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Abstract: In this paper we present a systematic and efficient approach to deal with uncertainty in
Nonlinear Model Predictive Control (NMPC). The main idea of the approach is to represent the NMPC
setting as a real-time decision problem under uncertainty that is formulated as a multi-stage stochastic
problem with recourse, based on a description of the uncertainty by a scenario tree. This formulation
explicitly takes into account the fact that new information will be available in the future and thus reduces
the conservativeness compared to open-loop worst-case approaches. We show that the proposed multi-
stage NMPC formulation can deal with significant plant-model mismatch as it is usually encountered in
the process industry and still satisfies tight constraints for the different values of the uncertain parameters,
in contrast to standard NMPC. The use of an economic cost function leads to a superior performance
compared to the standard tracking formulation. The potential of the approach is demonstrated for an
industrial case study provided by BASF SE in the context of the European Project EMBOCON. The
numerical solution of the resulting large optimization problems is implemented using the optimization
framework CasADi.

1. INTRODUCTION

Model Predictive Control (MPC) is a popular control strategy
especially in the process industry because it can deal with
multivariate systems and constraints on states and inputs can be
formulated easily. The control task can be directly formulated in
terms of the online optimization of a relevant performance crite-
rion instead of set-point tracking of certain variables leading to
superior economic performance (Engell [2007]). The stability
and the performance of MPC and of its nonlinear counterpart
(NMPC) are strongly influenced by the accuracy of the model
that is used for the predictions. Most industrial processes can-
not be described exactly and are subject to disturbances and
therefore robust MPC approaches have been studied during last
years. One of the first robust MPC approaches was min-max
open-loop MPC (Campo and Morari [1987]) which optimizes a
sequence of control inputs with respect to the cost for the worst-
case realization of the uncertainty. This is an open-loop formu-
lation that ignores the presence of feedback that enables to react
to the realization of the uncertainty. Therefore this approach is
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known to provide conservative results. Closed-loop (or feed-
back) min-max MPC was proposed in Witsenhausen [1968] and
in Scokaert and Mayne [1998], where an optimization over a
sequence of control policies is performed. This results however
in an infinite-dimensional optimization problem that is very
difficult to solve unless the structure of the policy is fixed a
priori as in Hadjiyiannis et al. [2011], leading to suboptimality.
In this paper we propose the use of multi-stage NMPC under the
assumption that the evolution of the uncertainty can be repre-
sented as a tree of discrete scenarios, as in Scokaert and Mayne
[1998]. The representation by scenarios enables the computa-
tion of the next inputs taking into account the adaptation of the
future inputs to the new information that will be gained at later
points in time (i.e recourse). This approach has been shown to
lead to excellent performance Lucia et al. [2013], Lucia and
Engell [2013]. The price for this gain in performance (com-
pared to a min-max formulation) and robustness (compared to
NMPC based only upon a nominal model) is that the size of the
resulting optimization problem grows exponentially with the
prediction horizon and with the number of uncertainties. For
the linear case, Muñoz de la Peña et al. [2005] also proposed to
use multi-stage optimization in MPC. The contribution of this
paper is to show that multi-stage NMPC can solve the online
performance optimization problem for an industrial case-study
provided by BASF with important uncertainties in a systematic
and efficient manner. We also compare the standard set-point
tracking strategy to the use of an economic cost function for
this example. The second contribution is the efficient imple-
mentation of the approach using CasADi (Andersson et al.
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Fig. 1. Scenario tree representation of the uncertainty evolution
for multi-stage NMPC.

[2012a]) leading to significantly faster solution times compared
to the ones reported in Lucia et al. [2013]. Using CasADi, the
proposed controller can be implemented satisfying the real-time
requirements of the process. The remainder of the paper is or-
ganized as follows. The proposed multi-stage NMPC approach
is introduced in Section 2. In Section 3, the implementation
of the approach using CasADi is presented together with the
main features of this framework. The model of the industrial
batch reactor is presented in Section 4, while the corresponding
control task and the optimization problem solved at each sam-
pling time are described in Section 5. In Section 6 we present
the main results of the paper, showing that multi-stage NMPC
outperforms standard NMPC. The conclusions and future work
are presented in Section 7.

