ξ(s) = θ̄1s
2k−1ξ(s)+. . .+θ̄ksξ(s)+

λ2k0
γ(s)

d(s). (20)
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After inverse Laplace transformation in (20) we have nec-

essary equation (15), where ε(t) = L−1{λ
2k
0 d(s)
γ(s) }. By force

of polynomial γ(s) structure the function ε(t) can be rep-
resented as a sum of decaying exponents. Thus, derivatives
of these functions are also exponentially decaying.

Remark 1. Since θi is the root of polynomial q2k +
θ̄1q

2k−2+· · ·+ θ̄k−1q2+ θ̄k, where q is an algebraic variable,
it is possible to calculate values θi using θ̄i.

The adaptive scheme for frequencies estimation is pre-
sented in the following theorem.

Theorem 2. The update law

ω̂i =

√∣∣∣θ̂i∣∣∣ , (21)

where estimates θi calculated using ˆ̄θi that are elements of

a vector ˆ̄Θ:
ˆ̄Θ = Υ(t) +KΩ(t)ξ(2k)(t), (22)

Υ̇(t) = −KΩ(t)ΩT (t) ˆ̄Θ(t)−KΩ̇(t)ξ(2k)(t). (23)

where K = diag{ki > 0, i = 1, k}, guarantees that the
estimation error ω̃i = ωi − ω̂i exponentially converges to
zero:

|ω̃i(t)| ≤ ρ1e−β1t, ρ1, β1 > 0, ∀t ≥ 0. (24)

Proof 2. Using Lemma 1, we compute the derivative of the

estimation error ˜̄Θ = Θ̄− ˆ̄Θ:
˙̄̃
Θ(t) = ˙̄Θ− ˙̄̂

Θ(t)

= −Υ̇(t)−KΩ̇(t)ξ(2k) −KΩ(t)ξ(2k+1)

= KΩ(t)ΩT (t) ˆ̄Θ(t) +KΩ̇(t)ξ(2k)(t)

−KΩ̇(t)ξ(2k) −KΩ(t)ξ(2k+1)

= KΩ(t)ΩT (t) ˆ̄Θ(t)−KΩ(t)
(
ΩT (t)Θ̄ + ε(t)

)
= −KΩ(t)ΩT (t) ˜̄Θ(t)−KΩ(t)ε(t). (25)

For the Lyapunov function V (t) = ˜̄ΘTK−1 ˜̄Θ/2 one can see

from (25) that the derivative V̇ (t) is non-positive. This fact

provides only the convergence of ˜̄Θ to some constants.

Temporary assume that ε = 0. It is very well-known that
if the regressor Ω(t) is satisfied the persistence excitation

condition then ˜̄Θ as a solution of
˙̄̃
Θ(t) = −KΩ(t)ΩT (t) ˜̄Θ(t)

tends to zero exponentially fast (see Theorem 4.3.2 in
Ioanou and Sun [1996]).

Since |ε(t)| ≤ ρ0e
−λt is an exponentialy decayng function

of time then it is straightforward to show with respect to
comparison principle (Khalil [2002]) that for an arbitrary

exponential term ε estimate error ˜̄Θ converges to zero
exponentially fast in the system (25)∥∥∥ ˜̄Θ(t)

∥∥∥ ≤ ρ2e−β2t. (26)

Regard to remark 1 we will hold that vector of estimates
θi is accessible based on vector of estimates θ̄i . Since
the calculation θi basing on θ̄i can be considered as an

algebraic task, that the estimate errors θ̃i = θi − θ̂i are
also tends to zero and bounded by a exponentialy decaing
function of time.

Frequencies of the multiharmonic disturbance can be cal-
culated using (21). Let us show that the frequency esti-
mation error ω̃i = ωi − ω̂i for (21) has an exponentially
decaying behavior (24)

ω̃i(t) =

√∣∣∣θ̃i(t) + θ̂i(t)
∣∣∣−√∣∣∣θ̂i(t)∣∣∣ ≤√∣∣∣θ̃i(t)∣∣∣. (27)

ω̃i(t) =
√
|θi| −

√∣∣∣θi(t)− θ̃i(t)∣∣∣ ≥ −√∣∣∣θ̃i(t)∣∣∣. (28)

|ω̃i(t)| ≤
√∣∣∣θ̃i(t)∣∣∣ ≤ ρ1e−β1t, (29)

where ρ1 and β1 depend on ρ2 and β2.

