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Abstract: This paper proposes a vision-based minimum-time trajectory planning method for
mobile robots, which takes into account kinematic constraints for linear/angular velocities and
accelerations, as well as the visibility constraint. Different from existing methods, by means
of homography-based pose estimation, the vision-based trajectory planning is formulated as a
constrained optimal control problem in the scaled Euclidean space, which is solved by using
the Gauss Pseudospectral Method (GPM). Specifically, the homography matrix is estimated
and then decomposed to obtain the relative rotation angle and the scaled translation between
the current pose and the desired one, which are expressed in the scaled Euclidean space.
Then, kinematic constraints are taken into account in this space, while the visibility constraint
is formulated by mapping the Euclidean homography matrix to the image space. To our
best of knowledge, it is the first reported approach to solve the vision-based minimum-time
trajectory planning problem for wheeled mobile robots, which can help improve the working
efficiency in realistic visual servoing systems. Extensive simulation and experimental results
with comparison to other related methods are presented to demonstrate the effectiveness of the
proposed approach.

Keywords: Visual servoing, mobile robotics, trajectory planning

1. INTRODUCTION

Visual servoing exploits real-time image feedback to com-
plete robot control tasks, which has been widely applied
in many areas such as robot manipulators, wheeled mobile
robots, unmanned aerial vehicles (UAV), see Chaumette
et al. (2006); Liu et al. (2013); Guenard et al. (2008).

Sensing and actuation constraints are important when
putting the visual servoing theory into practice. In particu-
lar, since a single camera has a limited field-of-view (FOV),
this visibility constraint should be guaranteed to obtain
available image feedback during the visual servoing pro-
cess. In addition, the kinematic constraints, including the
maximum linear and angular velocity of the robot, should
also be taken into account in practice. These visibility and
kinematic constraints, becomes even more challenging for
vision-based control wheeled mobile robots (WMRs), as
the complex nonholonomic constraint of WMRs makes the
motion planning and controller design much more difficult,
see Li et al (1993).

In order to cope with the visibility constraint, some
results have been reported for visual servoing of robot
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manipulators by Mezouar et al (2002); Wang et al. (2012).
A hybrid visual servoing (HVS) strategy is designed by
Wang et al. (2012) using Lyapunov-based techniques to
stabilize a robot manipulator. It should be noted that this
approach achieves good performance while simultaneously
satisfying practical FOV and actuation constraints.

One mainstream class of methods is to utilize a planning
and control framework, for which various constraints can
be taken into account in the planning stage, followed by
image-based tracking control to complete visual servoing
tasks such as the classical work of Mezouar et al (2002).
An excellent survey of this topic can be found in Kazemi
(2010) and Chesi (2009) employ convex optimization to
successfully handle the visibility constraint and other ge-
ometry constraints such as work space, joint limits, oc-
clusion, and so on. Shademan et al. (2012) and Kazemi
(2012) use the methodologies from sampling-based plan-
ning to address vision-based path planning problem in the
presence of robot motion and visibility constraints. The
work of Kermorgant et al. (2013) uses a weighting matrix
to consider the visibility and robot joint constraints. Yet,
these methods usually regard the robot end-effector as
a freely moving point in its allowable workspace, which
dose not take into account the nonlohonomic constraint
for wheeled mobile robots. In addition, these approaches
generally focus on the path planning level, and optimal
trajectory planning which should also consider the kine-
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matic constraints such as maximum velocities, needs to be
further studied.

Restricting the topic to visual servoing of mobile robots,
the control problem becomes more challenging due to
the well-known nonholonomic constraints. Zhang et al.
(2011) propose a motion estimation method which only
requires a small number of features to alleviate the FOV
problem, while Fang et al. (2012) utilize active pan-tilt
camera to keep features visible during the servoing pro-
cess. Bhattacharya et al (2007) propose an optimal path
planning approach which successfully yields the shortest
path length under the visibility constraint, and López-
Nicolás et al (2009) further propose a novel visual control
approach using feedback of homography elements. The
work of Salaris et al. (2010) presents an advanced op-
timal planning method which successfully consider both
Horizontal-FOV(H-FOV) and Vertical-FOV(V-FOV) con-
straints. Note that these methodologies are important
in practice and can yield the shortest-length path, the
research on minimum-time planning of wheeled mobile
robots under FOV and kinematic constraints are still open.