2. MULTI-STAGE NONLINEAR MODEL PREDICTIVE
CONTROL

Multi-stage NMPC is based on the description of the evolu-
tion of the uncertainties as a scenario tree (see Fig. 1). The
future control inputs can depend on the previously observed
values of the uncertainties, and act as recourse variables that
counteract the effects of the uncertainties. This reduces the con-
servativeness of the approach significantly in comparison with
other typical robust NMPC settings such as open-loop min-max
NMPC or multi-scenario approaches (e.g. Huang and Biegler
[2009]) where no feedback is introduced in the predictions.
The constraints are guaranteed to be satisfied for all the values
of the uncertainty that are considered in the tree. The scenario
tree setting assumes a discrete-time formulation of an uncertain
nonlinear system that can be written as:

xj
k+1 = f(x

p(j)
k , uj

k, d
r(j)
k ), (1)

where each state xj
k+1 is a function of the previous state x

p(j)
k ,

the control input uj
k and the realization r of the uncertainty

at stage k, dr(j)k (for example in Fig.1, x7
2 = f(x3

1, u
7
1, d

1
1)).

For simplicity in the presentation we consider that the tree has
the same number of branches at all nodes, given by d

r(j)
k ∈

{d1k, d2k...dsk} at stage k for s different possible values of the
uncertainty. Also, in order to clarify the notation, the index
set of all occurring indices (j, k) is denoted by I . The control
inputs cannot anticipate the value of the uncertainty at a certain

point in time, and this is enforced by the non-anticipativity
constraints that require all the control inputs that branch at the
same node to be equal (for example in Fig. 1, u1

0 = u2
0 = u3

0;
u1
1 = u2

1 = u3
1; ...). The optimization problem resulting from

the multi-stage formulation in a scenario-based setting can be
written as:

min
xj
k
,uj

k
∀(j,k)∈I

||J̃(xj
k+1, u

j
k)||α (2)

subject to:

xj
k+1 = f(x

p(j)
k , uj

k, d
r(j)
k ), ∀ (j, k + 1) ∈ I, (3a)

xj
k ∈ X , ∀ (j, k) ∈ I, (3b)

uj
k ∈ U , ∀ (j, k) ∈ I, (3c)

uj
k = ul

k if xp(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (3d)

where X and U represent simple bounds on state and control
and ||J̃(xj

k+1, u
j
k)||α is the α-norm of a vector J̃(xj

k+1, u
j
k)

that contains in each component the cost of each scenario Si

multiplied by its probability ωi, that is, J̃ = [ω1 · J1, ..., ωN ·
JN ], for N different scenarios where Ji(x

j
k+1, u

j
k) is the cost

of each scenario defined as:

Ji(x
j
k+1, u

j
k) =

K−1∑

k=0

L(xj
k+1, u

j
k), ∀ xj

k+1, u
j
k ∈ Si, (4)

where L(xj
k+1, u

j
k) is the stage cost. The non-anticipativity

constraints in (3d) enforce that the decisions uj
k with the same

parent node xp(j)
k should be the same. With this general formu-

lation, if the α-norm is chosen with α = 1 the resulting opti-
mization problem represents the multi-stage NMPC approach,
whereas if α = ∞ is chosen, a closed-loop min-max approach
is obtained, in which feedback is taken explicitly into account.
If the number of scenarios is N = 1, the problem is reduced
to standard NMPC. The probabilities ωi can be set a priori or
be adapted according to information obtained from estimating
the parameters if such information is available (see Lucia et al.
[2013]). Note that for a general nonlinear system, robust con-
straint satisfaction cannot be guaranteed for the values that are
not explicitly in the tree. However, the value of the parameters
that produce the worst-case scenario are often on the boundaries
of the considered parameter interval (Srinivasan et al. [2002])
and therefore the scenario tree should include the combinations
of the extreme values of the parameters, which produces good
results in practice (see Lucia et al. [2013] for a more detailed
discussion on the choice of a suitable scenario tree).

