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Abstract: The primary goal of a low glucose suspend system is to reduce the risk of overnight 
hypoglycemia (low blood glucose) in individuals with type 1 diabetes by reducing/suspending insulin 
infusion. We have developed a Kalman filter-based algorithm, combined with a number of safety rules, 
to implement a predictive low glucose suspend system that shuts off an insulin pump based on a 
prediction of hypoglycemia 30-70 minutes in the future. This system has been studied in over 2,000 
nights in an outpatient-home environment. In this paper, based on an analysis of this data, we isolate the 
effects of the individual rules in part by simulating their removal from the existing data. Specifically, we 
decompose the basal insulin into small boluses and, using a model of insulin pharmacodynamic action 
(the time effect of insulin on blood glucose), alter the real data corresponding to the addition or removal 
of basal insulin via simulation. Our results show that limiting the total suspension to 180 minutes per 
night prevents excessive suspension in cases where the average calibration is an excessive 58 mg/dl, 
above the mean of 18 mg/dl. Further, we also show that a simple threshold algorithm that suspends below 
100 mg/dl if the glucose level is flat or falling, is comparable in performance. Lastly, we show that the 
Kalman filter at the heart of this algorithm reduces the time spent below 70 mg/dl by 50% at the expense 
of a mean rise of 12 mg/dl in morning glucose levels. 
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1. INTRODUCTION 

Type 1 diabetes (T1D) is an autoimmune disease that directly 
destroys the body’s ability to produce insulin and indirectly 
the body’s ability to regulate blood glucose concentrations.  
Individuals with T1D must use either multiple daily 
injections of insulin (one bolus of long-acting insulin each 
day, and boluses of rapid-acting insulin at meal/snack time 
and when blood glucose needs to be reduced), or continuous 
infusion of rapid-acting insulin using an insulin pump. While 
insulin therapy can lead to lower blood glucose levels and 
reduce the risk of complications due to high blood glucose, 
there is an underlying risk of hypoglycemia (low blood 
glucose) if insulin is over-administrated. Indeed, one of the 
greatest fears of a parent of a child with T1D is extended 
overnight hypoglycemia, which could lead to a coma or, in 
rare cases, death (known as “dead in bed” syndrome). The 
development of continuous glucose monitoring (CGM) 
technology, allowing a near continuous measurement of 
glucose levels, enabled the use of alarms to warn individuals 
of low (or high) glucose levels. Unfortunately, these alarms 
have been found to be insufficient, since individuals and their 
caregivers often sleep through the alarms (Buckingham et al., 
2005). 

Low glucose suspend (LGS) or pump shut-off (PSO) systems 
have been developed specifically to shut-off pumps to reduce 
the risk of hypoglycemia, based on real-time CGM signals; 

they are also a natural first step towards the development of a 
fully closed-loop artificial pancreas (Kowalski, 2009; Harvey 
et al., 2010; Cobelli et al., 2011; Bequette, 2012). Initial LGS 
systems were threshold-based (the pump is turned off when 
the threshold is violated), while much current effort has been 
on predictive low glucose suspend (PLGS) systems that turn-
off a pump when a hypoglycemic event is predicted to occur 
(usually 30-70 minutes in the future; Bequette, 2014). 

The PLGS algorithm that we have developed involves the use 
of a Kalman filter predict future glucose values, combined 
with a set of rules to reduce the risk of prolonged periods of 
pump shut-off. This algorithm was first tested in in-clinic 
studies (Cameron et al., 2012), followed by extensive out-
patient (in-home) studies (Maahs et al., 2014). The objective 
of this paper is to analyze the results from over 2,000 nights 
of out-patient studies to understand the effect of various 
algorithm parameters and rules on the blood glucose control. 
We first review the results of the outpatient study, then 
describe our hybrid experiment/simulation approach, and 
finally discuss the results. 

2. OUTPATIENT STUDY DATA 

The data used in this paper comes from an outpatient clinical 
trial of the described pump suspension algorithm. The idea is 
that by predicting impending hypoglycemia and suspending 
insulin delivery that the body’s natural release of glucose into 
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the blood stream would mitigate or prevent the 
hypoglycemia. For each of the 45 patients there was a run-in 
phase where the algorithm was enabled each night and then a 
42-night phase where the algorithm was randomly and 
blindly enabled or disabled. This design isolated the 
effectiveness of the algorithm from any behavioural 
adjustments the patients might make for a final system. This 
resulted in 925 control nights and 1125 intervention nights. 

