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Abstract: We consider the problem of communicating the state of a dynamical system via
a Shannon Gaussian channel with a given power constraint and no feedback. The transmitter
observes a possibly noisy measurement of the state. These measurements are then used to
encode the message to be transmitted over a noisy Gaussian channel, where a power constraint
is imposed on the transmitted message. The receiver, which acts as both a decoder and estimator,
observes the noisy measurement of the channel output and makes an optimal estimate of the
state of the dynamical system in the minimum mean square sense. Thus, we get a mixed problem
of Shannon’s source-channel coding problem and a sort of Kalman filtering problem. We show
that optimal encoders and decoders are linear filters with a finite memory and we give explicitly
the state space realization of the optimal filters. We also present the solution of the case where
the transmitter has access to noisy measurements of the state where we derive a separation
principle for this communication scheme. Finally, we give necessary and sufficient conditions for
the existence of a stationary solution.

NOTATION

Ai Denotes the ith row of the matrix A.
xt xt = (x(0), x(1), ..., x(t)).
L The set of lower triangular matrices.
B Denotes the backward shift operator,

x(t− 1) = Bx(t).
E{·} E{x} denotes the expected value of the

stochastic variable x.
E{·|·} E{x|y} denotes the expected value of the

stochastic variable x given y.
cov cov(x, y) = E{xyᵀ}.
h(x) Denotes the entropy of x.
h(x|y) Denotes the entropy of x given y.
I(x; y) Denotes the mutual information between

x and y.
N (m,V ) Denotes the set of Gaussian variables with

mean m and covariance V .

1. INTRODUCTION

1.1 Background

Shannon [1948, 1949] considered the problem of reliable
communication of a one-dimensional source over a one-
dimensional Gaussian channel. In particular, Shannon
considered the following coding-decoding setting for an
analog Gaussian channel:

inf
f :R→R
g:R→R

E|g(x)|2≤P

E|x− f(g(x) + n)|2
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Fig. 1. A simple model of filtering problem over a Gaus-
sian communications channel with Gaussian noise
n ∼ N (0, N) and delay given by the backward shift
operator B. The samples of the signal z are power
limited with E|z(t)|2 ≤ P .

where x ∼ N (0, X) and n ∼ N (0, N). Shannon showed
that the infimum can be attained by using linear encoder
and decoder g and f , respectively .

However, the multi-input/multi-output problems or the
problem when the message x to be estimated is given
by a linear dynamical system driven by process noise
are still open. For instance, the latter problem arises in
video-streaming over a wireless channel. A video stream
consists of highly correlated information described by a
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dynamical system due to the correlation between the
sequential picture frames.

More specifically, consider the block-diagram in Fig. 1. We
have the process noise given by w, which is assumed to be
Gaussian white noise, and the state is given by x = Hw
where H is a causal linear operator/filter.
The precoder is given by the causal operator G, not
necessarily linear. The encoded signal z = Gx is then
transmitted over a Gaussian channel with white noise
given by n. Typically, one has power constraints on the
transmitted signal z(t), that is E|z(t)|2 ≤ P , for some
positive real number P . At the other end, the message
received is y(t) = z(t) + n(t), for t = 0, ..., T − 1, and is
delayed with one time step by the backward shift operator
B. Finally, the causal operator F is the decoder, designed
to reconstruct the state x by x̂ = FBy, to minimize the
mean squared error E|e|2 = E|x− x̂|2.

For the case where G is a fixed linear operator, the
optimal filter F is well known to be given by the optimal
Kalman filter, which is a linear operator. However, if G
is a precoder to be co-designed together with F, we get
a nonconvex problem. To this date, it’s not known if the
linear filters are optimal, and whether the order of the
linear optimal filters is finite.

