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Abstract: In multi-zones building temperature regulation systems whose subsystems are
coupled with each other, how to improve the optimization performance of entire system with
limited network information is a problem when distributed control framework or distributed
model predictive control (DMPC) is employed. In this paper, a novel coordination strategy,
where each subsystem-based model predictive control (MPC) added a quadratic function of the
affection of the current subsystem’s input to its down-stream neighbours into its optimization
index, is proposed for improving the optimization performance of entire system. This method do
not need any additional network connections comparing to the method without this coordination
strategy. The simulation of applying the proposed DMPC to a four-zones building temperature
regulation system shows the affectiveness of the proposed method.

1. INTRODUCTION

The multi-zones building temperature regulation systems
are typical spatially distributed systems which are com-
posed of many physically coupling subsystems (rooms or
zones). The distributed control structure is usually used
in this class of systems due to its good error tolerance and
high flexibility. However, the performance of a distributed
framework is, in most cases, not as good as that of a
centralized control. How to improve the performance of
entire system without any weakening of the characteristics
of error tolerance and control flexibility is a problem in
the control of multi-zones building temperature regulation
systems.

The Distributed Model Predictive Control (DMPC) which
controls each subsystem by a separate subsystem-based
Model Predictive Control (MPC), has been more and more
popular in the control of multi-zones building temperature
regulation systems, See. Moroşan et al. [2010], since it
not only inherits MPC’s advantages of explicitly accom-
modating constraints and good dynamic performance, but
also has the virtue of distributed framework (See Qin
and Badgwell [2003], Maciejowski [2002], Sandell Jr et al.
[1978], Scattolini [2009], Leirens et al. [2010], Christofides
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et al. [2012], Zheng et al. [2011b, 2013a]). Thus, this paper
will proceed under the DMPC framework.

To improve the global performance of entire closed-loop
system, several DMPC coordination strategies appeared in
the literatures. The earliest and most adopted one is that
each subsystem-based MPC uses the inputs sequence of its
neighbors to estimate the interactions among subsystems
Camponogara et al. [2002], and some design of stabilized
DMPC with constraints is given by Dunbar [2007] and
Farina and Scattolini [2012]. Since each subsystem-based
MPC minimizes its own subsystem’s cost in this method,
some article call it as non-cooperative DMPC or local cost
optimization based DMPC (LCO-DMPC). If iteration is
used in this strategy, the Nash Optimality can be obtained,
See Li et al. [2005]. In LCO-DMPC, each subsystem-
based MPC requires to communicated with the MPCs
for its downstream and upstream neighbors. Another very
practically coordination strategy is that each subsystem-
based MPC takes not only it’s own performance but also
that of the subsystems it directly impacts on into account
in its optimization index, See Zheng et al. [2009, 2011a].
Experiments and numeric results improve that these strat-
egy could significantly improve the performance of entire
system. In this strategy, each subsystem-based control
required to connected to the controllers of its upstream
neighbours, downstream neighbors, and its downstream
neighbors’ upstream neighbours. The third commonly used
strategy is that each subsystem-based MPC optimizes the
cost over the entire system Zheng et al. [2013b], Venkat
et al. [2007]. If iteration is used in this strategy, the Pareto
Optimality can be obtained, See Venkat et al. [2007],
Stewart et al. [2010]. In GCO-DMPC, each subsystem-
based MPC requires the information of the whole system
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Fig. 1. Four-zones building configuration

and the full connected are required. It can be seen from
above that, in the existing methods, with the increasing
of the coordination degree, the performance of entire sys-
tem becomes better and better, the network connectivity
become more and more complicity, and consequently the
error tolerance and high flexibility become weaker and
weaker. To find a method which could improve the global
performance or coordination degree without any increasing
of network connectivity is still remain to be solved.

In this paper, an Impact region optimization based DMPC
is proposed for multi-zones building temperature regula-
tion system, where each subsystem-based MPC adds a
quadratic function of the impact of current subsystem’s
input to its down stream neighbours into its optimization
index to increase the coordination degree. It do not need
any additional network connectivity comparing to the ap-
proach without this coordination strategy.