4. DISTURBANCE OBSERVER

On the next step we need to design the observers for the
disturbance δ(t) and predicted estimate δ(t + D) that is
necessary in the compensation task.

The main problem is that parameters of the disturbance
are unknown. Firstly, we will solve the problem of identi-
fying the unknowns σ, µi, and νi. Using estimates σ̂, µ̂i,
and ν̂i one can get the observer for the disturbance δ(t) in
the form

δ̂(t) = σ̂ +

k∑
i=1

[µ̂i sin(ωit) + ν̂i cos(ωit)] (30)

The second observer for predicted estimate of the distur-
bance we can find directly from (30)

δ̂(t+D) = σ̂ +

k∑
i=1

[µ̂i sin(ωi(t+D)) + ν̂i cos(ωi(t+D))]

= σ̂ +

k∑
i=1

[κi sin(ωit) + ζi cos(ωit)] , (31)

where

κi = µ̂i cos(ωiD)− ν̂i sin(ωiD), (32)

ζi = µ̂i sin(ωiD) + ν̂i cos(ωiD). (33)

The next step and the main part of the section is to design
the update laws for the estimates σ̂, µ̂i, and ν̂i.

From (11) we have

ỹ1(t) =

[
b(p)

a(p)

]
δ(t) + ε̄(t), (34)

where p = d/dt is the differential operator and the transfer
function

b(p)

a(p)
= C(pI − (A− LC))−1(B − Lα) + α. (35)

Assumption 4. Let us assume that the polynomial b(p)
does not have roots on the imaginary axis.

4.1 Extracting harmonics

From (14) we get

ξ(t) =

[
λ0
γ(p)

]([
b(p)

a(p)

]
δ(t) + ε̄(t)

)
. (36)

From (36) we can represent ξ as follows:

ξ(t) = ξ0(t) + ε2(t) +

k∑
i=1

ξi(t), (37)
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where ξ0 is the constant, ξi is the sinusoidal function of
time with frequency ωi, and εξ exponentially decays to
zero.

Then we find the relation between ξ1, ξ2 and the distur-
bance δ from (36) by replacing p = jω, where j is the
complex unit.

ξ0(t) = σ
b0
a0
, (38)

ξi(t) = Miµi sin(ωit+ ϕi) +Miνi cos(ωit+ ϕi)

= [ µi νi ]

[
Mi sin(ωit+ ϕi)
Mi cos(ωit+ ϕi)

]
, (39)

where

Mi =

∣∣∣∣ λ0
γ(jωi)

b(jωi)

a(jωi)

∣∣∣∣ , (40)

ϕi = arg

(
λ0

γ(jωi)

b(jωi)

a(jωi)

)
. (41)

For the variable ξ(t) we have:

ξ(t) = ξ0 + ξ1(t) + ξ2(t) +· · ·+ ξk(t). (42)

After differentiation (42) 2k times, we obtain two systems
of k linear equations:

ξ(1)(t) = ξ̇1(t) + ξ̇2(t) +· · ·+ ξ̇k(t),

ξ(3)(t) = θ1ξ̇1(t) + θ2ξ̇2(t) +· · ·+ θk ξ̇k(t),
...

ξ(2k−1)(t) = θk−11 ξ̇1(t) +· · ·+ θk−1k ξ̇k(t),

(43)

and 
ξ(2)(t) = θ1ξ1(t) + θ2ξ2(t) +· · ·+ θkξk(t),

ξ(4)(t) = θ21ξ1(t) + θ22ξ2(t) +· · ·+ θ2kξk(t),
...

ξ(2k)(t) = θk1ξ1(t) + θk2ξ2(t) +· · ·+ θkkξk(t).

(44)

From (42) and (44) we get the realizable estimation scheme
for variables ξ0 and ξi(t):

ξ̂1(t)

ξ̂2(t)
...