The system consisted of a continuous glucose monitor 
(CGM) and an insulin pump communicating with a bedside 
laptop computer that contained the pump suspension 
algorithm. Each of the nights has at least 4 hours of CGM 
data post activation, a morning blood glucose measurement, 
records of any snacks from bedtime until morning, records of 
exercise in the previous day, basic demographics, and a full 
insulin history. 

A typical intervention night is shown in Fig. 1. The x’s 
indicate the glucose concentration as measured by the 
continuous glucose monitor and provided to the algorithm.  
When these trend downwards at the start of the dataset the 
algorithm triggers suspensions, as indicated by the orange 
triangles and the zeroing out of the basal rate. Later in the 
evening two periods of sensor noise also trigger pump 
suspensions. Eliminating those is the subject of further study. 

 
Fig 1. Sample Intervention Night. The top plot shows the 
CGM values (x), reference/calibration values (triangle), and 
bounds of desirable glucose values (horizontal line). The 
bottom plot shows the basal insulin (line) and boluses 
(bubble). The vertical line is the time when the system was 
activated. 

3. SIMULATOR 

Running a separate clinical trial to test the effect of a change 
to or removal of a rule would be prohibitive in terms of cost, 
and noisy due to inter- and intra-patient variability. Instead 
we simulate from the existing data. Specifically, we assume 
that the patients’ insulin sensitivity can be calculated 
according to the 1800-rule: 

  

which is a common heuristic used in clinical practice. 
is the patients’ total daily insulin dose in units/day. Then we 
use an average of published insulin time action profiles 
(Frohnhauer et al., 2001; Heinemann and Steiner, 1997; Swan 

et al., 2009) shown in Fig. 2, to approximate the effect of any 
insulin subtracted or added. The multiplication of with the 
curve in Fig. 2 represents the convolution model of insulin 
action, . Given a glucose and insulin profile represented by 
glucose values  and  at regular time intervals the simulator 
morphs the original profile into a simulated ones by looping 
over the following steps. 1)  where  is 
the ith element of the vector  and  is a controller that 
determines what new input to command given the past 
history of inputs  and outputs . 2)  3)

 4)  which simulates 
the effect of the changed insulin administration and 5)

. After each repetition of the above steps the  and 
 vectors represent the simulated value of glucose  

corresponding to the provided insulin . This simple 
explanation ignores issues corresponding to vector lengths 
and missing glucose readings that can be easily fixed in 
practice. 

This simulator only makes assumptions about insulin action. 
It does not make any assumptions about meals, exercise, 
sleep, or anything else. Consequently, the inaccuracy of the 
simulator stems only from estimating the effects of large 
changes to the administered insulin. For the vast majority of 
simulated cases the glucose levels are changing only within 

 10 mg/dl, a range for which the assumption of locally 
linear insulin action likely holds.  

An example simulation for the base algorithm and one where 
the prediction horizon is extended from 30 to 70 min is 
shown in Fig. 3. Here, the trial night begins at the vertical 
black line. The blue is the simulated closed-loop insulin 
delivery and resultant glucose values. Increasing the 
prediction horizon leads to earlier suspension and so higher 
glucose values and less hypoglycemia.  

Because we can get negative values in simulation when 
removing particularly important rules, we use a modified risk 
measure that is fitted to the Kovatchev risk profile, but that 
allows for negative values (Cameron, 2010; Cameron et al., 
2011). 

 

 
Fig. 2. Cumulative Insulin Action vs. Time 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

244



 

 

 

     

 
Fig. 3. Sample Simulation with Different Prediction 
Horizons.  

4. RESULTS 

4.1 Maximum Minutes of Suspension Per Night 

Our first safety rule requires that the pump not be suspended 
more than 180 minutes in a night. This is intended to guard 
against the effects of substantial negative sensor bias. This 
assumes that patients set their insulin regimes well enough 
that no more than 180 minutes of suspension per night is 
required to prevent hypoglycemia.  