1.2 Previous work

Kalman [1960] made a fundamental contribution to op-
timal control and filtering of linear dynamical systems
by deriving recursive state space solutions. The model
considered by Kalman assumes linear measurements of the
state, possibly partial and corrupted by noise. The role of a
communication channel with feedback and its affect on sta-
bility was studied in Tatikonda et al. [2004] and necessary
conditions for stability were given. Fundamental limita-
tions of performance were studied in Martins and Dahleh
[2008]. In Charalambous and Farhadi [2008], the capac-
ity was matched to achieve a certain distortion, which
required a time-varying power constraint that cannot be
fixed beforehand. The problem of linear communication
and filtering over a noisy channel for the stationary case
has been considered in Johannesson et al. [2010] where
it was shown that this problem can be transformed to a
convex optimization problem that grows with the size of
the time horizon. However, the order of the linear optimal
filters obtained from Johannesson et al. [2010] is infinite

1.3 Contribution

We consider the linear dynamical system H given by

x(t+ 1) = ax(t) + bw(t), x(0) = 0, 0 ≤ t ≤ T − 1.

The main contributions of this paper are to show that
the optimal filters F and G in the communication scheme
without feedback, as described in Fig. 1, are linear and
have a finite memory independent of the size of the time
horizon. We also show explicitly that the state space
realizations of the optimal filters are given by

G :


s(t+ 1) = as(t) +K(t)x̌(t)

x̌(t) = −s(t) + x(t)

z(t) =

√
P

σt
x̌(t)

F : x̂(t+ 1) = ax̂(t) +K(t)y(t)

with σ2
t = E|x̌(t)|2, K(t) = aσt

√
P (P + N)−1, x̌(0) = 0,

and s(0) = 0. The interpretation of the state space equa-
tions is the following. s(t) = E{x̂(t)|xt} is the estimate at
the transmitter of the estimate x̂(t) at the decoder. The
transmitter’s estimate of e(t) is x̌(t) = E{e(t)|xt} = x(t)−
s(t). This estimate is then transmitted over the Gaussian
channel, in order to supply the decoder with the inno-
vations(the incremental information the decoder needs to
correct its estimate of x(t)).

2. PROBLEM FORMULATION

2.1 Optimal Filtering over Noisy Communication Channel

Let H be a first order linear time invariant dynamical
system with state-space realization

x(t+ 1) = ax(t) + bw(t), x(0) = 0, 0 ≤ t ≤ T − 1,
(1)

where a, b ∈ R and w is assumed to be white Gaussian
noise with w(t) ∼ N (0, 1) for all 0 ≤ t ≤ T − 1.

The precoder is a map G : xt 7→ z(t), where z is the
signal transmitted over the Gaussian channel. We have a
power constraint on the transmitted signal z(t) given by
E|z(t)|2 ≤ P .

The measurements at the decoder are given by y(0) := 0
and

y(t) = z(t) + n(t), for t ≥ 1,

where n is a Gaussian white noise process with n(t) ∼
N (0, N). The decoder is a map F : yt−1 7→ x̂(t).

The objective is to design causal precoder and decoder
maps G : xt 7→ z(t) and F : yt−1 7→ x̂(t), respectively, such
that the average of the mean squared error is minimized:

1

T

T∑
t=1

E|x(t)− x̂(t)|2 → min .

The precoder and decoder maps can be equivalently writ-
ten as a causal dynamical system according to

z(t) = gt(x
t)

x̂(t) = ft(y
t−1),

(2)

where gt is the precoder and ft is the decoder.

Now we may formalize our first problem statement:

Problem 1. Consider the linear dynamical system

x(t+ 1) = ax(t) + bw(t), x(0) = 0, 0 ≤ t ≤ T − 1,

where a, b ∈ R and w(t) ∼ N (0, 1) for 0 ≤ t ≤ T −1. Let n
be a Gaussian white noise process independent of w, with
n(t) ∼ N (0, N). Find an optimal precoder and decoder
pair (2) such that

1

T

T∑
t=1

E|x(t)− x̂(t)|2 → min,

where y(0) = 0 and y(t) = z(t) + n(t), for t ≥ 1.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2377



2.2 Linear optimal precoder/decoder design

The linear filter H has the following Toeplitz matrix
representation over the time t = 1, ..., T :

x(1)
x(2)
x(3)

...
x(T )

 =


b 0 0 · · · 0
ab b 0 · · · 0
a2b ab b · · · 0

...
...