ξ̂k(t)

 =


θ̂1 · · · θ̂k
θ̂21 · · · θ̂2k
...

. . .
...

θ̂k1 · · · θ̂kk


−1 

ξ(2)(t)

ξ(4)(t)
...

ξ(2k)(t)

 , (45)

and

ξ̂0 = ξ(t)−
k∑
i=1

ξ̂i(t). (46)

4.2 Amplitudes identification

The bias can be found in the easiest way from (38) and
(46)

σ̂ =
a0
b0
ξ̂0(t). (47)

To identify amplitudes µi and νi we consider the equation
(39). This equation is a trivial regressor model where ξi(t)
is a measurable function, µi and νi are the unknown pa-

rameters and ςi(t) =

[
Mi sin(ωit+ ϕi)
Mi cos(ωit+ ϕi)

]
is the regressor.

The problem is that the regressor ςi is unmeasurable
directly due to uncertain parameters Mi and ϕi. On the
next step we show how to get the regressor using available
variables without complex calculations of Mi and ϕi.

Introduce the auxiliary function of time

∆(t) =

k∑
i=0

sin(ωit). (48)

Then we consider the auxiliary filter

ϑ(t) =

[
λ0
γ(p)

b(p)

a(p)

]
∆(t). (49)

Remark 2. We have to note that since the transfer func-
tion λ0

γ(p)
b(p)
a(p) has a relative degree more than 2k, then from

the filter (49) it is possible to get all derivatives of ϑ(t) till
ϑ(2k)(t).

It is easy to see that the signal ϑ(t) is a sum of sinusoids
with the same frequencies ωi and exponential decaying
term that describes the transient process.

ϑ(t) =
k∑
i=1

ϑi(t) + ε3(t), (50)

Making the same calculations as in (36), (39), (40), (41)
one can check that the signals ϑi(t) equal

ϑi(t) = Mi sin(ωit+ ϕi). (51)

Derivatives of ϑi(t) correspondingly equal

ϑ̇i(t) = ωiMi cos(ωit+ ϕi). (52)

Using the algorithm of harmonic extraction (43)-(45) it is
straightforward to show how to design the observer for all
components of regressors ςi


ϑ̂1(t)

ϑ̂2(t)
...

ϑ̂k(t)

 =


θ̂1 · · · θ̂k
θ̂21 · · · θ̂2k
...

. . .
...

θ̂k1 · · · θ̂kk


−1 

ϑ(2)(t)

ϑ(4)(t)
...

ϑ(2k)(t)

 , (53)


ˆ̇
ϑ1(t)
ˆ̇
ϑ2(t)
...
ˆ̇
ϑk(t)

 =


1 · · · 1

θ̂1 · · · θ̂k
...

. . .
...

θ̂k−11 · · · θ̂k−1k


−1 

ϑ(1)(t)

ϑ(3)(t)
...

ϑ(2k−1)(t)

 , (54)

Remark 3. Inverse matrices in (45), (53), and (54) exist
if the disturbance δ(t) has no less then k harmonics with

various each from other frequencies. Since the functions θ̂i
exponentially converges to θi it is straightforward though

lengthy to show that errors ξ̃0 = ξ0− ξ̂0, ξ̃i = ξi(t)− ξ̂i(t),
and

˜̇
ξi(t) = ξ̇i(t) − ˆ̇

ξi(t) also tend to zero exponentially
fast.

So we get the algorithm to calculate the regressor functions
ςi(t)
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ς̂Ti (t) =

[
ϑ̂i(t)

ˆ̇
ϑi(t)

ηi(t)

]
, (55)

ηi(t) =

{
ω̂i(t), if ω̂i ≥ ω0,
ω0, otherwise,

(56)

Eventually, we design the update laws for th amplitudes
µi and νi by the standard gradient approach (Ioanou and
Sun [1996]) basing on the regressor model (39)

˙̂µi(t) = kµ ϑ̂i(t)

(
ξ̂i(t)− µ̂i(t)ϑ̂i(t)− ν̂i(t)

ˆ̇
ϑi(t)

ηi(t)

)
, (57)

˙̂νi(t) = kν

ˆ̇
ϑi(t)

ηi(t)

(
ξ̂i(t)− µ̂i(t)ϑ̂i(t)− ν̂i(t)

ˆ̇
ϑi(t)

ηi(t)

)
, (58)

where kµ, kν > 0 and ηi(t) is defined above in (56) .