Studying only the mean CGM in the 6777 total minutes after 
hitting the suspension limit, we see a low value of 71 mg/dl. 
This suggests that, as measured by the CGM setting a limit is 
always bad. However, looking at the comparison between the 
morning CGM and morning BG, our reference measure, for 
the nights affected by a limit of 180 minutes, we find a bias 
of 50 mg/dl; see Fig. 4. By comparison, across all nights the 
bias is 19 mg/dl. Now, the unbiased mean CGM post limit is 
an acceptable, if slightly high, 121 mg/dl. This in turn 
suggests that our current limit is preferable to no limit, which 
would result in an even higher mean glucose. Table 1 shows 
some summary results with and without this safety rule. The 
low and high risk measures aggregate the undesireability of 
the low and high CGM values, respectively. CGM values just 
above 112 mg/dl will add a negligible amount while those at 
400 mg/dl will add substantially more to the high risk value. 
The low risk value does the same for values deviating below 
112 mg/dl. 

Table 1. Effects of Allowing no more than 180 minutes of 
pump suspension per night 

Rule is: Morning 
BG 
(mg/dl) 

Mean 
Low Risk 

Mean 
High Risk 

Mean 
CGM 
(mg/dl) 

Active 127.2 19.5 0.15 71.2 

Inactive 132.0 18.1 0.16 84.0 

To allow comparison, the morning BG numbers are all 
calculated using just the data affected by the nominal limit of 
180 minutes per night. Fig. 4 shows, as expected, a tendency 
for the morning BG to drop with decreasing limits on total 
suspension time. It also shows that the higher the limit the 
more we are selecting for cases with a substantial negative 

bias in the CGM readings. Lastly, the larger the limit, the 
fewer nights are affected. 

 

 
Fig. 4. Calibration Quality reaching a Maximum Suspension 
Limit vs. the Maximum Suspension Limit 

4.2 Maximum Duty Cycle 

Our second safety rule is intended to prevent ketone 
formation from a simple lack of insulin in the blood. When 
insulin is not present in the blood the body begins to break 
down fat to get energy, releasing acid as a by-product. This 
can dangerously acidify the blood. While not directly related 
to the glucose level, low glucose values heavily correlate 
with insulin action, and so insulin concentration. So, we only 
allowed the insulin pump to suspend for a maximum of 120 
in every 150 minutes. 

Generally, the intervention nights actually showed a non-
significant drop of 0.2% to 0.1% of nights with blood ketones 
greater than 1.0 mmol/L. Studying general performance 
effects of this rule gives the results in Table 2. By limiting 
pump suspensions low glucose levels are extended, with a 
much smaller amount of hyperglycemia mitigated.  

Table 2. Performance vs. Existence of a Duty Cycle Limit 

Rule is: Morning 
BG 
(mg/dl) 

Mean 
Low Risk 

Mean 
High Risk 

Mean 
CGM 
(mg/dl) 

Active 129.8 20.1 0.82 83.6 

Inactive 132.1 19.3 0.95 85.3 

Since a limit of 120 in 150 minutes is also an ad-hoc safety 
rule, we simulated the effect of allowing between 60 and 150 
minutes during the same time period of 150 min, as shown in 
Fig. 5. Again, to prevent a changing dataset from 
confounding the results, the morning BG and percent of 
readings less than 70 mg/dl are simulated for just the 8,868 
minutes of data affected by the nominal 120 minute limit. 
Sure enough, higher limits lead to more pump suspension and 
so less hypoglycemia and higher morning BG levels. 

We do not simulate ketones. However, Fig. 5, does show the 
measured ketones that occurred on nights where the modified 
rule would have been in effect. This serves to indicate the 
likelihood of further suspensions when allowed. Sure enough 
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there is a rise in the blood ketones, with increasing limits on 
suspension with a knee in the curve at our nominal limit of 
120 minutes. 