...
. . .

...
aT b aT−1b aT−2b · · · b




w(0)
w(1)
w(2)

...
w(T − 1)

 (3)

Let the precoder G be a causal linear filter that maps x
to z: 

z(1)
z(2)
z(3)

...
z(T )

 =


G11 0 0 · · · 0
G21 G22 0 · · · 0
G31 G32 G33 · · · 0

...
...

...
. . .

...
GT1 GT2 GT3 · · · GTT



x(1)
x(2)
x(3)

...
x(T )

 (4)

The precoder is subject to a power constraint on its output
signal z = Gx given by E|z(t)|2 ≤ P , for t = 0, ..., T.

The decoder F is a causal linear filter that observes the
delayed measurements with y(0) := 0 and y(t) = z(t) +
n(t) for t ≥ 1. It has the following linear operator
representation:

x̂(1)
x̂(2)
x̂(3)

...
x̂(T )

 =


F11 0 0 · · · 0
F21 F22 0 · · · 0
F31 F32 F33 · · · 0

...
...

...
. . .

...
FT1 FT2 FT3 · · · FTT




y(0)
y(1)
y(2)

...
y(T − 1)

 (5)

The output x̂ = FBy is the optimal estimate of x in
the sense that the average of the mean squared error, is
minimized:

1

T

T∑
t=1

E|x(t)− x̂(t)|2.

Now let

H =


b 0 0 · · · 0
ab b 0 · · · 0
a2b ab b · · · 0

...
...

...
. . .

...
aT b aT−1b aT−2b · · · b

 , (6)

G =


G11 0 0 · · · 0
G21 G22 0 · · · 0
G31 G32 G33 · · · 0

...
...

...
. . .

...
GT1 GT2 GT3 · · · GTT

 , (7)

F =


F11 0 0 · · · 0
F21 F22 0 · · · 0
F31 F32 F33 · · · 0

...
...

...
. . .

...
FT1 FT2 FT3 · · · FTT

 , (8)

x =


x(1)
x(2)
x(3)

...
x(T )

 , w =


w(0)
w(1)
w(2)

...
w(T − 1)

 , z =


z(1)
z(2)
z(3)

...
z(T )

 ,

x̂ =


x̂(1)
x̂(2)
x̂(3)

...
x̂(T )

 , n =


n(0)
n(1)
n(2)

...
n(T − 1)

 , y =


y(0)
y(1)
y(2)

...
y(T − 1)

 .
Then,

x = Hw, z = GHw, y = GHw + n, x̂ = Fy,
T∑
t=1

E|x(t)− x̂(t)|2 = E|x− x̂|2 = E|Hw − Fy|2

After some algebra, the least mean square error for a linear
precoder and decoder will be given by

inf
G,F∈L

GtHH
∗G∗

t≤P

E|Hw − F (GHw + n)|2 (9)

Note that the optimization problem above is inherently
non-convex, since we have a coupling term between G and
F in the quadratic objective function.

3. MAIN RESULTS

3.1 Finite-Horizon Filtering problem

The first result of this paper presents the structure of the
optimal precoder and decoder:

Theorem 1. The optimal communication scheme to Prob-
lem 1 is given by

x̂(t) = E{x(t)|yt−1}
x̃(t) = x(t)− x̂(t)

x̌(t) = E{x̃(t)|xt}

z(t) =

√
P

σt
x̌(t),

(10)

where σ2
t = E|x̌(t)|2, for t = 1, ..., T .

Proof. See the Appendix.