To increase the servoing efficiency, this paper makes an
attempt to give a solution to the vision-based minimum-
time trajectory planning problem, in the presence of lim-
ited field-of-view (FOV) and kinematic constraints for
maximum linear/angular velocities and accelerations. In
particular, a mobile robotic system with a fixed onboard
camera is considered, with a previously captured desired
image representing the target pose of the mobile robot.
During the planning process, the homography matrix be-
tween the current image and the desired one is estimated
and then decomposed to obtain a relative orientation and a
scaled translation. Subsequently, we successfully formulate
minimum-time trajectory planning problem into a con-
strained optimal control problem in the scaled Euclidean
space. In this formulation, FOV and kinematic constraints
can be taken into account by using the relationship be-
tween the homography matrix and the relative pose to
obtain the mapping between the scaled Euclidean space
and the image space. Afterwards, Gauss pseudospectral
method(GPM) is adopted to numerically solve this op-
timal control problem, since GPM has a fast conver-
gence rates than other pseudospectral methods. Extensive
simulation and experimental results in comparison with
shortest-path planning (SPP) are presented to demon-
strate superior performance of the proposed approach.

2. PROBLEM STATEMENT

Consider a mobile robot with a fixed onboard camera, let
Fc denote a right-hand camera frame, with its Xc axis
being the optical axis pointing to the front of the mobile
robot. The Zc axis is perpendicular to the motion plane
of the mobile robot and passes through the midpoint of
the wheels axis. The camera frame at the desired pose is
defined as the desired camera frame F∗

c which is regarded
as the world reference frame in this paper.

2.1 Homography-based pose estimation

For a planar reference object, the relationship between
the current image and the desired one is described by a
projective homography matrix G ∈ R3×3:

pi = λiGpi
∗ (1)

where pi = [1 ui vi]
T, p∗

i = [1 u∗
i v∗i ]

T ∈ R3

represent image pixel coordinates of feature points Pi

(i = 1, 2 . . . N), in the current image I and the desired
image I∗, respectively. λi ∈ R is a scale factor. Note that
G encodes the information for both camera internal and
external parameters. To obtain the relative pose between
Fc and F∗

c , a Euclidean homography matrix H is obtained
as follows:

H = A−1GA (2)
where A ∈ R3×3 is the camera intrinsic matrix. The matrix
H is further decomposed as

H = R+
T

d∗
n∗T (3)

where R ∈ R3×3 and T ∈ R3 denote the rotation
matrix and translation vector between Fc and F∗

c . n
∗ =

[nx
∗, ny

∗, nz
∗]T ∈ R3 is the normal vector of the reference

plane expressed in F∗
c , and d∗ ∈ R is the distance

between origin of F∗
c and the reference plane. To facilitate

the subsequent analysis, a scaled translation vector t =
[tx ty 0]T ∈ R3 is introduced as follows:

t =
T

d∗
(4)

By using feature point matching between the current
image and the desired one, the matrix G can be computed.
Afterwards, the homography matrix H is obtained using
the calibrated camera intrinsic matrix A and (2). Then,
R, t,n∗ of the robot can be obtained by decomposition
of the homography, see Chen et al (2006). Using the
rotation matrix R, it is easy to obtain the rotational angle
θ ∈ (−π, π] as

θd = atan2(r21, r11) (5)

with rij ∈ R being the ith-row, jth-column entry of R.
In the following, we aims to plan a trajectory for the
measurable signals θ and t = [tx ty 0]T in the scaled
Euclidean space.

2.2 System model development

In terms of the scaled translation t = [tx ty 0]T and the
rotation angle θ, the kinematics model of a unicycle mobile
robot is described as

ṫx =
υ

d∗
cos(θ)

ṫy =
υ

d∗
sin(θ)

θ̇ = ω

(6)

where υ ∈ R and ω ∈ R denote the linear velocity and
the angular velocity, respectively. Note that d∗ ∈ R is an
unknown constant denoting the distance between origin of
F∗

c and the reference plane.

The objective of the paper is to first plan a minimum-time
trajectory θd and td = [txd tyd 0]T for measurable signals
θ and t = [tx ty 0]T, and then we will use the kinematic
model (11) to make the robot track the planned reference
trajectory such that

lim
t→∞

(t− td) = 0, lim
t→∞

(θ − θd) = 0. (7)

To discriminate notation for planned trajectories and the
current system state, we use the subscript (·)d in the rest
of the paper to denote the variables relating to planned
trajectories.
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3. GPM-BASED MINIMUM-TIME TRAJECTORY
PLANNING

To satisfy the velocity and acceleration constraints, we
propose an augmented system model, based on which the
kinematic and visibility constraints are expressed as func-
tions of system state or control varaibles. Subsequently, the
minimum-time trajectory planning problem is converted
into a constrained time-optimal control problem, which is
further solved by using GPM.