3. IMPLEMENTATION DETAILS

Multi-stage NMPC has been implemented in this work using
the optimization tool CasADi (Andersson et al. [2012a] and
Andersson et al. [2012b]). CasADi is an open-source frame-
work for C++ and Python for numerical optimization in general
and optimal control in particular. The main idea of the tool
is to provide users with the ability to easily and efficiently
implement optimal control algorithms using a wide range of
numerical formulations and solution techniques, including the
use of multiple shooting and collocation, rather than offering
just one Optimal Control Problem (OCP) solver. In particu-
lar, using CasADi the user can construct a very general high-
level symbolic representation of the nonlinear programming
problem. This representation, which internally is represented
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as an expression graph, may contain millions of operations and
contain calls to such operations as ODE/DAE integrators. The
NLP can be solved by any existing NLP solver or, alternatively,
be solved by a custom written NLP solver based on one of
the quadratic programming solvers that are coupled to CasADi.
The solver interfaces rely on CasADi to efficiently calculate
derivative information. From the symbolic representation of the
NLP cost function and constraint function, CasADi automat-
ically generates symbolic expressions for the Jacobian of the
constraints and the Hessian of the Lagrangian function. This
generation is done using a state-of-the-art implementation of
algorithmic-differentiation (Griewank and Walther [2008]) on
a general expression graph made up of matrix-valued atomic
operations. The Jacobian and Hessian generation is based upon
efficient automatic generation of the sparsity patterns before
graph coloring techniques are applied to find an efficient way to
calculate the Jacobian or Hessian. When ODE/DAE integrators
are included in the symbolic expressions, forward and adjoint
sensitivity analysis (Cao et al. [2003]) will be automatically
invoked. By relieving the user from the tedious and error-
prone work of calculating and passing derivative information
and performing ODE/DAE sensitivity analysis, and by offering
a convenient working environment in a high-level language
Python, the use of CasADi reduces the effort needed to im-
plement an optimal control solution significantly without com-
promising the efficiency of the solution. The results reported
in Andersson et al. [2012a] show that CasADi performs faster
than other state-of-the-art software such as the AMPL Solver
Library (ASL).

4. MODEL OF THE SEMI-BATCH REACTOR

The case-study under consideration concerns an industrial
batch polymerization reactor that is equipped with a jacket and
an external heat exchanger that are used to cool or to heat
the reactor. The dynamics of the process are described by the
following set of ordinary differential equations:
ṁW = ṁW,F

ṁA = ṁA,F − kR1 mA,R − p1 kR2 mAWT mA/mges,

ṁP = kR1 mA,R + p1 kR2 mAWT mA/mges,

ṪR = 1/(cp,Rmges) [ṁF cp,F (TF − TR) + ΔHRkR1mA,R

− kKA (TR − TS)− ṁAWT cp,R (TR − TEK)],

ṪS = 1/(cp,SmS) [kKA (TR − TS)− kKA (TS − TM)],

ṪM = 1/(cp,WmM,KW) [ṁM,KW cp,W
(
T IN

M − TM
)

+ kKA (TS − TM)],

ṪEK = 1/(cp,RmAWT) [ṁAWTcp,W (TR − TEK)

− α (TEK − TAWT) + p1 kR2 mA mAWTΔHR/mges],

ṪAWT = [ṁAWT,KW cp,W (T IN
AWT − TAWT)

− α (TAWT − TEK)]/(cp,WmAWT,KW),

where:
U = mP/(mA +mP),

mges = mW +mA +mP,

kR1 = k0e
−Ea
RTR (kU1 (1− U) + kU2U) ,

kR2 = k0e
−Ea
RTEK (kU1 (1− U) + kU2U) ,

kK = (mW kWS +mA kAS +mP kPS)/mges,

mA,R = mA −mAmAWT/mges.

(5)

The model includes mass balances for the hold-ups of water,
monomer feed and product (mW, mA, mP) and energy balances

for the reactor (TR), the vessel (TS), the jacket (TM), the product
leaving the external heat exchanger (TEK) and the coolant leav-
ing the external heat exchanger (TAWT). The available control
inputs are the feed flow ṁF, the coolant temperature at the inlet
of the jacket T IN

M and the coolant temperature at the inlet of the
external heat exchanger T IN

AWT. Realistic model parameters have
been provided by BASF SE.