Analysis of the estimate errors for µ̃i = µi − µ̂i and
ν̃i = νi− ν̂i gives the similar calculations as in the theorem
2 in formula (25) with further conclusions. Let us skip
reduplication of that fragment to reduce the paper size.
We note only that it is straightforward though lengthy
to show that µ̃i and ν̃i are exponentially decays to zero
(Ioanou and Sun [1996]). The same fact about exponential
convergence is fulfilled correspondingly for observer errors

δ̃1(t) = δ(t)− δ̂(t) and δ̃2(t) = δ(t+D)− δ̂(t+D).

Therefore, we obtain two observers for δ(t) and δ(t + D)
that are required the estimates σ̂, µ̂i, and ν̂i. All necessary
calculations to get these estimates are presented above.

5. MAIN RESULT

In this section we present the control law that provides the
stability of the closed loop and convergence of the state to
zero.

The feedback will be chosen in the form

u(t) = −δ̂(t+D) + ψ(t), (59)

where δ̂(t) is given by (30) and ψ(t) is the new control is
to be designed to stabilize the closed-loop system.

Substituting (59) into (1) yields

ẋ(t) = Ax(t) +Bψ(t−D) +Bδ̃1(t). (60)

Basing on (60) we introduce the second observer for state
variables.

˙̂x2(t) = Ax̂2 +Bψ(t−D) + Lỹ2(t), (61)

ŷ2(t) = Cx̂2(t) + αδ̂(t), (62)

Consider a model of the observer error x̃2(t) = x(t)− x̂(t)
with respect to (1), (2), (61), (62)

˙̃x2(t) = (A− LC)x̃2(t) +Bδ̃1(t)− Lαδ̃2(t), (63)

ỹ2(t) = Cx̃2(t) + αδ̃2(t). (64)

Since the system (63) and (64) is linear, the matrix A −
LC is Hurwitz, and the functions of time δ̃1(t) and δ̃2(t)
exponentially decay one can find that the observer errors
x̃2(t) and ỹ2(t) converge to zero

‖x̃2(t)‖ ≤ ρ4e−β4t, |ỹ2(t)| ≤ ρ5e−β5t, (65)

where ρ4, β4, ρ5, β5 > 0.

Thus, we obtain the state observer for the plant (1), (2)
such that all state estimates exponentially converges to
true state variables. So we will use the second observer
(61), (62) to design stabilizing controller.

Following the approach in (Krstic [2009], Pyrkin et al.
[2010 a,b]), we model the delay by the transport PDE

Ψt(z, t) = Ψz(z, t), 0 < z < D (66)

Ψ(D, t) = ψ(t) (67)

with the initial condition Ψ(z, 0) = ψ(z−D). The solution
of this PDE is Ψ(z, t) = ψ(t + z − D), and therefore
Ψ(0, t) = ψ(t − D) gives the delayed input. We can now
rewrite (60) in the form

ẋ(t) = Ax(t) +BΨ(0, t) +Bδ̃1(t). (68)

Following the idea of the backstepping algorithm proposed
in (Krstic [2009]) and investigated in (Pyrkin et al. [2010
a,b]) we consider the transformation

W (z, t) = Ψ(z, t)−KeAzx̂2(t)−K
∫ z

0

eA(z−τ)BΨ(τ, t)dτ

+K

∫ D

z

eA(z+D−τ)LỸ (τ, t)dτ, (69)

Ỹ (z, t) = ỹ2(t+ z −D), (70)

Ỹt(z, t) = Ỹz(z, t), (71)

Ỹ (D, t) = ỹ2(t). (72)

and the control law

ψ(t) = KeADx̂2(t) +K

∫ D

0

eA(D−τ)BΨ(τ, t)dτ . (73)

Lemma 3. The transformation (69) and the control law
(73) maps the plant (68) into an internally stable system

ẋ(t) = (A+BK)x(t) +BW (0, t) +Bε2(t), (74)

Wt(z, t) = Wz(z, t), (75)

W (D, t) = 0, (76)

where the term w(0, t) goes to zero for finite time, the
matrix K makes the matrix A + BK Hurwitz, and expo-
nentially decaying term ε2(t).