3.1 Augmented System Model

Since the constant distance d∗ is unknown, we introduce
a scaled linear velocity v∗ ∈ R as follows:

v∗ =
v

d∗
. (8)

By using the subscript (·)d for planned trajectories, the
kinematic model becomes ṫxd = v∗d cos(θd)

ṫyd = v∗d sin(θd)

θ̇d = ωd

(9)

To satisfy the acceleration constraints and simultaneously
ensure high-order smoothness of planned trajectories for
txd(t), tyd(t), θd(t), the system state is augmented by us-
ing the derivative of scaled linear acceleration and angular
acceleration, i.e. scaled linear jerk and angular jerk, as the
new control input vector.

Let a∗υd and j∗υd being the scaled linear acceleration and
scaled linear jerk, with aωd and jωd ∈ R being the angular
acceleration and angular jerk, respectively. Then we have

a∗υd = v̇∗d, jυd = ȧ∗υd, aωd = ω̇d, jωd = ȧωd. (10)

Therefore, the augmented system model is obtained:

ṫxd = υ∗
d cos(θd)

ṫyd = υ∗
d sin(θd)

θ̇d = ωd

υ̇∗
d = a∗υd

ω̇d = aωd

ȧ∗υd = j∗υd
ȧωd = jωd

(11)

which can be rewritten as the following form

ξ̇(t) = f(ξ(t),u(t), t), t ∈ [t0, tf ], (12)

with the system state ξ(t) ∈ R7 and control input vector
u(t) ∈ R2 being ξ = [txd tyd θd υ∗

d ωd a∗υd aωd]
T ,

u(t) = [j∗υd jωd]
T . In the following, the problem is con-

verted to find the optimal control input u(t) to drive the
mobile robot from the initial position to the origin while
satisfying state and control constraints, path constraints
as well as the boundary conditions. When the control
input trajectory u(t) is determined, the trajectories for

txd(t), tyd(t), θd(t), ṫxd(t), ṫyd(t), θ̇d(t) can be computed
simultaneously using the GPM in section 3.4.

3.2 Constraints

Boundary Constraints For the vision-based trajectory
planning task, boundary conditions should be satisfied for
the initial configuration ξ(t0) and the desired one ξ(tf ):

ξ(t0) = [txd0, tyd0, θd0, 0, 0, 0, 0]
T

(13)

ξ(tf ) = [0, 0, 0, 0, 0, 0, 0]
T

(14)

where txd0, tyd0 ∈ R represent the initial position, with
θd0 ∈ (−π, π] being the initial orientation. t0, tf ∈ R
denote the starting time and the arrival time, respectively.
Since the desired pose is set as the reference frame, the
desired configuration should be at the origin.

Statement and Control Constraints In practice, the vi-
sual servoing task, as well as the motor physical limits, en-
forces several kinematic constraints such as the maximum
linear/angular velocity and the maximum linear/angular
acceleration. These practical motion constraints are ex-
pressed as follows:

−υmax

d̄∗
≤ υ∗

d(t) ≤
υmax

d̄∗
(15)

−aυmax

d̄∗
≤ a∗υd(t) ≤

aυmax

d̄∗
(16)

−ωmax ≤ ωd(t) ≤ ωmax (17)

−aωmax ≤ aωd(t) ≤ aωmax (18)

where υmax, ωmax ∈ R+ are defined as the maximum
linear velocity and maximum angular velocity of the mo-
bile robot system, respectively; aυmax, aωmax ∈ R+ are
the maximum linear acceleration and maximum angular
acceleration of the system. d̄∗ ∈ R is a known upper bound
of the unknown distance d∗. Note that state constraints for
υ∗
d(t) and a∗υd(t) are given in a robust manner, by using

the upper bound to ensure the planned trajectory can be
implemented in practice.

In addition, to ensure that the accelerations do not change
too fast, the magnitude of the jerk control input is con-
strained in an appropriate range as

−umax ≤ u(t) ≤ umax (19)

with umax = [j∗υmax jωmax]
T.

Path Constraints During the visual servoing process,
visibility constraints, which mean that features should
always lie in the camera field of view, needs to be guaran-
teed to obtain effective visual feedback. By means of the
relationship (3) between the homography matrix H and
the planned orientation θd and scaled translation txd, tyd,
the visibility constraint is can be formulated using the
system state.