Theorem 2. The state space realization of the optimal
communication scheme solution of Problem 1 is given by

x̂(t+ 1) = ax̂(t) +K(t)y(t)

s(t+ 1) = as(t) +K(t)x̌(t)

x̌(t) = x(t)− s(t)

z(t) =

√
P

σt
x̌(t),

(11)

where s(0) = 0, Vss(0) = Vsx(0) = Vxx(0) = 0,

K(t) = aσt
√
P (P +N)−1 (12)

σ2
t = Vxx(t)− 2Vsx(t) + Vss(t) (13)

[
Vss(t+ 1) Vsx(t+ 1)
Vxs(t+ 1) Vxx(t+ 1)

]
=[

a−K(t) K(t)
0 a

] [
Vss(t) Vsx(t)
Vxs(t) Vxx(t)

] [
a−K(t) K(t)

0 a

]ᵀ
+

[
0 0

0 b2

]
.

(14)

Proof. See the Appendix.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2378



3.2 Separation Principle for Optimal Communication

Consider the linear system

x(t+ 1) = ax(t) + bw(t)

γ(t) = cx(k) + dv(t)

for 0 ≤ t ≤ T − 1, with x(0) = 0 and v(t) is Gaussian
white that might or might not be correlated with w(t).
We assume now that the transmitter does’t have access to
the state x(t) but γ(t) instead. The optimal transmission
scheme is for the transmitter to find the best estimate of
x(t) based on γt, namely x̆(t) = E{x(t)|γt}.
To see this, let

ξ(t) = x(t)− x̆(t)

be the estimation error. It’s well known that x̆(t) is given
by the Kalman filter

x̆(t+ 1) = ax̆(t) + L(t)(cξ(t) + dv(t)) (15)

where L(t) are the optimal Kalman filter gains for t =
0, ..., T (see, e. g., Åström [1970]). We also know that
γt and ξ(t) are uncorrelated(see Proposition 3 in the
Appendix). This implies in turn that yt and ξ(t) are
uncorrelated. Hence, the averaged estimation error of the
decoder is equal to

1

T

T∑
t=1

E|x(t)−x̂(t)|2 =
1

T

T∑
t=1

(
E|x̆(t)− x̂(t)|2 + E|ξ(t)|2

)
.

Obviously, the decoder can’t do much about the error
covariance E|ξ(t)|2. The decoder F minimizes the averaged
estimation error above if and only if it minimizes the aver-
aged estimation error of x̆(t). Thus, we have transformed
the output measurement problem to a state measurement
problem at the encoder G, where the measured states are
the states of the dynamical system given by (15).

3.3 Stationarity

In this section, we will present conditions under which a
stationary solution exists to Problem 1 (that is a solution
as T → ∞). Let x̃(t) = x(t) − x̂(t) be the estimation
error of x(t) and consider the state space equations (11) of
the optimal estimate. After some algebra, we get the state
space equations for the estimation error (see the proof of
Theorem 2 in the Appendix):

x̃(t+ 1) =

(
a−K(t)

√
P

σt

)
x̃(t)−K(t)n(t) + bw(t)

+K(t)

√
P

σt
x̄(t)

with
x̄(t+ 1) = ax̄(t)−K(t)n(t).

Obviously, the state x̄(t) can be stationary if and only if
|a| < 1. In addition, in order for x̃(t) to be stationary, we
must have

1 >

∣∣∣∣∣a−K(t)

√
P

σt

∣∣∣∣∣ =

∣∣∣∣a− a · N

P +N

∣∣∣∣ =
P

P +N
|a|,

where we have used (41) in the first equality above. Clearly,
the inequality is always fulfilled for |a| < 1. We conclude
the result above:

Theorem 3. Problem 1 has a solution as T → ∞ if and
only if |a| < 1.