 

 
Fig. 5.  Performance vs. Maximum Suspension Duty Cycle 

4.3 Handling Extended Sensor Dropout 

Our third rule deals with not commanding a suspension 
during periods where we do not have any new sensor 
readings. The actual implementation of this is highly situation 
specific, since communication with the insulin pump cannot 
be assumed. Here, we implement the suspensions as 
temporary basal rates. So, when communication is lost the 
pump will resume normal insulin delivery when the 
temporary basal rate expires. We recommend this rule to 
prevent trumping the patient’s decisions in a situation where 
they are likely awake. 

4.4 Do Not Suspend on Rising Glucose 

This rule is intended to mitigate rebound hyperglycemia, 
though it comes at the cost of dampening pump suspensions 
before hypoglycemia. This idea assumes that there is some 
inertia to the second derivative of glucose; once the glucose 
nadir has occurred that the glucose levels will rise regardless 
of the control action taken. So, any extra suspension after the 
nadir only increases hyperglycemia instead of mitigating 
hypoglycemia. This makes sense given the slow response to 
pumped insulin, per Fig. 2. An example of this is shown in 
Fig. 6. 

Again, we simulate the overall effects of this rule by 
simulating its absence. Since this rule affects CGM values on 
the majority of nights, we calculate the metrics for the entire 
dataset. Table 3 shows that while this rule does reduce the 
mean and morning glucose levels alongside the 
hyperglycemia, it does so at the cost of extra hypoglycemia. 
This makes this rule most appropriate for systems, like this 
one, where there is no capacity to mitigate hyperglycemia. 

 

 
Fig. 6. Sample Night with and without Suspensions on Rising 
Glucose Levels. 

Table 3. Performance with and without Suspension on Rising 
Glucose Levels 

Rule is: Morning 
BG 
(mg/dl) 

Mean 
Low Risk 

Mean 
High Risk 

Mean 
CGM 
(mg/dl) 

Active 151.2 3.1 5.8 137.2 

Inactive 155.6 2.6 6.0 139.4 

 

4.5 Automatic Pump suspension Below a Threshold 

We implemented a failsafe rule that suspends the pump when 
the glucose level is falling and is below a threshold of 70 
mg/dl. Since we also have a functional Kalman filter, 
eliminating this rule has little effect on the overall results. 
However, since other systems do not use Kalman filters, we 
evaluated a pure threshold system where the pump suspends 
if the CGM is below a threshold subject to the limits of no 
more than 120 of suspension in 150 minutes and for a total 
length of no more than 180 min. Fig. 7, shows these results 
for different values of the threshold, while Table 4 shows the 
summary metrics for a threshold of 80 mg/dl, which gives the 
most similar morning BG values. The numbers show that for 
similar morning BG values there is much more risk due to 
low glucose levels. This suggests that this method is much 
less efficient in its pump suspensions. 

We then explored adding the rule where the pump only 
suspends on falling glucose levels. This rule is particularly 
applicable here since there is no prediction allowing 
resumption of insulin delivery for an impending glucose 
threshold crossing. The revised algorithm showed much 
lower glucose rises for a given threshold, so we chose a 
threshold of 100 mg/dl to best match the existing algorithm. 

These results are quite similar to those for the basic algorithm 
and indicate that this is a valid choice for a pump suspension 
algorithm, with the benefits of simplicity and less 
susceptibility to sensor noise. 
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Fig. 7. Performance vs. Threshold for Threshold Based 
Systems. 

 

Table 4. Comparison of Performance with Threshold Based 
Algorithms 

Rule is: Morning 
BG 
(mg/dl) 

Mean 
Low Risk 

Mean 
High Risk 

Mean 
CGM 
(mg/dl) 

Existing 
Algorthm 

151.2 3.1 5.8 137.2 

Falling 
Threshold 
(100 mg/dl) 

154.6 2.9 5.9 138 

Pure 
Threshold 
(80 mg/dl) 

150.0 3.9 5.7 135 

4.6 Sensor Anomaly Avoidance 

Our next set of rules seeks to prevent false suspensions due to 
sensor anomalies. Specifically, it disallows pump suspensions 
if the glucose value is dropping by more than 8 mg/dl/min. 8 
mg/dl/min is a non-physiologic rate of change and indicates 
that the sensor is, at least temporarily, not giving accurate 
readings. 