It follows from (2) that

G = AHA−1. (20)

Substituting (3) and (4) into (20) yields

G = A(Rd + tdn
∗T )A−1. (21)

where Rd is the rotation matrix recovered from the rota-
tion angle θd, with td = [txd tyd]

T. Since feature pixel
coordinates p∗

i = [1 u∗
i v∗i ]

T at the desired pose is known,
the corresponding feature pixel coordinates at the current
pose can be acquired using (1) as

pi = λiA(Rd + tdn
∗T )A−1p∗

i . (22)

Therefore, by introducing unit vectors j1 = [1 0 0]T,
j2 = [0 1 0]T and j3 = [0 0 1]T, λi is calculated as:

λi = jT1 A(Rd + tdn
∗T )A−1p∗

i (23)

λi is a scale factor to normalize the first element of pi to
be 1. Based on (22) and (23), the visibility constraints are
expressed with a form of path constraints as follows:
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0 ≤ jT2 A(Rd + tdn

∗T )A−1p∗
i

jT1 A(Rd + tdn∗T )A−1p∗
i

≤ w

0 ≤ jT3 A(Rd + tdn
∗T )A−1p∗

i

jT1 A(Rd + tdn∗T )A−1p∗
i

≤ h

(24)

where w, h ∈ R denote the width and height of the
image in pixels, respectively. So far, we have successfully
transcribe the visibility constraints to path constraints on
the system state θd, txd, tyd, which is subsequently taken
into account in the constrained optimal control framework.

3.3 Formulation of the minimum-time trajectory planning
problem

With the previous developed system model and con-
straints, the minimum-time trajectory planning problem
can be formulated as a constrained time-optimal control
problem. The mathematical formulation is given as:

min
u(t)∈U

J = tf − t0, (25)

subject to (12), (13),(14),(15), (16), (17), (18), (19) and
(24). where J ∈ R represent the total planning time. By
solving this constrained time optimal control problem, the
optimal trajectories for both the control input u(t) and
the system state ξ(t) are computed.

3.4 GPM-based minimum-time trajectory planning

The vision-based trajectory planning has been formulated
as a constrained optimal control problem. In this section,
Gauss Pseudospectral Method(GPM) is directly adopted
to give an effective solution. For more details, please refer
to Rao et al. (2010).

The main idea of GPM is described as follows. The
Legendre-Guass (LG) points are used to discretize the
state and control trajectories, which are then approxi-
mated by Lagrange interpolating polynomials using the
value of the state and control variables at these specific
LG points. Hence, the derivative of the state trajectory can
be approximated by directly differentiating the Lagrange
polynomials, thus the system dynamics equations are con-
verted to algebraic equations. In addition, the terminal
state can be approximated by using Guass quadrature.
As a consequence, the time optimal control becomes a
parametric nonlinear programming problem (NLP) subject
to a series of algebraic constraints. By further solving
this NLP using sequence quadratic programming (SQP),
trajectories for the control input u(t) and the system
state ξ(t) can be computed. The resulting trajectories for

txd(t), tyd(t), θd(t), ṫxd(t), ṫyd(t), θ̇d(t) are then utilized
as reference trajectories for the subsequent visual servo
tracking controller.

4. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed vision-
based minimum-time trajectory planning method, simula-
tion results are provided. The GPOPS software package
and the SNOPT tool for SQP are utilized to implement
the GPM algorithm. In the simulation, the kinematic
constraints and d̄∗ are set as follows:

υmax = 0.5 m/s, ωmax = 0.5 rad/s, d̄∗ = 1.5m (26)
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Fig. 1. Trajectories with/without the FOV constraint
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Fig. 2. (a) Pixel trajectories without the FOV constraint,
where the dashed rectangle (red) denotes the camera
FOV. (b) Pixel trajectories with the FOV constraint

aυmax = 0.3 m/s2, aωmax = 1.0 rad/s2 (27)

j∗υmax = 100m/s3, jωmax = 100 rad/s3 (28)

For the camera with a limited FOV, the internal pa-
rameters are set as u0 = 376.9, v0 = 285.3, fx =
1003.7, fy = 1006.3, with its resolution being w = 760
pixels and h = 582 pixels. Six reference points are chosen
as the features to increase the accuracy for the homogra-
phy estimation. In all these simulation results, the origin
[txd tyd θd]

T = [0 0 0]T is the desired configuration.

4.1 Results with and without visibility constraints

One main factor that affects the planning result is the
visibility constraint. Hence, it is interesting to investigate
the behavior of planning results using a limited FOV
camera compared with those not considering visibility
constraints.
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Fig. 3. The solid line (blue) denotes the trajectory by
MTTP, the dashed line (black) is the trajectory by
SPP.