4. CONCLUSIONS

We considered the problem of optimal encoder/decoder
filter design over a Shannon Gaussian channel to esti-
mate the state of a linear dynamical system. We showed
that optimal encoders and decoders are linear filters with
a finite memory and we give explicitly the state space
realization of the optimal filters. We also presented the
solution of the case where the transmitter has access to
noisy measurements of the state. We derived a separation
principle for this communication scheme. Necessary and
sufficient conditions for the existence of a stationary solu-
tion where also given. The results were presented for first
order dynamical systems to simplify the presentation of
the paper but could be generalized to systems of arbitrary
order and will be presented elsewhere because of space
constraints.
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APPENDIX

Preliminaries

Definition 1. The entropy of a real-valued stochastic
variable X with probability distribution p(x) is defined
as

h(X) = −
∫ ∞
−∞

p(x) log2 p(x)dx
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Definition 2. For two real valued stochastic variables X
and Y , the conditional entropy of X given Y is defined as

h(X|Y ) = h(X,Y )− h(Y ).

Definition 3. The mutual information between X and Y
is defined as

I(X,Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X).

Proposition 1. (Entropy Power Inequality). If X and Y
are independent random variables, then

22h(X+Y ) ≥ 22h(X) + 22h(Y )

with equality if X and Y are Gaussian stochastic variables.

Proof. See Cover and Thomas [2006], p. 674 - 675.

Definition 4. Random variables X,Y, Z are said to form
a Markov chain in that order if the conditional distribution
of Z depends only on Y and conditionally independent of
X. This is denoted by X → Y → Z.

Proposition 2. (Data-Processing Inequality). If

X → Y → Z,

then
I(X;Z) ≤ I(Y ;Z).

Proof. See Cover and Thomas [2006], p. 34-35.

Proposition 3. Let X and Y be two stochastic variables.
The optimal solution to the optimization problem

inf
f(·)

E|X − f(Y )|2

is unique and given by the expectation of X given Y

f?(Y ) = E{X|Y }.
Furthermore, f?(Y ) and X − f?(Y ) are uncorrelated.

Proof. Consult (Shiryaev [1996], p. 237).

Proposition 4. Consider the stochastic variables X and
Y , and let the estimation error of X based on Y be given
by

X̃ = X −E{X|Y }.
Then,

1

2
log2 det (2πeE{X̃X̃ᵀ}) ≥ h(X|Y ) = h(X̃) (16)

with equality if and only if X and Y are jointly Gaussian.

Proof. Consult Gamal and Kim [2012], p. 21.

Proof of Theorem 1

Suppose that Egt(x
t) = αt where αk, k = 0, ..., t, are

deterministic real numbers independent of xt and are
known at the encoder gt and decoder ft. Note that y(t) =
gt(x

t) + n(t). The estimate of x(t + 1) based on y(k),
k = 0, ..., t, is the same as the estimate of x(t + 1) based
on y(k) − αk for k = 0, ..., t since αk is deterministic and
known at the decoder. But it means that we can replace
gt(x

t) with g′t(x
t) = g(xt) − αt, and g′t(x

t) satisfies both
Eg′t(x

t) = 0 and the power constraint E|g′t(xt)|2 ≤ P since

E|g′t(xt)|2 = E|gt(xt)− α|2

= E|gt(xt)|2 − α2

= P − α2 ≤ P.
Thus, without loss of generality, we may restrict the
encoders g to the set {g | Eg(xt) = 0}.

Consider time step t = 0, where the encoder has access to
x(0) = 0. Obviously, g0(x(0)) = 0. The decoder’s output at
t = 1 is f1(y(0)) = 0, which gives x̃(1) = x(1). Note that
x̃(1) is Gaussian, and both g0 and f1 are linear in their
arguments. We will show by induction that the optimal
gt−1 and ft are linear and that x̃(t) is Gaussian and for all
integers t ≥ 0.