5. CONTROL PROBLEM

The control task under consideration is the production of one
batch of polymer in the minimum possible time satisfying tight
temperature constraints that are essential for meeting the qual-
ity specifications of the product. We consider that the reactor
temperature TR should be in a range of ±1.5◦C around the
desired reaction temperature Tset = 90◦C. The constraints that
have to be satisfied for the different states together with the ini-
tial conditions are summarized in Table 1 and the constraints for
the control inputs are stated in Table. 2. The maximum amount

Table 1. Initial conditions and state constraints

States Init. cond. Min. Max. Unit
mW 10000 0 inf. [kg]
mA 853 0 inf. [kg]
mP 26.5 0 inf. [kg]
TR 90.0 Tset − 1.5 Tset + 1.5 [◦C]
TS 90.0 0 100 [◦C]
TM 90.0 0 100 [◦C]
TEK 35.0 0 100 [◦C]
TAWT 35.0 0 100 [◦C]

Table 2. Bounds on manipulated variables

Control Min. Max. Unit

ṁF 0 3×104
[

kg
h

]

T IN
M 60 100 [◦C]

T IN
AWT 60 100 [◦C]

of material that can be fed into the reactor is
∫
ṁF dt = 30000

kg and the batch is considered to be finished when the total
amount of polymer produced is mend

P = 20680 kg. The control
task must be achieved even under the presence of uncertainties
of some critical model parameters. For the study presented here,
we consider the parameters ΔHR, that determines the heat gen-
erated by the polymerization reaction and k0, that determines
the speed of the reaction to be uncertain. Even small changes of
these parameters have a large influence on both the batch time
and the reactor temperature that has to be maintained between
tight bounds. In order to model the end of the monomer feeding
phase in the prediction of the NMPC controller, we extend the
model presented in the previous section by a new differential
state that accounts for the total amount of material that has
been fed until a certain point in time, that is, ṁacc

A = ṁF and
a constraint is included such that 0 < macc

A < mmax
F = 30000

kg. By doing this, it is not necessary to divide the control task
into different phases (feeding phase, holding phase...), simpli-
fying the implementation and avoiding the need for switching
between different cost functions. The optimization problem that
has to be solved at each sampling time can be written as:

min
xj
k
,uj

k
∀(j,k)∈I

Jbatch(x
j
k+1, u

j
k)

(6)
subject to:

xj
k+1 = f(x

p(j)
k , uj

k, d
r(j)
k ), (7a)
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Tset − 1.5 ≤ T j
R,k ≤ Tset + 1.5, (7b)

0 ≤ T j
S,k ≤ 100, (7c)

0 ≤ T j
M,k ≤ 100, (7d)

0 ≤ T j
EK,k ≤ 100, (7e)

0 ≤ T j
AWT,k ≤ 100, (7f)

0 ≤ macc,j
A,k ≤ mmax

A , (7g)

0 ≤ ṁj
F,k ≤ 3× 104, (7h)

60 ≤ T IN,j
M,k ≤ 100, (7i)

60 ≤ T IN,j
AWT,k ≤ 100, (7j)

uj
k = ul

k if xp(j)
k = x

p(l)
k ∀ (j, k), (l, k) ∈ I, (7k)

where all the constraints are applied to all the states (xj
k =

[mj
W,k,m

j
A,k,m

j
P,k, T

j
R,k, T

j
S,k, T

j
M,k, T

j
EK,k, T

j
AWT,k]

T) and con-

trol inputs (uj
k = [ṁj

F,k, T
IN,j
M,k , T

IN,j
AWT,k]

T) in the scenario tree.
(7a) represents the discretized dynamics of the system, (7b-
7g) denote the constraints on the states, (7h-7j) represent the
constraints on the input variables, and the non-ancitipativity
constraints are included in (7k).

We compare two possible cost functions Jbatch(x
j
k+1, u

j
k). The

first cost function, given by (8), represents the maximization
of the mass of polymer produced during the prediction in-
terval together with a set-point tracking term for the reactor
temperature. Small regularization terms are added in order to
penalize the control movements so that a smooth control input
is achieved. The tracking cost function can be written as:

Jtrack(x
j
k+1, u

j
k) =

N∑

i=1

ωi

K−1∑

k=0

−mj
P,k+1 + q(T j

R,k+1 − Tset)
2

+ r1(Δṁj
F,k)

2 + r2(ΔT IN,j
M,k )

2 + r3(ΔT IN,j
AWT,k)

2 ,

∀ mj
P,k+1, T

j
R,k+1, ṁ

j
F,k, T

IN,j
M,k , T

IN,j
AWT,k ∈ Si,

(8)
where q, r1, r2 and r3 are tuning parameters. An alternative is
to avoid the use of a tracking term and to directly formulate an
economic cost function, that is defined as follows:

Jeco(x
j
k+1, u

j
k) =

N∑

i=1

ωi

K−1∑

k=0

−mj
P,k+1

+ r1(Δṁj
F,k)

2 + r2(ΔT IN,j
M,k )

2 + r3(ΔT IN,j
AWT,k)

2 ,

∀ mj
P,k+1, ṁ

j
F,k, T

IN,j
M,k , T

IN,j
AWT,k ∈ Si.