The remainder of this paper is organized as follows. Section
2 describes the problem to be solved in this paper. Section
3 presents the design of the ICO-DMPC. Section 4 presents
the simulation results to demonstrate the effectiveness
of the proposed ICO-DMPC algorithm. Finally, a brief
conclusion to the paper is drawn in Section 5.

2. PROBLEM

2.1 Multi-zones Building Temperature Regulation System

The multi-zones building temperature regulation systems
are a class of typical spatially distributed systems, as
shown in (Fig. 1), which are composed of many physical-
ly interacted subsystems (rooms or zones) labeled with
S1,S2, . . . ,Sm, respectively. The thermal influences be-
tween rooms of the same building occur through internal
walls (the internal walls isolation is weak) and/or door
openings. A thermal-meter and a heater (or air condition)
are installed in each zone, which is used to measure and
adjust the temperature of the multi-zones building.

2.2 System Model

Assume that the coupling of each room is caused only
between two adjacent zones through walls. And if zone
Si is affected by Sj , for any i, j ∈ P = {1, 2, . . . ,m}, and
i 6= j, Si is said to be a downstream neighbour of Sj , and
Sj is an upstream neighbour of Sj . Let Pu

i denotes the
set of the subscripts of the upstream neighbors of Si, and
Pd
i denotes the set of the subscripts of the downstream

neighbors of Si. Knowing that, for multi-zones building
heating systems, the coupling element is the output of each
subsystems (the measured temperatures), then as point by
Moroşan et al. [2010, 2011], the subsystem model including
this influence with the adjacent zones can be expressed in
following state space formulation{

xi,k+1 = Aiixi,k + Biiui,k +
∑

i∈Pu
Bijyj,k

yi,k = Ciixi,k

(1)

where, ui,k is input of the subsystem Si, refers to the given
power to the heater i at time instant k; yi,k is the output
of Si, refers to the temperature average in zone i at time
instant k; xi,k is the state vector of Si; Aii,Bii,Cii and
Bij are the system coefficient matrices.

Consider that yj,k = Cjjxj,k and let Aij = BijCjj , then
Equation 1 can be rewritten as following nominal state
interacted model{

xi,k+1 = Aiixi,k + Biiui,k +
∑

i∈Pu
Aijxj,k

yi,k = Ciixi,k

. (2)

The control design and the discussion in this paper are all
based on this model.

2.3 Problem

A distributed or decentralized control structure is em-
ployed in the multi-zones building temperature regulation
system, where an individual controller is installed in each
zone and each controller independently controls the aver-
age temperature of corresponding zone through adjusting
the corresponding heater.

The control objective is make the global performance
index of closed-loop system as small as possible, in the
same time, do not violate the characteristics of good error
tolerance and the high control flexibility. The optimization
index of entire system is

J(k) =
∑
i∈P

Ji(k) (3)

where

Ji(k)=

N∑
l=1

(∥∥Ciixi,k+l|k − yspi
∥∥2
qi,l

+
∥∥∆ui,k+l−1|k

∥∥2
ri,l

)
,(4)

yspi is the set point of the ith zone’s temperature and
∆ui,k+l|k = ui,k+l|k − ui,k+l−1|k is the increment of heater

power of the ith zone at the time instant k. Constant
qi,l, ri,l > 0, l = 1, 2, . . . , N , is weighting coefficients for
the ith zone, and let the weighting matrices for Si be

Qi = block− diag{qi,1, qi,2, . . . , qi,N} > 0
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Fig. 2. Distributed MPC configuration

Ri = block− diag{ri,1, ri,2, . . . , ri,N} > 0.

It seems that the DMPC is very suitable for control this
system. However as is well known that the performance of
the DMPC is not as good as that of centralized MPC when
coupling among subsystems exists. In the existing coordi-
nation methods, the increasing of the network connectivity
degree is always companied with the to improving of the
global performance or the increasing of the coordination
degree (the range of the subsystems included in each
subsystem-based controller’s cost function). It is unex-
pected in the multi-zones building temperature regulation
system since it causes the decreasing of the degree of error
tolerance and control flexibility of control system.