Suppose that gt−1 and ft are linear. Then, x̃(t) and xt are
jointly Gaussian, for t = 1, ..., k. Let x̂(t|t) = f ′t(y

t) be the
optimal estimate of x(t) based on yt and let x̃(t|t) = x(t)−
x̂(t|t), for t = 0, ..., T . We have that f ′t(y

t) = E{x(t)|yt}
according to Proposition 3. Now we have that

x̂(t|t) = E{x(t)|yt}
= E{(x̂(t) + x̃(t)|yt} = x̂(t) + E{x̃(t)|yt},

(17)

x̃(t+ 1) = x(t+ 1)− x̂(t+ 1)

= ax(t) + bw(t)− ax̂(t|t)
= ax̃(t|t) + bw(t)

(18)

We see that minimizing E|x̃(t + 1)|2 is equivalent to
minimizing the mean square error of

x̃(t|t) = x̃(t)−E{x̃(t)|yt}

at the decoder. Now introduce

x̌(t) := E{x̃(t)|xt}
and

x̄(t) := x̃(t)−E{x̃(t)|xt}.
Then, x̌(t) is independent of x̄(t). Note that x̌(t) is a linear
function of xt, since x̃(t) and xt are jointly Gaussian by
the induction hypothesis. The Markov chain

x̌(t)→ xt → gt(x
t)→ y(t) = gt(x

t) + n(t),

together with Proposition 2, gives

I(x̌(t); y(t)) ≤ I(gt(x
t); y(t)). (19)

The Shannon capacity of a Gaussian channel gives an
upper bound for the mutual information between the
transmitted message z(t) = gt(x

t) and received message
y(t) (see Gallager [1968]):

I(gt(x
t); y(t)) ≤ 1

2
log2

(
1 +

P

N

)
. (20)

Combining (19)-(20), we get

2−2I(x̌(t);y(t)) ≥ N

P +N
(21)

with equality if x̌(t) and y(t) are mutually Gaussian

and gt(x
t) =

√
P
σt
x̌(t). From the definition of mutual

information, we have that

h(x̌(t)|y(t)) = h(x̌(t))− I(x̌(t); y(t)). (22)

Now we get

2πeE{|x̃(t|t)|2} ≥ 22h(x̃(t)|yt) (23)

= 22h(x̃(t)|y(t)) (24)

= 22h(x̌(t)+x̄(t)|y(t)) (25)

≥ 22h(x̌(t)|y(t)) + 22h(x̄(t)|y(t)) (26)

= 22h(x̌(t))−2I(x̌(t);y(t)) + 22h(x̄(t)) (27)

≥ N

P +N
22h(x̌(t)) + 22h(x̄(t)) (28)
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where (23) follows from Proposition 4(with equality if x̃(t)
and yt are jointly Gaussian), (24) follows from the fact
that x̃(t) is independent of yt−1, (26) follows from the
entropy power inequality(Proposition 1), (27) follows from
equation (22) and the fact that x̌(t) is independent of
xt(and thus independent of y(t) = gt(x

t) +n(t)), and (28)
follows from equation (21). Furthermore, equality holds in
(23)-(28) if

z(t) = gt(x
t) =

√
P

σt
x̌(t)

with σ2
t = E|x̌(t)|2. This completes the proof.

Proof of Theorem 2

Let x̂(t) = E{x(t)|yt−1} , x̃(t) = x(t) − x̂(t), x̂(t|t) =
E{x(t)|yt}, and x̃(t|t) = x(t)− x̂(t|t).
Then,

x̂(t+ 1) = ax̂(t|t)
= aE{x̂(t) + x̃(t)|yt}
= ax̂(t) + aE{x̃(t)|y(t)}

(29)

and

x̃(t+ 1) = ax̃(t)− aE{x̃(t)|y(t)}+ bw(t). (30)

According to Theorem 1, the optimal signal z is given by

x̌(t) = E{x̃(t)|xt}

z(t) =

√
P

σt
x̌(t)

with σ2
t = E|x̌(t)|2. Now recall that y(t) = z(t) + n(t),

x̌(t) = E{x̃(t)|xt} and x̄(t) = x̃(t) − x̌(t) and x̄(t) is
orthogonal to xt and hence to y(t). Since x̃(t) and y(t)
are jointly Gaussian, E{x̃(t)|y(t)} is a linear function of
y(t) given by