(9)
In both cases the cost is calculated as the sum over all the
N scenarios Si along the prediction horizon K. We thus ap-
proximate the time-optimal control problem by a maximization
of the amount of polymer produced in the reactor, which has
been proven by simulations to have a very similar performance
compared to the original minimum time problem. For the ap-
plication of multi-stage NMPC to the industrial batch polymer-
ization reactor presented in the previous section, we consider
a scenario tree that branches only in the first stage and then
the uncertainty is considered to remain constant. This simplifi-
cation has been demonstrated to provide good results even for
time varying uncertainties (Lucia and Engell [2013]) and results
in smaller computation times. Thus the scenario tree used to
generate all the results below with multi-stage NMPC has 9
scenarios, that include the combinations of the maximum, min-

imum and nominal values of the 2 uncertain parameters, ΔHR
and k0 with a long prediction horizon K = 30. The implemen-
tation in CasADi makes it possible to compare the solution of
the multi-stage NMPC problem using direct multiple-shooting
or direct collocation for the discretization of the ODEs. For the
results presented with a collocation approach we use Radau
collocation points, with interpolating polynomials of order 2
and using 2 collocation intervals for each control discretization.
For the multiple-shooting approach we use CasADi’s interface
to SUNDIALS (Hindmarsh et al. [2005]).

The sampling time of the controller is ts = 60 s. with a
prediction horizon of K = 30 steps. We assume that full
state feedback is available at each sampling time. The tuning
parameters in the cost functions (8-9) have the same values
for all the simulations and they are r1 = 0.1, r2 = 0.02,
r3 = 0.01 and q = 10000. The resulting nonlinear programs
(NLPs) are solved by IPOPT (Wächter and Biegler [2006])
using exact Hessians. All the optimization problems are solved
on a standard laptop with an Intel i-5 processor at 2.30GHz
running Ubuntu on a virtual machine with one core and 2 GB
of RAM.

6. RESULTS

If the model is assumed to be perfect, i.e. there is no plant-
model mismatch, it is possible to solve the problem described
above with standard NMPC, using either the economic cost
function (Jeco(x

j
k+1, u

j
k)) or the cost function that includes

a classical set-point tracking term (Jtrack(x
j
k+1, u

j
k)). As ex-

pected, the use of an economic cost function reduces the batch
time since the reactor can work at a higher temperature. In this
case the batch time reduction is around a 6.5%, as can be seen in
Fig. 2, where we also show a comparison between the solution
using collocation (solid lines) and multiple shooting (dashed
lines). Both provide very similar results and for the remainder
of the paper only the results with the collocation approach are
shown.

When using an economic cost function, the process is typically
operated at one of its constraints. Since models for industrial
applications are imperfect, constraint violations will therefore
be unavoidable, if no additional measures are taken. The use
of a tracking term is often used as a way to deal with the
inaccuracy of the model. This is however not enough to handle
significant uncertainties. Fig. 3 shows different simulations
of the standard NMPC controller when the parameters ΔHR
and k0 are uncertain and vary by ±15% with respect to their
nominal values, but are considered to remain constant during a
batch. Each trajectory shows the result of the NMPC controller
for a different scenario. As it can be seen, the NMPC controller
with a tracking term in the cost function cannot satisfy the
constraints for all the possible scenarios. A simple modification
to increase the amount of feedback that is used in the standard
NMPC scheme with a tracking term is to introduce a so called
bias-term. By doing this, at each sampling time the set point
used in the optimizer (T opt

set ) is updated using a proportional
rule, i.e., T opt

set ← T opt
set + K(Tset − TR), with K = 0.015

where Tset is the real setpoint and TR is the state of the real
plant. The performance of the controller is slightly better than
without the use of a bias term, but constraint violations still
occur. After analyzing the results, it can be concluded that
constraint violations occur for the scenarios with the maximum
value of the parameter ΔHR. Therefore, in order to have a
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Fig. 2. Reactor temperature (with constraints indicated),
monomer mass, and control inputs for standard NMPC
with a tracking term in the cost function and with an
economic cost function using collocation (solid lines) and
multiple shooting (dashed lines) in the case of no plant-
model mismatch.