Can we find a method which could increase the coordi-
nation degree of the whole control system without any
increasing of the network connectivity requirements? It
stimulates this study.

3. DISTRIBUTED MODEL PREDICTIVE CONTROL

3.1 Control Structure

The configuration of DMPC for multi-zones building tem-
perature regulation is shown in (Fig. 2). The temperature
of each zone is controlled by and individual MPC due
to its good dynamic performance. The temperature yi,k
is measured by thermal sensors and feeds into the ith

MPC through cables. Then MPC i calculated the control
law ui,k according to the temperature set point yspi . The
heater acts according to the control law ui,k to regulate the
temperature of Si. These subsystem-based MPCs are able
to communicate with its neighbours and the exchanged
information can be used to coordinate these subsystem-
based MPCs.

In this section, a DMPC called Impacted-Region Optimiza-
tion based DMPC (ICO-DMPC) is proposed for improving
the performance of the entire system, yet remaining the
error tolerance and flexibility characteristics of closed-loop
system. With this strategy, each subsystem-based MPC
only exchanges information with its adjacent MPCs. The

ICO-DMPC for multi-zones building temperature regula-
tion is detailed in the following context.

3.2 The Coordination Strategy

Consider that the control law of current subsystem Si
effects the performance of its downstream neighboring sub-
systems Sj , j ∈ Pd

i , in the ICO-DMPC, the performance
of Sj is added into the performance index of the MPC
which control Si based on a approximation of the updated
state sequence of Sj . The approximated state sequence
equals the assumed state sequence of Sj pluses the impact
caused by the change of control law of Si to the state
sequence of Sj . In this way, the coordination degree is
expanded without any increasing of the required network
connectivity in solving each subsystem-based MPC.

Define that fi,k+l|k be the matching from ui,k:k+l−1|k to
xi,k+l|k, and it can be deduced from equation (2) as

fi,k+l|k=xi,k+l|k

=Al
iixi,k +

l∑
h=1

Al−h
ii Biiui,k+h−1|k

+
∑
j∈Pu

i

l∑
h=1

Al−h
ii Aijxj,k+h−1|k (5)

Then, it have

∂fi,k+l|k

∂xj,k+h−1|k
= Al−h

ii Aij (6)

∂xi,k+l|k

∂ui,k+h−1|k
= Al−h

ii Bii (7)

The fi,k+l|k derivation of the uj,k+h−1|k becomes

∂fi,k+l|k

∂uj,k+h−1|k
=

l∑
p=h+1

∂fi,k+l|k

∂xj,k+p−1|k

∂xj,k+p−1|k

∂uj,k+h−1|k

=

l∑
p=h+1

Al−p
ii AijA

p−h
jj Bjj . (8)

Since the state and input sequences of downstream and
upstream neighbors of Si is unknown to the controller
of Si, assume the state and input sequences define that
x̂i,k+l|k, ûi,k+l|k and ∆ûi,k+l|k be the assumed states, the
assumed input and the assumed input increment which are
calculated in the previous calculation, respectively. Add
the estimation of the performance of the Sj , j ∈ Pd

i to the
cost function of the MPC for Si, then the optimization
index of Si becomes

J̄i(k)=

N∑
l=1

(∥∥Ciixi,k+l|k − yspi
∥∥2
qi,l

+
∥∥∆ui,k+l−1|k

∥∥2
ri,l

)
+
∑
j∈Pd

i

N∑
l=1

∥∥Cjj

(
x̂j,k+l|k + ωiSji,k+l|k

)
−yspj

∥∥2
qj,l

+
∑
j∈Pd

i

N∑
l=1

∥∥∆ûi,k+l−1|k
∥∥2
rj,l

(9)
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where ωi is the weighting coefficients for improving the
convergence when using iterative algorithm, and

Sji,k+l|k =

l∑
h=1

l∑
p=h+1

Al−p
jj Aji

·Ap−h
ii Bii(ui,k+h−1|k − ûi,k+h−1|k) (10)

(h = 1, 2, . . . , l).