E{x̃(t)|y(t)} = E{x̌(t) + x̄(t)|y(t)}
= E{x̌(t)|y(t)}+ E{x̄(t)|y(t)}
= E{x̌(t)|y(t)}
= cov(x̌(t), y(t))[cov(y(t), y(t))]−1y(t)

= κ(t)y(t)
(31)

with
κ(t) = σt

√
P (P +N)−1. (32)

Then, (29)-(31) imply

x̂(t+ 1) = ax̂(t) + aκ(t)y(t)

= ax̂(t) + aκ(t)

√
P

σt
x̌(t) + aκ(t)n(t),

(33)

x̃(t+ 1) = ax̃(t)− aκ(t)y(t) + bw(t)

= ax̃(t)− aκ(t)

√
P

σt
x̌(t)− aκ(t)n(t) + bw(t)

= ax̃(t)− aκ(t)

√
P

σt
x̃(t) + aκ(t)

√
P

σt
x̄(t)

− aκ(t)n(t) + bw(t).
(34)

We will now show that

x̌(t+ 1) = ax̌(t)− aκ(t)

√
P

σt
x̌(t) + bw(t) (35)

and
x̄(t+ 1) = ax̄(t)− aκ(t)n(t). (36)

First we note that x̄ as defined in (36) depends only on
the channel noise n and is therefore independent of xt and
x̌. Also, we have that

x̃(t+ 1) = x̌(t+ 1) + x̄(t+ 1)

= ax̌(t)− aκ(t)

√
P

σt
x̌(t) + bw(t)

− (ax̄(t)− aκ(t)n(t))

= a(x̌(t) + x̄(t))− aκ(t)

√
P

σt
(x̃(t)− x̄(t))

− aκ(t)n(t) + bw(t)

= ax̃(t)− aκ(t)

√
P

σt
x̃(t) + aκ(t)

√
P

σt
x̄(t)

− aκ(t)n(t) + bw(t),

which is exactly the expression given by (34). This estab-
lishes (35)-(36). Now we have

x(t) = E{x(t)|xt}
= E{x̂(t) + x̃(t)|xt}
= E{x̂(t)|xt}+ E{x̃(t)|xt}
= E{x̂(t)|xt}+ x̌(t).

(37)

From equation (33), we see that

E{x̂(t)|xt} = s(t) (38)

where
s(t+ 1) = as(t) + aκ(t)x̌(t+ 1), (39)

since the noise signal n is independent of xt. Finally,
combining (37) - (39) gives

x̌(t) = x(t)− s(t). (40)

Now set
K(t) = aκ(t) (41)

Then,[
s(t+ 1)
x(t+ 1)

]
=

[
a−K(t) K(t)

0 a

] [
s(t)
x(t)

]
+

[
0
b

]
w(t).

Introduce the covariance matrix[
Vss(t) Vsx(t)
Vxs(t) Vxx(t)

]
= E

[
s(t)
x(t)

] [
s(t)
x(t)

]ᵀ
.

Since w(t) is uncorrelated with x(t) and s(t), we get[
Vss(t+ 1) Vsx(t+ 1)
Vxs(t+ 1) Vxx(t+ 1)

]
= E

[
s(t+ 1)
x(t+ 1)

] [
s(t+ 1)
x(t+ 1)

]ᵀ
= E

{([
a−K(t) K(t)

0 a

] [
s(t)
x(t)

]
+

[
0
b

]
w(t)

)
×([

a−K(t) K(t)
0 a

] [
s(t)
x(t)

]
+

[
0
b

]
w(t)

)ᵀ}
=

[
a−K(t) K(t)

0 a

] [
Vss(t) Vsx(t)
Vxs(t) Vxx(t)

] [
a−K(t) K(t)

0 a

]ᵀ
+

[
0 0
0 b2

]
.

(42)
Thus,

σ2
t = E|x̌(t)|2 = E|x(t)− s(t)|2

= Vxx(t)− 2Vsx(t) + Vxx(t).
(43)

Putting together (32), (33), (39) - (43) completes the
proof.
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