Fig. 3. Reactor temperature, monomer mass, and control inputs
for standard NMPC with tracking term. The different
trajectories show the different scenarios of the uncertainty
with mismatches of ±15% with respect to their nominal
values.

fair comparison with the proposed multi-stage NMPC, we show
also simulations (see Fig. 4) of standard NMPC with a tracking
and a bias term in which the model used in the optimizer
has the worst-case values for the uncertain parameters, i.e.
ΔHR = 1.15 · ΔHnom

R and k0 = 1.15 · knom
0 . This makes the

controller act more conservatively, leading to the satisfaction
of the constraints for all the scenarios. However, the resulting
batch times are much higher than the ones obtained with the
proposed multi-stage NMPC with economic cost function, that
are shown in Fig. 5.

Fig. 4. Reactor temperature, monomer mass, and control inputs
for standard NMPC with tracking and bias term using
the worst-case values of the uncertain parameters in the
model of the optimizer. The different trajectories show the
different scenarios of the uncertainty with mismatches of
±15% with respect to their nominal values.

Fig. 5. Reactor temperature, monomer mass, and control inputs
for multi-stage NMPC with an economic cost function.
The different trajectories show the different scenarios of
the uncertainty with mismatches of ±15% with respect to
their nominal values.

A summary of all the results is provided in Table 3. It is impor-
tant to note that multi-stage NMPC satisfies all the constraints
for all the scenarios and has a clearly better performance (20.24
% batch time reduction in average) than standard NMPC with
the worst-case parameters in the model. It is thus clear that
multi-stage NMPC with an economic cost function outperforms
all the other algorithms. The efficient implementation using
CasADi makes it possible to solve the resulting optimization
problem which has around 17000 variables and constraints in
real-time with a standard computer. The average computation
time per optimization problem is 2.86 s in the case of multi-
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Table 3. Performance comparison between standard NMPC, standard NMPC with bias term, standard
NMPC with bias term using the worst-case value of the parameters in the model used in the optimizer

and multi-stage NMPC.

Scenario Batch time in hours

Unc. in Unc. in Standard Standard Standard (w.c.) Multi-stage
ΔHR k0 NMPC NMPC + bias NMPC + bias NMPC

+15% +15% infeasible infeasible 1.91 1.85
+15% +0% infeasible infeasible 2.13 1.95
+15% -15% infeasible infeasible 2.52 2.1
+0% +15% 1.65 1.68 1.92 1.67
+0% +0% 1.75 1.75 2.22 1.78
+0% -15% 2.03 2.02 2.68 2.12
-15% +15% 1.57 1.55 2.08 1.65
-15% +0% 1.80 1.78 2.43 1.9
-15% -15% 2.17 2.15 2.90 2.22

stage NMPC and 0.25 s in the case of standard NMPC, so the
computation time grows only slightly faster than linearly in the
number of scenarios.

7. CONCLUSIONS

In this paper we have presented the application of a new robust
nonlinear model predictive control approach to an industrial
batch polymerization reactor benchmark problem provided by
BASF SE. The approach is based on the representation of the
uncertainty as a scenario tree introducing explicitly feedback
information in the prediction of the controller, which drastically
improves the performance of the controller. The simulation
results show that multi-stage NMPC is able to satisfy the tight
temperature constraints on the temperature of the reactor for
all scenarios under consideration that represent variations of
±15% in critical parameters while standard NMPC and stan-
dard NMPC with bias term fail because of the plant model-
mistmatch. Also, multi-stage NMPC results in shorter batch
times than NMPC with the worst-case parameters. In addition,
the use of an economic cost function makes the use of a clas-
sical set-point tracking term unnecessary, enhancing the per-
formance of the controller. The approach has been efficiently
implemented using the optimization framework CasADi, which
leads to an efficient solution of the nonlinear programming
problem that results from the multi-stage NMPC formulation,
using automatically generated exact first and second order
derivative information. This helps to cope with the main chal-
lenge of the approach: the size of the resulting optimization
problem. Future work will be focused on strategies for the
automatic generation of suitable scenario trees, on the explicit
exploitation of the structure of the NLP and on the implemen-
tation of the approach to a real polymerization reactor.
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