The predictive model can be expressed as

yi,k+l|k=CiiA
l
iixi,k +

l∑
h=1

CiiA
l−h
ii Biiui,k+h−1|k

+
∑
j∈Pu

i

l∑
h=1

CiiA
l−h
ii Aijx̂j,k+h−1|k (11)

Consider the physical limitations on the heater’s capa-
bility and the zone temperature, the output, the input
and the input increment constraints are added into each
subsystem-based MPC. Then we get following optimiza-
tion problem for Si in each control period.

Problem 1. For all subsystem Si, provided that xi,k,
x̂j,k+l|k, j ∈ Pu

i

⋃
Pd
i and ∆ûi,k+l−1|k−1,j ∈ Pd

i , l =
1, 2, . . . , N , find the control sequence ∆ui,k:k+N−1|k, which
minimize the performance index

min
ui,k:k+N−1|k

J̄i(k)

Subject to the constraints:

Equation(11),

yi,L ≤ yi,k+l|k ≤ yi,U , (12)

yj,L ≤ yj,k+l|k + CjiωiSji,k+l|k ≤ yj,U , (13)

ui,L ≤ ui,k+l−1|k ≤ ui,U , (14)

∆ui,L ≤ ∆ui,k+l−1|k ≤ ∆ui,U , (15)

l = 1, 2, ..., N ;

||yi,k+N |k − yspi ||
2
qi,N < ε2. (16)

where, [yi,L, yi,U ], [ui,L, ui,U ] and [∆ui,L,∆ui,U ] are the
bounds of the average temperature, the bounds of the
capability of heater and the bounds of the charge rate of
the heater in zone Si. Equation (16) is a final constraint
for improve the stability of each subsystem-based MPC,
and ε > 0.

To solve problem (1) efficiently, following ICO-DMPC
algorithm is given for ∀Si, i ∈ P.

Algorithm 1. (GCO-DMPC Algorithm).

Step 1: Initialization.

• Initialize xi,k0 , xi,k0+l|k0
, l = 1, 2, . . . , N , which satis-

fy the constraints of Problem 1.

Step 2: Update control law at time k > k0.

• Step 2.1
Set iteration t = 1, and set x̂i,k+l|k = xi,k+l|k−1.

• Step 2.2
Measure xi(k), transmit x̂i,k+l|k to its down stream

neighbors and upstream neighbors; And receive x̂j,k+l|k
from its down stream neighbors and upstream neigh-
bors.
• Step 2.3

Solving Problem 1 to obtain the optimal solution
∆ut

i,k+l|k, and predict the future state xi,k+l|k based

on the solution ∆ut
i,k+l|k.

• Step 2.4
If

||∆ut
i,k+l−1|k −∆ut−1

i,k+l−1|k||
2
2 ≤ ε0 or t > tmax

then set
u∗i,k = ui,k−1 + ∆u∗i,k+l−1|k,

and goto Step 3; Else set

x̂i,k+l|k = xi,k+l|k, t = t + 1,

and goto Step 2.2.

Step 3: Update control at time k + 1.

• Let k + 1→ k, repeat Step 2.

It should be notice that although an iterative Algorithm
is a present, the Problem 1 can also be solved by a non-
iterative algorithm through setting tmax = 1. Since the
communication burden will increase with the increasing of
iteration, tmax should not be set too large in practice. So
far the ICO-DMPC for multi-zones building temperature
regulation system is introduced, some simulation results
will be presented in the next section to show the effective-
ness of the proposed method.