It is difficult to evaluate the success of this type of measure 
without some measure of when the sensor anomalies 
occurred. Since we do not have enough reference glucose 
values to definitively identify the sensor anomalies, we leave 
this discussion for another paper. 

4.6 Kalman Filter for Predictive Suspension 

The Kalman filter is the core of this method. We suspend the 
insulin pump when the 30 minute glucose prediction is below 
80 mg/dl and restarting when the same prediction is above 
100 mg/dl. Simulating the removal of this rule shifts the 
overall metrics most of the way to those for the control 
nights. Specifically, this rule mitigates hypoglycemia with the 
side effects of a raised morning BG, increased mean glucose, 
and slightly more hyperglycemia. Even without this rule our 
failsafe threshold suspension still occurs, explaining some of 

the differences with the Control Nights. This is shown in 
terms of dataset wide metrics in Table 5. 

Previously, we studied the effect of changing the prediction 
horizon in a pilot study (Buckingham et al., 2013). Here, we 
simulate that effect on a much larger dataset without the 
confounding effects of other algorithmic changes. Fig. 8 
shows that changing the prediction horizon has a large effect 
on the 25th percentile of the time spent below 70 mg/dl, 
reducing it from 6.3% at a prediction Horizon of 30 min to 
1% at 70 min. Also in the figure, there is only an 8 mg/dl 
effect on the median morning BG values between the two 
extremes.  

Hidden from this plot is the effect of an increasing prediction 
horizon on our response to sensor anomalies. The longer 
prediction horizons amplify the sensor noise, leading to more 
erroneous pump suspensions. 

 
Fig. 8. Effect of Varying the Prediction Horizon. 

 

Table 5. Effect of the Kalman Filter 

Rule is: Morning 
BG 
(mg/dl) 

Mean 
Low Risk 

Mean 
High Risk 

Mean 
CGM 
(mg/dl) 

Active 151.2 3.1 5.8 137.2 

Inactive 139.4 5.8 5.4 130.7 

Control 
Nights 

132.6 5.0 5.8 133.4 

 
5. DISCUSSION 

The resounding observation from this analysis is that a much 
simpler system that suspends only when the glucose is falling 
and below 100 mg/dl does just as well as our current system. 
For cases where this level of aggressiveness is desired, this 
result suggests not using the simpler option. However, it is 
difficult to consider using a more aggressive version of the 
threshold. The chosen threshold almost guarantees that the 
morning glucose level will be greater than the threshold. 
Since patients would ideally like a morning glucose level of 
about 100 mg/dl, we are nearly at the limit of how aggressive 
the simpler system can get. 
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Fig 1 shows that the CGM data contains a number of sensor 
anomalies (around 5 AM, 6 AM), where there are extended 
non-physiologic fluctuations that are likely to cause false 
suspensions. We have developed algorithms to detect and 
remove the sensor anomalies characterized by starting with 
sharp, sudden drops. These algorithms were implemented in 
the system and are being tested in further clinical trials in 
younger patients. 

Since this system has no ability to reduce high glucose levels, 
it is particularly cautious to avoid false suspensions. This 
means that we can increase the aggressiveness of 
hypoglycaemia mitigation if we also mitigate the high 
glucose levels. We have developed and are scheduled to test a 
system with added hyperglycemia mitigation in the spring of 
2014. Specifically, we were able to remove the prohibition 
against suspending on rising glucose level, and to extend the 
prediction horizon back to 50 min. 

6. CONCLUSIONS 

Since this paper evaluates the effectiveness of the rules, we 
close with a judgement on the cost and benefit of each rule. 
The limit of 180 minutes of total suspension time selects well 
for poorly calibrated sensors. Limiting the duty cycle to a 
maximum of 120 minutes in every 150 minutes may not be 
making a significant difference in the ketone levels since this 
rule is applied when the patients’ glucose levels are low. The 
use of the rule preventing suspensions on rising glucose 
levels is a judgement call trading off the morning glucose 
versus low glucose risk. In this case, where we do not have 
the capacity to mitigate hyperglycemia, this rule appears 
beneficial. The threshold rule can be easily omitted without 
affecting performance. Lastly, the Kalman filter does the bulk 
of the reduction in the risk from low glucose levels, at the 
expense of increased mean morning glucose levels. 
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