Proof 3. Let us to calculate the time and spatial deriva-
tives of the transformation (69)

Wz(z, t) = Ψz(z, t)−KAeAzx̂2(t)−KBΨ(z, t)

−KA
∫ x

0

eA(z−τ)BΨ(τ, t)dτ −KeADLỸ (z, t)

+KA

∫ D

z

eA(z+D−τ)LỸ (τ, t)dτ, (77)

Wt(z, t) = Ψt(z, t)−KeAz ˙̂x2(t)

−K
∫ z

0

eA(z−τ)BΨt(τ, t)dτ

+K

∫ D

z

eA(z+D−τ)LỸt(τ, t)dτ
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= Ψz(z, t)−KAeAzx̂2(t)−KBΨ(z, t)

−KeAzBΨ(0, t)−KeAzLỸ (D, t)

+KeAzBΨ(0, t) +KeAzLỸ (D, t)

−KA
∫ z

0

eA(z−τ)BΨ(τ, t)dτ −KeADLỸ (z, t)

+KA

∫ D

z

eA(z+D−τ)LỸ (τ, t)dτ

= Wz(z, t). (78)

Setting z = D in (69) gives (76). Setting z = 0 in (69) and
substituting the resulting Ψ(0, t) in (60), we have

ẋ(t) = (A+BK)x(t) +BW (0, t) +Bδ̃1(t)

−BKx̃2(t)−BK
∫ D

0

eA(D−τ)LỸ (τ, t)dτ. (79)

From (65) we have that terms x̃2(t) and ỹ2(t) converge
to zero and bounded by exponential decaying functions.
Therefore, it is straightforward to show the same for the

term K
∫D
0
eA(D−τ)LỸ (τ, t)dτ . Finally, we denote

ε2(t) = δ̃1(t)−Kx̃2(t)−K
∫ D

0

eA(D−τ)LỸ (τ, t)dτ, (80)

which completes the proof.

Following (Krstic et al. [2008], Pyrkin et al. [2010 a,b])
consider the Lyapunov function

V (t) = xT (t)Px(t) +
γ

2

∫ D

0

(1 + z)W (z, t)2dz, (81)

where P = PT > 0 is the solution to the Lyapunov
equation

P (A+BK) + (A+BK)TP = −Q (82)

for some Q+QT > 0 and some positive number γ.

After differentiating (81) we obtain

V̇ (t) = xT (t)(P (A+BK) + (A+BK)TP )x(t)

+ 2xTPBW (0, t) + 2xTPBε2(t)

− γ

2
W (0, t)2 − γ

2

∫ D

0

W (z, t)2dz

≤ −xT (t)Qx(t) +
4

γ
xT (t)PBBTPx(t)

+
γ

2
ε22(t)− γ

2

∫ D

0

W (z, t)2dz. (83)

Taking γ = 8λmax(PBBTP )/λmin(Q) we get

V̇ (t) ≤ −λmin(Q)

2
xT (t)x(t) +

γ

2
ε22(t)

− γ

2(1 +D)

∫ D

0

(1 + z)W (z, t)2dz. (84)

and eventually

V̇ (t) ≤ −C0V (t) +
γ

2
ε22(t), (85)

where C0 = min
{
λmin(Q)
2λmax(P ) ,

1
1+D

}
and ε22(t) is exponen-

tially decaying term.

To complete analysis of the Lyapunov function (81) for the
closed-loop system we have to use the comparison principle
(Khalil [2002]). Thus one can find that |V (t)| ≤ ρ6e

−β6t

with some ρ6, β6 > 0. Hence the main goal (4) is achieved.

6. CONCLUSIONS

We design the adaptive controller for the linear plant with
the input delay that cancels the unknown disturbance
affected the input and the output providing exponentially
decaying to zero for the state variables.
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