4. SIMULATION

For simplicity, the 4-zones building shown in Fig. 1 is taken
as example. The relationship among these four zones is
also shown in Fig. 1, where zone S1 is impacted by zone
S2, zone S2 is impacted by zone S1 and zone S3, zone S3 is
impacted by zone S2 and zone S4, zone S4 is impacted by
zone S3, The models of these four zones are respectively
given by

S1 :

{
x1,k+1 = 0.64x1,k + 0.32u1,k + 0.13x2,k

y1,k = x1,k,
(17)

S2 :

{
x2,k+1 = 0.61x2,k + 0.31u2,k + 0.12x1,k

+0.12x3,k

y2,k = x2,k,
(18)

S3 :

{
x3,k+1 = 0.62x3,k + 0.33u3,k + 0.12x2,k

+0.12x4,k

y3,k = x3,k,
(19)

S4 :

{
x4,k+1 = 0.67x4,k + 0.33u4,k + 0.13x3,k

y4,k = x4,k,
(20)

For the purpose of comparison, the centralized MPC,
LCO-MPC and the ICO-DMPC are all applied to this
system. Let the constraint on the input be [ui,L, ui,U] =
[−2, 2] and the constraint on the increment of input be
[∆ui,L,∆ui,U] = [−1.5, 1.5]. Set the all controllers’ (Cen-
trialized MPC, ICO-DMPC, LCO-DMPC) parameters of
control horizon be N = 10, Qi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 5],
Ri = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and ωi = 0.8, where i ∈
{1, 2, 3, 4}. In order to reduce the communication resource,
non-iterative algorithm is used in both ICO-DMPC and
LCO-DMPC.
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The state responses and the inputs of the closed-loop sys-
tem under the control of the centralized MPC, ICO-DMPC
and LCO-DMPC are shown in Figs. 3 and 4, respectively.
The shape of the state response curves under the control
of ICO-DMPC are similar to those under the centralized
MPC. Under the ICO-DMPC control design, when set
point changed, there is no significant overshooting, but
some fluctuation exists in the trajectories of states of the
interacting subsystems. Under the LCO-DMPC control
design, the states of all subsystems could converge to set
point, but there exists much larger overshooting and larger
amplitude in the state fluctuation comparing to those
under the control of ICO-DMPC and centralized MPC.
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Fig. 3. The evolution of the states under the centralized
MPC, LCO-DMPC and ICO-DMPC.

Table 2 shows the state square errors of the closed-loop
system under the control of the centralized MPC, the
ICO-DMPC and the local cost optimization based DMPC,
respectively. The total errors under the ICO-DMPC is 3.04
(28.83%) larger than that under the centralized MPC. The
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Fig. 4. The evolution of the inputs under the centralized
MPC, LCO-DMPC and ICO-DMPC.

total errors resulting from LCO-DMPC is 71.45 (679.89%)
larger than that resulting from the centralized MPC. The
performance of the ICO-DMPC is significantly better than
that of LCO-DMPC.

Table 1. State square errors of the closed-loop
system under the control of the centralized
MPC (CMPC), the LCO-DMPC and the ICO-

DMPC

Items CMPC ICO-DMPC LCO-DMPC

S1 0.0190 0.1219 6.1832

S2 2.3190 3.0572 18.9352

S3 5.8060 7.2366 35.5856

S4 2.3648 3.1232 21.2535

Total 10.5088 13.5390 81.9575

Table 1 shows the required network connectivity under
the control of the centralized MPC, the ICO-DMPC and
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the LCO-DMPC, respectively. The required network con-
nectivity under the control of ICO-DMPC equals to that
under the control of LCO-DMPC and is much less than
that under the control of centralized MPC.

Table 2. Required network connectivity under
the control of the centralized MPC (CMPC),

the LCO-DMPC and the ICO-DMPC

Items CMPC ICO-DMPC LCO-DMPC

S1 All 2 2

S2 All 1, 3 1, 3

S3 All 2, 4 2, 4

S4 All 3 3

From these simulation results, it can be seen that the
proposed ICO-DMPC could obtain a better global perfor-
mance than LCO-DMPC when the same network connec-
tivity provided. The global performance of entire closed-
loop system is improved without any weakening of the
characteristics of good error tolerance and high flexibility
of the whole control system.

5. CONCLUSION

In this paper, a Impact-Region Optimization based DM-
PC is proposed for 4-zones building temperature regu-
lation system. The proposed method could improve the
global performance of entire closed-loop system without
any increasing of network connectivity. The stabilizing
implementation of proposed DMPC subject to decoupled
constraints maybe a extension of this work and will be
done in the near future.
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