Table 1. comparison of path length and time
between two methods

Path Length(unitless) Time(s)

MTTP 0.683 5.277
SPP 0.559 11.927

When visibility constraints are not considered, the mobile
robot can move more freely, and resulting paths are
short. To ensure visibility constraints, the minimum-time
trajectories may become longer when lateral error is larger.
One comparative example is shown in Figure 1. The
solid line (black) denotes the motion trajectory without
considering FOV, while the dashed line (blue) represents
the trajectory considering the FOV constraint. Figure 2
shows the corresponding pixel trajectories result without
and with the visibility constraint. It is shown that, though
the result without visibility constraints presents more
efficient trajectories, the feature points may escape outside
the camera field of view.

4.2 Comparison with shortest-path planning

In order to further illustrate the performance of the pro-
posed minimum-time trajectory planning method (MTTP),
we conduct comparative simulation with respect to the
shoretest-path planning (SSP) considering visibility con-
straints 1 . It is found that these two types of trajectories
are not always closed to each other, and in some cases, they
are obviously different. Hence, it is necessary to study the
MTTP to improve the visual servo efficiency.

One example is given in Figure 3, wherein the solid line
denotes results for MTTP and the dashed line represent
the one for SSP. It is seen that though the resultant path
for MTTP is longer than the one for SSP, MTTP is much
more efficient as shown in Table 1.

5. EXPERIMENTAL RESULTS

In the experiments, we use the proposed MTTP to plan
the minimum-time trajectories for txd(t), tyd(t), θd(t),

ṫxd(t), ṫyd(t), θ̇d(t), while these trajectories are tracked
by directly employing the visual servo tracking approach
in the work of Chen et al (2006).

1 The SSP is implemented by setting the objective function of the

proposed approach as
∫ tf

0
|v∗d(t)|.
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Fig. 4. Planned trajectories (red dashed lines) and actual
trajectories (blue solid lines) with small lateral errors.

A PD-3X mobile robot is utilized in the experiment, with
kinematic constraints, d̄∗ and camera parameters being set
as same as those in the simulation.

Figure 4 shows several resulting trajectories from differ-
ent initial poses, wherein dashed trajectories (red) are
planned by MTTP, and the solid trajectories (blue) are
real trajectories using visual feedback. It is seen that the
tracking controller works well with small tracking errors.
From Figure 4, it is also shown that with small lateral
translation between the initial pose and the desired one,
the length of minimum-time trajectories are also short.

However, when the lateral translation along Yc axis in-
creases, the trajectories become much more complicated
since it is hard to keep the features in FOV if the robot
moves along a short path. One of the experimental results
is shown in Figure 5 (a). During the tracking process, the
arrows may not be precisely along the forward directions
of the mobile robot, because the arrows are calculated
by homography-based pose estimation where some small
errors are unavoidable due to image noises. Though some
arrows are slightly inconsistent with the moving directions
at some locations, it is generally right in most cases.

5.1 Experimental Comparison with SSP

Comparative experimental results between MTTP and
SPP are also presented to illustrate the difference of
these two type of methods. By using the same initial
configurations of the proposed MTTP as shown in Figure
5 (a), we present comparative results of SPP in Figure
5 (b). The time performance are shown in Tab. 2. These
results reveal again that the results by MTTP have large
difference from the SSP, and it should be paid attention to
improve the efficiency of practical visual servoing systems,
even at the price of longer motion paths.

6. CONCLUSION

This paper presents a vision-based minimum-time tra-
jectory planning approach for wheeled mobile robots in
presence of visibility and kinematic contraints. Different
from existing methods, the vision-based minimum-time
trajectory planning problem is formulated as a constrained
time-optimal control problem in the scaled Euclidean
space, wherein the visibility constraints is established by
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Table 2. comparison of path length and time between two methods

Planned Path Length (unitless) Actual Path Length (unitless) Planned Time (s) Actual Time (s)

MTTP 1.597 1.351(1.752(unit:m)) 9.299 10.494
SPP 1.167 1.1632(1.495(unit:m)) 14.158 15.053
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Fig. 5. Planned trajectory (red dashed line) and actual
trajectory (blue solid line) with larger lateral errors.

using the homography matrix to map the scaled pose
information to the image space. Afterwards, GPM is uti-
lized to successfully give an effective solution. To our
best of knowledge, it is the first approach to solve the
vision-based minimum-time trajectory planning problem
for mobile robots, which can help improve the working
efficiency in realistic visual servoing systems. Simulation
and experimental results are provided, which illustrate
the effectiveness of the proposed method. Future work
will focus on extending the proposed method to deal with
other practical constraints, such as the obstacle avoidance,
occlusion, and so on.
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